Petri Net Techniques for Supervisory
Control of Discrete Event Systems

Alessandro Giua,
Dip. di Ingegneria Elettrica ed Elettronica, Universita di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
Phone: +39-070-675-5892 — Fax: +39-070-675-5900 — Email: giua@diee.unica.it

Abstract

In this tutorial paper, several issues related to the use of Petri nets in the su-
pervisory control of discrete event systems are discussed. The basic elements of
supervisory control are presented using Petri nets as discrete event models. The
language properties of Petri nets are studied in this framework to derive important
results on the classes of control problems that can be effectively solved. Examples of
the use of Petri net structural techniques are given, discussing the design of control
structures for enforcing linear constraints on the reachability set of a net.

Published as:
A. Giua, “Petri Net Techniques for Supervisory Control of Discrete Event Systems,” Proc.
First Int. Work. on Manufacturing and Petri Nets (Osaka, Japan), pp. 1-30, June, 1996.

A longer version of this paper also appeared in the proceedings of the summer school
MOVEP96: Modélisation et verification des Processus Paralléles (Nantes, France), June
1996.

1 Introduction

The application of discrete event systems (DES) control theory in industrial settings is a
challenging problem.

Firstly, within the field of process automation, discrete event control systems are used
not only in the area of discrete processes, where they find their natural application, but
also in the area of batch and continuous processes. Secondly, logic control design is char-
acterized by an intrinsic interdisciplinary feature that requires particular knowledge in
a variety of sectors besides that of the control process: for example, those concerning
communication protocols, operating systems, real time systems programming, micropro-
cessors, computer integrated manufacturing. Finally, the types of problems that must be
solved are very different, including alarm and protection management, local control of
workstations, supervision and coordination, monitoring and diagnostic, quality control.

For these reasons, the design is often made empirically, according to trial and error meth-
ods, based on the control-expert’s ingenuity and expertise.

To avoid this situation, it is necessary to identify a systematic approach to the design
problem. The research community has been very productive in this field in the last years.
Of particular interest are those approaches based on system theory, in which there is
a clear distinction between the process or plant (e.g., a workcell, in a manufacturing
system) and the controller, which is a decision-making unit. Both models are given an
input/output description, and it is extremely useful to model the exchange of information
between these models.

Supervisory control, originated by the work of Ramadge and Wonham [32, 41, 31], is a
system theory approach that has been gaining increasing importance because it provides a
unifying framework for the control of DES’s. Supervisory control is a mathematical theory,
based on formal languages, that allows the designer to model specifications and to solve
the given control problem with standard algorithms. The basic elements of supervisory
control are discussed in a section of this paper.

In the original work of Ramadge and Wonham finite state machines (FSM) were used
model the plant and the specifications. FSM'’s provide a general framework for establishing
fundamental properties of DES control problems. They are not convenient or intuitive
models for practical systems, however, because of the large number of states that have
to be introduced to represent several interacting subsystems, and because of the lack of
structure.

More efficient models have been proposed in the DES literature. Here the attention will
be drawn to Petri net (PN) models.

PN’s have several advantages over FSM’s. Firstly, PN’s have a higher language complexity
than FSM, since Petri net languages are a proper superset of regular languages. Secondly,
the states of a PN are represented by the possible markings and not by the places: thus
they give a compact description, i.e., the structure of the net may be maintained small
in size even if the number of the markings grows. Thirdly, PN’s can be used in modular
synthesis, i.e., the net can be considered as composed of interrelated subnets, in the same
way as a complex system can be regarded as composed of interacting subsystems.

Although PN’s have a greater modeling power than FSM’s, computability theory shows
that the increase of modeling power often leads to an increase in the computation required
to solve problems. As an example, all properties of interest of FMS’s are decidable since
they may be checked with a finite procedure. On the other end, if we consider very
powerful models, such as Turing machines, even simple problems, such as the halting
problem, are undecidable. This is why a section of this paper focuses on the decidability
properties of Petri nets by studying the corresponding languages. It will be shown that
Petri nets represent a good trade-off between modeling power and analysis capabilities

Petri nets offer a structured model of DES dynamics that can be exploited in developing
more efficient algorithms for controller synthesis. The last section of the paper discusses
a class of constraints, that can be seen as a generalization of mutual exclusion (or mutex)
constraints. Several PN structural techniques [4, 34], have been used by different authors
to find efficient solutions to the problem of enforcing these constraints. These approaches
will be reviewed and compared.

