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Abstract

The paper describes a formal procedure to construct a Petri net model starting from the differ-
ential equations that describe the behavior of a canal network. In a first approach, the equations
are discretized and the corresponding model takes the form of a deterministic timed Petri net. In
a second approach, timed continuous Petri nets are used. The dynamic behavior of the system
can be studied as sequences of reachable markings of the net and can be computed with standard
Petri net execution techniques.

1 Introduction

Canal networks equipped with automatic gates which maintain constant upstream levels are commonly
used for open-channel irrigation [4, 5]. In this paper we show how to model such systems with a discrete
event formalism based on Petri nets.

Petri nets [10, 13] are a well known discrete event model of great expressive power and rich of analytical
tools. Simulation software for Petri nets is also readily available. Recently, Petri nets have also been
used to describe systems with continuous dynamics such as hybrid [9], batch [2], and qualitative
systems [8].

We are currently investigating the modeling of canal networks with different Petri net models, ranging
from timed nets to continuous nets. The topology of the canal network can be readily modeled by
paths in the net. The time lags associated to the propagation can be explicitly modeled associating
time delays to the transitions. The flow of tokens will correspond to the flow of water. External
control inputs are modeled using transitions whose firing rate may change with time.

At the present stage, we have only considered modeling issues. The development of such a model may
be useful for several reasons.

• Standard Petri net software tools may be used to perform simulations.

• It may be possible to adapt some of the Petri nets analysis techniques to the study of properties of
interest for these systems.

• Many control problems that have been studied in the Petri net framework, bear a close resemblance
to problems of managing irrigation canal networks. As an example, the problem discussed in [3] of



Figure 1: A canal network with n cascaded reaches.

deriving appropriate control laws to coordinate the users’ withdrawal of water with relative upstream
immission is a resource allocation (scheduling) problem. A large body of results exists in the Petri
net literature on this kind of problems.

The paper is structured as follows. In Section 2 we recall the mathematical model of a canal network
with self-levelling gates. In Section 3 we present background material on Petri nets. In Section 4 we
present a model based on discrete timed Petri nets. In Section 5 we present a model based on timed
continuous Petri nets.

2 Model for canal networks with self-levelling gates

Self-levelling control gates are often used as regulating organs in irrigation networks: they allow to
keep a preset level upstream for wide ranges of rates of flow, thus enabling to deliver the required water
amounts to the utilizers, the delivering sections being usually just upstream from the gates. A water
distribution scheme with self-levelling control gates is essentially a system of the supply type, since
the water delivery to the utilizers depends mainly on the water feeding policies at the upstream end
of the network: it is indeed impossible to act over the control gates throughout the canals. A deeper
knowledge of the network dynamic behaviour (rate of flow variations and delays at each gate due to
water feeding changes) can help in achieving optimal operating policies, by rationalizing the water
deliveries and thus avoiding water wastes, which always occur to some extent in such distribution
systems.

The system we analyze, as shown in Figure 1, is made up of n cascaded canal reaches, separated by
self-levelling gates with delivery points just upstream from the gates; water is fed only to the upstream
end of the first reach.

As system inputs we take the variables which we can directly vary, i.e. the inflow rate qA1(τ) at the
upper end of the first reach and the rates of flow qA1(τ), (i = 2, . . . n) delivered to the utilizers, whose
amount can be regulated by proper operation of the outlet gates independently of the actual state of
the system. In fact self-levelling gates just downstream the delivering points ensure a steady water
level at each point, whatever be the rate of flow in the reach, within the allowed operating ranges of
the gates. System outputs are the rates of flow qBi(τ), (i = 1, 2, . . . n) at the lower ends of each reach
which, according to the lumped elements system model assumed, characterize the hydraulic behaviour
of each reach.

Since the time variation of inputs can be assumed to be slow enough wave fronts are not taken into
account and furthermore the evolution of the system between two steady state situations is supposed
to be a succession of steady flow configurations, characterized by the rate of flow through each reach,



by the related steady surface profile and by the water level set by the control gates at the lower end of
each reach, which is supposed to stand still during the system evolution, if the dynamics of the gates
are neglected.

For every steady flow situation, to each rate of flow through a reach corresponds a water volume
stored in the same reach, which can be reckoned by putting into account the canal geometry, the
steady surface profile, the hydraulic characteristics of the canal and the water level, set at the lower
end of the reach by the control gate, as well.

Thus it is possible to determine for each reach a function

qBi = ϕ(ρi) (i = 1, . . . , n) (1)

which expresses the rate of flow qBi as a function of the stored volume ρi [4, 5].