The paper is structured as follows. In Section 2 is introduced the notation on Petri nets
and formal languages. In Section 3 the basic elements of supervisory control are presented.
In Section 4 the theoretical issues related to the use of PN’s in supervisory control are
discussed. In Section 5 generalized mutual exclusion constraints are studied to provide an
example of the advantages offered by PN’s in the design of efficient control structures.

2 Petri Nets and Formal Languages

2.1 Net systems

A Place/Transition net (P/T net) [28] is a structure N = (P, T, Pre, Post), where P is
a set of places; T is a set of transitions; Pre : P X T'— N is the pre-incidence function;
Post : P xT — N is the post-incidence function.

If the net is pure (i.e., it has no selfloops) the incidence functions can be represented by a

single matrix, the incidence matriz of the net, defined as C(p,t) = Post(p,t) — Pre(p,t).

A marking is a vector M : P — N that assigns to each place of a P/T net a non-negative
integer number of tokens, represented by black dots. A P/T system or net system (N, My)
is a net N with an initial marking M.

A transition ¢ € T is enabled at a marking M iff M > Pre(-,t). If ¢ is enabled at M,
then ¢ may fire yielding a new marking M’ with M' = M + C(-,¢). One writes M [t) M’
to denote that ¢ may fire at M yielding M.

A firing sequence from My is a (possibly empty) sequence of transitions o = ¢; ... such
that My [t1) My [te) My --- [tr) My. A marking M is reachable in (N, My) iff there exists
a firing sequence o such that A [o) M.

If marking M is reachable in (IV, M) by firing a sequence o, then the following state
equation is satisfied: M = My + C' - &, where ¢ : T — N is a vector of non-negative
integers, called the firing count vector. &(t) represents the number of times transition ¢
appears in 0. The set of nonnegative integer vectors M such that there exists a vector

o satisfying the previous state equation is called potentially reachable set and is denoted
PR(N, My). Note that PR(N, My) O R(N, My).

Let Y : P — Z be a vector and P’ C P. The support of Y is Qy = {p € P | Y(p) # 0}.
The projection of Y on P’ is the restriction of Y to P’ and will be denoted Y 71p.
This definition is extended in the usual way to the projection of a set of vectors), i.e.,

Yrp={Y 1tp|Y € V}.

A net system (N, M) is: Bounded, if there exists a nonnegative integer k such that
M (p) < k for every place p and for every marking M € R(N, My); Safe (or 1-bounded),
if M(p) <1 for every place p and for every marking M € R(N, M,).

2.2 Petri net languages

A labeled Petri net (or Petri net generator) [17, 30] is a 4-tuple G = (N, ¢, My, F') where:
N = (P, T, Pre, Post) is a P/T structure; ¢ : T — X is a labeling function that assigns to
each transition a label from the alphabet of events ¥ and will be extended to a mapping
T* — ¥* in the usual way; M, is an initial marking; F' is a finite set of final markings.

A discrete event system will be represented as a labeled Petri net. Given a DES G =
(N, l, My, F): the L-type language of G is L,(G) = {l(0) € ¥* | o € T*, My [o) M, M €
F}; the G-type language of G' (also called weak language) is L,(G) = {{(0) € £¥* | 0 €
T*, My [o) M,(IM" € F)M > M'}; the P-type language of G (also called prefiz language)

is L(G) ={l(oc) e " | o € T*, M, [0)}.
Example 1. Consider the labeled net G in Figure 4.(c) with set of final markings F =
{(0 0 0 1)"}. The languages of this net are: L,(G) = {a™ba™b | m > 0}, L,(G)
{a™ba™ | m > n > 0}, L(G) = {a™ | m > 0} U {a™ba" | m > n > 0} U {a™ba"b | m
n > 0}.

s IV

Note that in the definition of labeled net 7 is a A-free labeling function, according to the
terminology of Peterson [30], i.e., no transition is labeled with the empty word A and two
(or more) transitions may have the same label. The classes of L-type, G-type, and P-type
languages generated by A-free labeled nets are denoted £, G, and P respectively. It is
known [17] that P C G C L.