Each reach is characterized also by a time delay Di, which is the time required by a perturbation due
to a rate of flow variation at the upper end of the reach to arrive at the lower end. Assuming subcritical

flow, such a delay may be expressed as: Di =
Li

Vim + Cim
, where Li is the reach length, and Vim and

Cim are, respectively, the mean water velocity and the celerity of the infinitesimal perturbation in the
middle cross section of the reach corresponding to the initial rate of flow. Cim is given by the formula

Cim =
(

g
Sim

Tim

)0.5

where Sim and Tim are the cross section area and the water surface width in the

middle of the reach.

We can also write the continuity equation at the i-th node as:




qC1(τ) = qA1(τ)

qCi(τ) = qB(i−1)(τ)− qAi(τ) (i = 2, . . . , n)
(2)

Thanks to the assumed hypothesis about the hydraulic transients, the increment of the reach water
volume ρ̇i dτ equals the elementary volume variation between two steady flow configurations infinitely
close to each other, corresponding to the rates of flow qBi(τ + dτ) and qBi(τ) for which equation (1)
holds.

Therefore the system behaviour can be described by the following equations [4, 5]:




ρ̇1 = qC1(τ −D1)− qB1(τ)

ρ̇2 = qC2(τ −D2)− qB2(τ)

· · · · · ·
ρ̇n = qCn(τ −Dn)− qBn(τ)

(3)

In order to integrate system (3) we need to know, besides the initial water volumes stored in each
reach, the input and output rates of flow for time intervals before the initial time of the same length
as the time delays.

3 Petri nets

Many Petri net models have been defined in literature (see [10, 13]). Here we will only recall the basic
elements that will be used in the next session to model canal networks.



3.1 Place/transition nets

A place/transition net [10, 11, 13] is a structure N = (P, T, Pre, Post), where P is a set of places
represented by circles; T is a set of transitions represented by bars; Pre : P × T → IN is the pre-
incidence function that specifies the arcs directed from places to transitions; Post : P × T → IN is
the post-incidence function that specifies the arcs directed from transitions to places.

A marking is a vector M : P → IN that assigns to each place of a P/T net a non-negative integer
number of tokens, represented by black dots. IN |P | will denote the set of all possible markings that
may be defined on the net. A place/transition system or net system 〈N, M0〉 is a net N with an initial
marking M0.

A transition t ∈ T is enabled at a marking M iff M ≥ Pre(·, t). If t is enabled at M , then t may
fire yielding a new marking M ′ with M ′ = M + Post(·, t) − Pre(·, t). We will write M [t〉 M ′ to
denote that t may fire at M yielding M ′. A firing sequence from M0 is a (possibly empty) sequence
of transitions σ = t1 . . . tk such that M0 [t1〉 M1 [t2〉 M2 · · · [tk〉 Mk. A marking M is reachable in
〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M . The set of markings reachable on a
net N from a marking M is called reachability set of N and M and is denoted as R(N, M).

The evolution of a Petri net starting from the initial marking can be studied using the reachability
graph, where all reachable markings and the transition firings that lead from one marking to another
are represented.

Example 1 Let us consider the Petri net in Figure 2.(a). The set of places is P = {p1, p2, p3}, the
set of transitions is T = {t1, t2, t3}, the pre-incidence and post-incidence functions can be expressed
as matrices

Pre =




1 1 0

0 0 1

0 0 1




Post =




0 0 0

2 1 0

0 1 1




Note that the double arc from t1 to p2 has been represented, as usual, with a single arc of weight 2.

Representing the markings of this net as vectors M = [M(p1) M(p2) M(p3)]T , the initial marking,
shown in the figure, is M0 = [2 0 0]T .

To construct the reachability graph we put a node labeled M0 in the graph. Starting from M0, both
t1 and t2 are enabled. If t1 fires we reach the marking M ′ = [1 2 0]T . If t2 fires we reach the marking
M ′′ = [1 1 1]T . Thus we add a node labeled M ′, a node labeled M ′′, an arc labeled t1 from M0 to
M ′, and an arc labeled t2 from M0 to M ′′. We continue this construction to obtain the graph shown
in Figure 2.(b).

The general algorithm to compute a reachability graph is given in [11]. Note that a reachability graph
may be infinite. In this case it is still possible to construct a finite graph named coverability graph
[11].