A deterministic PN generator [17] is such that the word of events generated from the initial
marking uniquely determines the marking reached. Formally, a DES G is deterministic
iff for all ¢,¢' € T, with ¢t # ¢/, and for all M € R(N,My): M [t) A M [ty = [((t) #
((t)] V [Post(-,t) — Pre(-,t) = Post(-,t') — Pre(-,t')]. Note that we are slightly extending
the definition of determinism introduced in [40] and used by [17, 30, 35]. In fact, we
accept as deterministic a system in which two transitions with the same label may be
simultaneously enabled at a marking M, provided that the two markings reached from
M by firing ¢t and ¢’ are the same (it is a kind of parallelism of transitions).

Systems of interest in supervisory control theory are deterministic, hence we will always
assume that the generators considered in this paper are deterministic. The classes of
L-type, G-type, and P-type PN languages generated by deterministic PN generators are
denoted L4, G4, and Py. Each class of deterministic language here defined is strictly
included in the corresponding class of A-free languages. There is however a clear advan-
tage in restricting the model to deterministic PN generators: properties of interest are
decidable for deterministic net while they are not for A-free nets. This will be discussed
in Section 4.3.

It is known that P; C G, [17]. However, in [11, 6] is was shown that the classes G4 and
L, are incomparable, and furthermore G; N L; = R, where R is the class of regular lan-
guages. Hence in the deterministic setting, taking also into account the G-type language
of deterministic nets (in addition to the L-type language) one extends the class of control
problems that can be modeled by PN’s.

3 Introduction to Supervisory Control Theory

3.1 Introduction

Supervisory control is a theory for discrete event systems originated by the work of Ra-
madge and Wonham [32, 41, 31].

Three different areas of interest in the supervisory control approach may be recognized.

The formal language level is concerned with theoretical issues. Qualitative properties
of DES’s, such as stability, controllability, observability, nonblockingness, etc., are defined
from a very general perspective as properties of languages. This “abstract” perspective
has made possible the creation of a model-independent theory.

The system level deals with the concept of DES, seen as a language generator over
an alphabet of events Y. Design algorithms have been devised to compute a controller
(called supervisor) for a given control problem, given the knowledge of the system and of
the specification. These algorithms are based on language operators, thus they are model
independent.

At the model level a particular model is chosen to describe the physical device to be
controlled. In classical control theory there exist different models for, say, linear systems,
such as transfer function, state variables, matrix-fraction description, polynomial matrix
description, etc., all capable of describing systems whose behavior is defined by a differ-
ential linear equation. In the case of a DES, the behavior is defined as a formal language;
hence the models used are language generators such as finite state machines, Petri nets,
communicating sequential processes and related formalism, etc.

In this section some basic elements of the theory are presented. For a more detailed survey
the reader is referred to [33, 20].

3.2 Discrete event systems and properties

Let L be a language on alphabet 3. Its prefix closure is the set of all prefixes of words in
L: L={ceX |Ir e ¥* 307 € L}. A language L is said to be closed if L = L.

In the supervisory control theory a DES is simply a generator of a formal language, defined
on an alphabet 3. The two languages associated with a DES G are: the closed behavior
L(G) C ¥*, a prefix-closed language that represents the possible evolutions of the system;
the marked behavior L,,(G) C L(G), that represents the evolutions corresponding to the

Figure 1: A discrete event system modeled by a finite state machine.

completion of certain tasks.

When finite state machines are used as language generators, the closed behavior is given
by the words that can be generated starting from the initial state and reaching any other
state, while the marked behavior is given by the words that can be generated reaching a
final state.

Example 2. The FMS in Figure 1 represents a discrete event system (. The initial
state is denoted by an arrow, the final states (just one in this example) are denoted
by a double circle. The languages associate to G are: L,,(G) = {abc™ | n > 0} and

L(G) ={\} U{a} U{abc" | n > 0} = L,,,(G), where the overline bar represent the prefix
closure operator. o

Although Ramadge and Wonham have used in their seminal papers a FSM based repre-
sentation for DES’s, the theory they built is very general. Any other formalism that can
represent the closed and marked behavior of a system may be used in this framework. In
the examples presented in this paper PN models are mostly used, while FSM’s are only
used in a few examples in this section.

When PN’s are used as discrete event models, the closed behavior is given by the P-
language. The marked behavior can be represent by any of the terminal languages dis-
cussed in Section 2.2, i.e., by the L-language, or by the G-language. In Section 4.4 other
possible choices for the set of final markings — that will lead to the definition of other
marked behaviors — are mentioned.