A final remark regards the notion of conflict . In the net in Figure 2.(a), when place p1 is marked
transitions t1 and t2 are enabled. The reachability graph shows all possible evolutions of the net, and
it can be seen that from marking, say, [2 0 0]T two different markings may be reached depending on
which transition fires. We may avoid this nondeterminism of the net by assuming that one transition
has priority over the firing of the other one [1].



Figure 2: A Petri net (a), and its reachability graph (b).

3.2 Timed Petri nets

A simple extension of place/transition nets considers a function d : T → IR that associates to each
transition ti ∈ T a firing delay di. Such a model is know as deterministic timed Petri net (DTPN).
Note that timed transitions will be represented as black boxes as in Figure 3.

In a DTPN, each time a transition ti becomes enabled a timer is set, and when the timer reaches the
value di the transition is fired. We assume that the timer is reset to zero when ti fires or when it is
disabled (this policy is called enabling memory in [1]).

Note that the firing delay may be constant, may be a function of time τ (time dependent delay) or a
function of the marking of some place of the net (marking dependent delay). A time dependent firing
delay may be used to represent an external input that influences the net evolution.

In a DTPN a transition represents an operation that needs some time to be performed. It is possible
to associate different semantics to this notion.

• Infinite server: Each transition represents an operation that can be performed by any of an infinite
number of operating units that work in parallel. Thus in the net in Figure 3.(a), transition t1 will
fire 3 times at time d because the operating units may process all tokens at the same time.

• Single server: Each transition represents an operation that is performed by a single operating unit.
Thus in the net in Figure 3.(b), transition t1 will fire at times d, 2d, and 3d because the operating
unit processes one token at a time.

•Multiple server: Each transition represents an operation that is performed by a finite number k of
operating units that can work in parallel. Thus in the net in Figure 3.(c), assuming k = 2, transition
t1 will fire twice at time d and once at time 2d because the operating units may processes up to 2
tokens at the same time.

Note that under the infinite server semantic, a token in p1 will only remain in p1 for a time d, while
under the other semantics it may remain longer if all servers are busy processing other customers (i.e.,
tokens). We will explicitly represent the number of servers associated to a transition t by introducing
a place p self-looped with t and containing k tokens as in Figure 3.(b) and Figure 3.(c). There will be
no self-looped place for a transition with an infinite number of servers.

Note that a single server transition with delay d can fire with maximal firing rate f =
1
d
. The firing

rate can be less than f if the transition is starved, i.e., there are not enough tokens to keep it always
enabled.



Figure 3: A deterministic timed Petri net. (a) Infinite server semantics. (b) Single-server semantics.
(c) Two-server semantics.

The evolution of a timed net can still be studied using the reachability graph.

3.3 Continuous and hybrid Petri nets

The reachability set of a net with a great number of tokens may be very large. To avoid this problem,
David and Alla [6, 7] have introduced timed continuous Petri nets (TCPN). In a TCPN the marking of
a place (represented by a double circle as in Figure 4) and the Pre and Post functions are nonnegative
real numbers. A maximal firing speed Vi will be associated to each continuous transition ti (represented
as a white box as in Figure 4), while its instantaneous firing speed will be denoted vi(τ). During a
interval dτ the continuous firing of transition ti will remove Pre(p, ti)vi(τ) dτ units of token (that we
will call marks) from each input places p and add Post(p, ti)vi(τ) dτ marks to each input places p.

The instantaneous firing speed vi(τ) will be equal to Vi if all input places of ti are marked, but may
be less otherwise.

Example 2 Consider the net in Figure 4. Initially place p1 is marked and v1(τ) = V1 = 2. Thus,
during a interval dτ transition t1 will remove 2 dτ marks from p1 and add 2 dτ marks to p2. During
the same time interval transition t2 may fire at his maximal firing speed, i.e., v2(τ) = V2 = 1, removing
1 dτ marks from p2 and adding 1 dτ marks to p1. Thus the marking evolution is initially ruled by the
equations:

dM(p1)
dτ

= v2(τ)− v1(τ) = −1
dM(p2)

dτ
= v1(τ)− v2(τ) = 1

At time τ = 2, place p1 will be empty. Now, transition t1 may not fire at its maximal speed, but may
at most remove the marks added to place p1 by the firing of t2 at speed v2(τ) = 1; thus v1(τ) = 1



Figure 4: A timed continuous Petri net with constant maximal firing speeds.

Figure 5: A timed continuous Petri net with variable maximal firing speeds.

henceforth. The new evolution is given by the equations:

dM(p1)
dτ

= v2(τ)− v1(τ) = 0
dM(p2)

dτ
= v1(τ)− v2(τ) = 0

The evolution of a timed net is given by a graph in which the different phases (each one characterized
by a particular value of the firing speeds) are shown, as in the RHS of Figure 4.

It is also be possible to consider nets with variable maximal firing speeds. In this case Vi may be a
function of time τ (time dependent maximal speeds) or a function of the marking of some place of the
net (marking dependent maximal speeds).

Example 3 Consider the net in Figure 5. Initially place p1 is marked and v1(τ) = V1 = 2. Thus,
in a interval dτ transition t1 will remove 2 dτ marks from p1 and add 2 dτ marks to p2. During
the same interval, transition t2 may fire at his maximal firing speed, i.e., v2(τ) = 2M(p2), removing
2M(p2) dτ marks from p2 and adding 2M(p2) dτ marks to p1. Thus the marking evolution is ruled
by the equations:

dM(p1)
dτ

= v2(τ)− v1(τ) = 2M(p2)− 2
dM(p2)

dτ
= v1(τ)− v2(τ) = 2− 2M(p2)

As M(p2) goes asymptotically to 1 the net reaches a steady state, as shown in the plots in Figure 5.

Finally, a hybrid net [9], is net in which both discrete and continuous places and transitions are present.

We conclude this section defining a new kind of transition that will be used in the modeling of canal
networks: the continuous transition with delay arc shown in Figure 6.(a). The arc marked with ∆ —
that goes from a continuous transition to a continuous place — introduces a delay d. The firing of t1
in Figure 6.(a) will change the marking of place p′2 as shown in the plot. The marking of place p2 will
have the same evolution with a delay d. It is interesting to note that although the notion of arc with
delay is new, it can be considered as the limit for k → 0 of the hybrid net shown in Figure 6.(b). Here,



Figure 6: (a) A continuous transition with delay arc. (b) Equivalent structure.

Figure 7: Discrete Petri net model of a canal with n reaches.

we assume that the marks produced by the firing of t1 are put in places p. As soon as the marking of
place p reaches the value k the immediate transition t (it is a transition with zero delay) fires removing
the k marks from p and adding a token to the discrete place p′. After a delay of d, transition t′ will
fire adding k marks to place p2, as shown in the plot in Figure 6.(b).

4 Discrete Petri net model

In this section we show how a deterministic timed Petri net model that implements equations (1-3)
may be constructed. The model will be discretized, using a suitable unit, say, u [m3]. Thus, a marking
M(p) = n in a place p represents a volume ρ = nu [m3], while a firing rate f = r [s−1] represents a
flow q = ru [m3s−1]. We write int(x) to denote the largest integer smaller or equal to x.

The DTPN model for the system shown in Figure 1, has the form shown in Figure 7.

1. We associate to the i−th reach two places: pAi and pi. Place pAi is used to model the i−th equation
(2), e.g., for i > 2 the flow of tokens entering the place represents qB(1−i)(τ) and the two flows of
tokens leaving the place represent qAi(τ) and qCi(τ). Place pi is used to model the i−th equation (3),
i.e., it contains a number of tokens equal to int(ρi/u), the input flow of tokens represents qCi(τ−Di)
and the output flow of tokens represents qBi(τ).

2. To represent the controlled flow qAi, a transition tAi with maximal firing rate fAi is used. Since



these flows are determined by the operator of the canal network, the corresponding transitions have
a time-varying delay. These transitions will be single server with delay:

dAi(τ) =
1

fAi(τ)
=

u

qAi(τ)

Transition tA1 will always fire at his maximal firing rate because it is always enabled. The transitions
tAi (i ≥ 2), are assumed to have priority over the transitions tCi. Thus, they will also fire at their
maximal firing rate if the flow of tokens entering place pA2 is large enough, i.e., if fB(i−1)(τ) ≥ fAi(τ).

3. To represent the flow qBi at the end of the i−th reach, a transition tBi with firing rate fBi is used.
Since each flow is a function of the volume of water stored in the reach, the corresponding transition
has a marking-dependent delay, that is a function of the marking of place pi. These transitions will
be single server with delay (according to (1):

dBi(pi) =
1

fBi(pi)
=

u

qBi(ρi)
=

u

ϕ(M(pi) · u)

Transition tBi will always fire at his maximal firing rate because it is always enabled.