A common assumption is that of considering deterministic systems, i.e., deterministic
language generators. For this class of systems the knowledge of the word executed by
the system is sufficient to reconstruct the marking reached by the system starting from
the (unique) initial marking. In Section 4.3 it will be shown that for deterministic PN
generators the properties of interest in supervisory control are decidable.

A DES is said to be nonblocking if any word w € L(G) can be completed into a word
wz € L,(G), i.e., into a word that belongs to the marked language. A deterministic DES
G is nonblocking iff L,,,(G) = L(G).

This property may be restated for FSM’s as follows. Let us define as reachable a state
that may be reached from the initial state, and as coreachable a state from which it is

possible to reach a final state. Then a FSM is nonblocking if and only if all reachable
states are coreachable. A FSM that is reachable and coreachable is said to be trim.
Note that blocking FSM’s may be trimmed removing the states that are unreachable or
uncoreachable and the associated transitions.

Similarly, a PN is nonblocking if from any reachable marking it is possible to reach a
final marking. Note that this property is significantly different from deadlock-freeness.
Deadlock-freeness means that the reachability set does not contain a dead marking, i.e.,
a marking that enables no transition. However a nonblocking system may have a dead
marking (if it is a final marking)

The trimming of PN’s is not as simple as the trimming of FMS’s. See Section 4.1 for a
discussion of this problem.

3.3 Controllable events and supervisor

A fundamental concept in supervisory control is that of uncontrollable event. The events
labels in ¥ are partitioned into two disjoint subsets: the set . of controllable events
(that can be disabled if desired), and the set ¥, of uncontrollable events (that cannot be
disabled by an external agent).

The control specification in supervisory control is given as a specification language, i.e.,
as a legal behavior. The aim of the control is that of restricting the behavior of a system
within the limits of the legal behavior. We may only enable and disable the controllable
events to achieve this behavior. The agent that specifies which events are to be enabled
and disabled is called a supervisor.

Let us define a control input as a subset v C ¥ satisfying 3, C v (i.e., all the uncon-
trollable events are present in the control input). If a € «, the event a is enabled by
v (permitted to occur), otherwise a is disabled by v (prohibited from occurring); the
uncontrollable events are always enabled. Let I' C 2* denote the set of all the possible
control inputs. A supervisor controls a DES G by switching the control input through
a sequence of elements 7q,7vs,... € ', in response to the observed word of previously
generated events.

FEzample 3. Consider the system in Figure 2.(a), where ¥, = {b,¢}, ¥, = {a}, and
F = {(0 0 1)T}. Assume one wants the system to reach the final marking executing
b exactly twice (i.e., one wants a terminal word to contain the event b exactly twice).
The table summarizes the behavior of a supervisor that solves this problem. In the table
for each word w that can be legally generated by the system is listed the corresponding
marking reached by the system and the required control input ~. o

a a

p, C a Ps b ps ¢ P2
ne@0~+0n | OO @:\'E?l—»o Py
b o, ¢

P4 Ps
@ (b) ©

Figure 2: A DES (a), its net supervisor (b), and the closed loop system (c).

‘ marking ‘ w ‘ 0 ‘
(100)" A {a, b}
(010)7" a {a, b}
(100)7 ab {a,b}
(Y| aba | {a,b}
(100)" | abab | {a,c}
(010)
(001)

010)" | ababa | {a,c}
001)" | ababac | {a}

3.3.1 State feedback vs. trace feedback

A point that should be stressed is the fact that the supervisor implements a trace feedback,
rather than a state feedback. That is, the control input is not a function of the present
state of the system, but of the word of events generated. If the system is deterministic, as
assumed, it is possible to reconstruct its state from the word of events generated. Thus
trace feedback is more general than state feedback.

The supervisor given in the table in Section 3.3.1 implements a trace feedback and not a
state feedback because when the system is in the marking (0 1 0)T the control input may
be {a, b} or {a,c} depending on the word previously generated.

There are however interesting classes of supervisory control problems that can be solved
by simple state feedback such as a generalized mutual exclusion constraints that will be
discussed in Section 5.

The notion of state vs. trace feedback is the discrete event counterpart of the notion of
constant vs. time-varying gain feedback for continuous time systems.

3.3.2 Compiled vs. mapping supervisors

A supervisor has been defined as a mapping f : L(G) — T specifying the control input
f(w) to be applied for each possible word of events w generated by the system G.