4. To represent the flow qCi at the beginning of the i−th reach, a transition tCi is used. It is important
to note that in equations (2) the value of qB(i−1) and of qAi are assumed as given inputs, while the
value of qCi is computed as their difference. To model this behavior, we assume that transition tAi

and transition tCi are both outputting from place pAi but that the firing of transition tAi has priority
over the firing of transition tCi. Thus, the effect of transition tCi — note that this is infinite server
transition — will be that of removing the tokens produced by tb(i−1) and not consumed by the firing
of tAi and of transferring them to place pi after a delay

dCi = Di

Note that the delay of transition tCi is not used to impose a firing rate — in fact, the firing rate
of an infinite server transition depends only on the tokens available — but to model the delay Di

associated to each reach.

As an example, in Figure 8 we have represented the marking evolution of a place pAi. We have
also represented with a thin continuous line the contribution to the marking of place pAi given
by the firing of transitions tB(i−1) and tAi, while we have represented with a thin dotted line the
contribution to the marking of place pi given by the firing of transition tCi. Note that starting from
a zero marking, the marking evolution converges to a steady state.

The initial marking of the net represents the initial conditions of the canal network. We assume that
the initial marking of the places pi is equal to int(ρi(0)/u), while we assume that the places pAi are
initially empty. As shown in Figure 8, after a transient the simulation result will converge to a steady
state.

We finally observe that the model may be further refined. As an example, we may want to model the
overflow condition in each reach introducing an immediate transition that will fire removing tokens
form a place pi as soon as the value of M(pi) goes over a given threshold. We may also explicitly
model the maximal flows of each reach by assuming that the transitions tCi are not infinite server but
k-server transitions.



Figure 8: Marking evolution at the i−th node.

5 Continuous Petri net model

A timed continuous Petri net model may also be constructed for the canal network shown in Figure 1,
and takes the form of the net in Figure 9.

In the TCPN the marking of the places is a nonnegative real number, and we need not discretize the
variables. Thus, a marking M(p) = ρ in a place p represents a volume ρ [m3], while a firing speed
v = q represents a flow of q [m3s−1].

1. We associate to the i−th reach two places: pAi and pi. Place pi contains a number of tokens equal
to the volume of water stored in the i−th reach, i.e., M(pi) = ρi. Place pAi will always be empty
because it is used to represent the i−th equation (2) and the flows entering and leaving the node
are balanced.

2. To represent the controlled flow qAi, a transition tAi with maximal firing speed VAi = qAi is used.
Since these flows are determined by the operator of the canal network, the corresponding transitions
have a time-varying firing speed.

Transition tA1 will always fire at his maximal firing speed (i.e., vA1(τ) = VA1(τ)) since it has no
input places.

The transitions tAi (i ≥ 2), are assumed to have priority over the transitions tCi. Thus, they will
also fire at their maximal firing speed (i.e., vAi(τ) = VAi(τ)) if the flow of marks entering place pA2

is large enough, i.e., if vB(i−1)(τ) ≥ VAi(τ).

3. To represent the flow qBi at the end of the i−th reach, a transition tBi with maximal firing speed VBi

is used. Since each flow is a function of the volume of water stored in the reach, the corresponding
transition has a marking-dependent speed, that is a function of the marking M(pi) = ρi of place pi,
i.e.,

VBi(pi) = qBi(M(pi))

Note that the instantaneous speed of this transition is vBi = VBi, because place pi is always marked.

4. To represent the flow qCi at the beginning of the i−th reach, a transition tCi is used. It is important
to note that the firing of transition tAi has priority over the firing of transition tCi. Thus, the effect
of transition tCi will be that of removing the marks not consumed by the firing of tAi and transfer
them to place pi after a delay

di = Di



Figure 9: Timed continuous Petri net model of a canal with n reaches.

Note that we have assigned to all tCi a maximal firing speed VCi = ∞. However, the instantaneous
firing speed will always be finite and equal to vCi(τ) = vB(i−1)(τ)− vAi(τ).

The initial marking of the net represents the initial conditions of the canal network. Thus we assume
that the initial marking of the places pi is equal to ρi(0), while we assume that the places pAi are
initially empty.

6 Conclusions

In this paper we have used Petri nets to model canal networks with self-levelling gates.

Two different models have been derived for a canal network composed on n cascaded reaches. One
model is based on timed discrete Petri nets. A second model is based on timed continuous Petri nets.

The Petri net formalism is rich enough to represent the behavior of canal networks described by
equations (1-3). The approach can be easily extended to networks with more complex topologies, e.g.,
with forks and joins.

In the future, we plan to extend this approach to canal networks ruled by more general equations, such
as those described in [5], in which the water level at the end of the i−th reach may vary according to
a prescribed control law. We also plan to address simulation and water management issues.
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