It may possible to represent a supervisor as another DES S, that runs in parallel with
the system G. Whenever an event occurs in GG the same event will be executed by S.
The events enabled at a given instant on S determine the control input. Thus one may
distinguish between mapping supervisors, whose control law is a function computed after
each new event generated by the system, and compiled supervisors, whose control law is
represented as a DES structure.

The supervisor described in tabular format in Section 3.3.1 can be represented with the
net structure shown in Figure 2.(b). Here, the transition labeled “a” has no input places,
hence it is always enabled. The transition labeled “0” can fire twice at most. The
transition labeled “c¢” can fire once but only after the transition labeled “b” has fired
twice.

When the supervisor is a net, it is easy to construct a new net (called S/G) representing
the closed loop model of the system under supervision. As an example, Figure 2.(c) shows
the net S/G, for the system G in Figure 2.(a) and the supervisor S in Figure 2.(b).

There are several advantages in fully compiling the supervisor action into a net structure.
Firstly, the computation of the control action is faster, since it does not require separate
on-line computation. Secondly, the same PN execution algorithms may be used for both
the original system and the supervisor. Finally, a closed-loop model of the system un-
der control can be built with standard net composition constructions, as was shown in
Figure 2.(c). See also [9].

It is important to note that a compiled supervisor may not exist.

Ezample 4. Consider again the system in Figure 2.(a) with F' = {(0 0 1)T}. A possible
specification may require that in a terminal word “(ab)‘ac” i be a prime number. Clearly
such a supervisor cannot be represented as a PN since the language L = {(ab)‘ac |
i is prime} is not a PN language. o

Theorem 12 in the following section, gives some sufficient conditions for the existence of
FMS supervisors. The existence of PN supervisors will be discussed in Section 4.3.

10

3.3.3 Uncontrollability increases the complexity

It should be remarked that the existence of uncontrollable transitions in a DES often
greatly increases the complexity involved in the solution of a control problem.

In Section 5 generalized mutual exclusion constraints for PN’s are discussed. As will be
seen, each constraint of this kind can be implemented on nets without uncontrollable
transitions by a single place called monitor.

However, it will proved that there are cases in which the presence of uncontrollable transi-
tions makes a monitor-based solution unpractical because it requires a number of monitors
that grows exponentially with the number of constrained places. Furthermore, for some
net it may happen that a monitor-based solution does not exist if some of the transitions
are uncontrollable.

3.4 Closed loop system
3.4.1 Closed loop behaviors

The closed loop system under control will be denoted S/G and may be considered as a
new discrete event system [32]. Let us assume in the following that the supervisor is given
as a DES S. The closed behavior of S/G is L(S/G) = L(G) N L(S), i.e., the subset of the
uncontrolled behavior that survives under supervision.

The marked behavior of S/G is L,,(S/G) = L,,(G) N L(S/G), i.e., the subset of the
uncontrolled marked behavior that survives under supervision.

For Petri net models, the net counterpart of the intersection operator is described in [30].
The net S/G will have set of places given by the union of the set of places of S and G,
while the transitions with the same label of each net will be merged as was shown in
Figure 2.(c).

. . Mg
Any marking Mg/ of S/G can be written Mg/q = v where Mg and Mg are mark-

S

ings of G'and S. Thus one can also write: L(S/G) = {{(0) € ¥* |0 € T*, Mg/qp [0)}.

If L,,(G) = L,(G) and F is the set of final markings of G then L,,(S/G) = {{(0) € ¥* |
ceT* MS/GO [0>MS/G7MG € F}
)
)

If L,,,(G) = Ly(G) and F is the set of final markings of G then L,,(S/G) = {{(0) € ¥* |
o€ T MS/GO [0’ MS/G; (HMév € F)MG Z Mé}

11

There is a slight difference between L-type and G-type languages in the definition of the
closed-loop marked behavior.

When L,,(G) = L,(G), the language L,,(S/G) may not be a deterministic L-type lan-
guage, i.e., it may not exist a deterministic Petri net whose L-type language is L,,(S/G).
Ezample 5. Let S and G be the deterministic PN generators of the following languages:
L(S) = {a™b" | m >n >0}, and L(G) = L,,(G) = L,(G) = {a*b*}. Hence, the marked
behavior of the closed-loop system is L,,(S/G) = L,,(G) N L(S) = L(S) ¢ L4 as shown
in [11]. o

When deterministic G-type PN languages are used as marked behaviors, this problem
disappears. In fact, if L,,,(G) = L,(G) the marked behavior of the closed-loop system is
L,,(S/G) = Ly(G)NL(S) € Gy, since L(S) € Py C Gy and Gy is closed under intersection.
Thus, there exists a deterministic Petri net whose G-type language is L,,(S/G).

3.4.2 Properties of a supervisor

Now let us consider two given DES’s G and S. The DES S qualifies as a proper supervisor
for GG if the two following properties are ensured.

Controllability. S is ¥,-enabling, i.e., it does not disable any uncontrollable event that
may occur in G. This means that (Yw € L(S/G),Va € ¥,) wa € L(G) = wa € L(S/G).

Nonblockingness. S is proper, i.e., the behavior of the system under supervision must be
nonblocking. This means that L(S/G) = L,,(S/G).

Ezample 6. Let G, Si, and Sy be the DES’s in Figure 3.(a). Here ¥, = {b, ¢} and the
set of final markings of G is F' = {(0 0 1)T}. S, is not a supervisor for G because in the
initial marking it disables the uncontrollable event a that is enabled in the initial marking
of G. S5 is not a proper supervisor for GG because if the event « is executed it prevents

the system from reaching the final marking (in fact the event b is never enabled). o

3.5 Supervisory control problem

Controlling a DES consists in restricting its open loop behavior within a given specification
language. Thus one may state the two following Supervisory Control Problems.

SCP1 Given a DES G and a specification language L C L(G), there exists a supervisor
S such that L(S/G) = L?

SCP2 Given a DES G and a specification language L C L,,(G), there exists a nonblock-

12

C
P1 P3 a
S HF
G a'&O/ b P1® O Ps
P2

c d c
| O
©=H-0 @(bo S
p1 P2 P1 P2
a
S1 S2
€ (b)

Figure 3: Systems G, S;, and S, in Example 6 (a). System to control in Example 11 (b).
ing supervisor S such that L,,(S/G) = L?

The solution of these two problems is based on the notions of controllable language and
L,,(G)-closure, defined in [32, 33].

Definition 7. A language K C ¥* is said to be controllable (with respect to L(G) and
Y.) if KL, NL(G) C K.

This means that it is always possible, disabling only controllable transitions, to restrict
L(G) within K.

Definition 8. If K, L C ©* are languages, K is said to be L-closed if K "L =K N L.
This means that any word of L that is the prefix of some word of K is also a word of K.

The following two theorems, due to Ramadge and Wonham [32, 33|, give necessary and
sufficient conditions for the existence of a supervisor.

Theorem 9. For nonempty L C L(G) there exists a supervisor S such that L(S/G) = L
if and only if L is prefix closed and controllable.

Theorem 10. For nonempty L C L,,(G) there exists a nonblocking supervisor S such
that L,,(S/G) = L if and only if L is L,,(G)-closed and controllable.

Ezample 11. The DES G in Figure 3.(b) with set of final markings F' = {(1 0 0)”}, has
closed behavior L(G) = (a(b+ cd))*, and marked (L-type) behavior L,,(G) = L,(G) =
(a(b+ cd))*.

14

(a) Let L = (ab)* be the desired closed behavior of the closed loop system. i) If X, =
{a,d}, L is controllable and may be enforced by a supervisor. The supervisor simply
needs to disable the controllable event ¢ whenever the system is in marking (0 0 1)7. ii)
If ¥, = {b,¢}, L is not controllable and cannot be enforced by a supervisor. In fact the
supervisor cannot disable the event ¢, which is now uncontrollable, when the system is in
marking (0 0 1),

13

(b) Let L = (abab)* be the desired controlled behavior of the closed loop system and
assume Y, = {a,d}. L is controllable, but is not L,,(G)-closed. Hence there does not exit
a supervisor S such that L,,(S/G) = L. This can be also be shown by contradiction in this
particular example. By definition of controlled language, L,,(S/G) = L,,(G) N L(S/G).
Now assume L,,(S/G) = L; then w = abab € L,,(S/G) C L(S/G) and w' = ab ¢
L,,(S/G). However w € L(S/G) = w' € L(S/G), i.e., w' € L,(G) N L(S/G) =
L,,(S/G), a contradiction. o

Another important result due to Ramadge and Wonham [41] is concerned with the exis-
tence of FMS supervisors.

Theorem 12. Let G be a FSM (i.e., its closed and marked behavior are regular languages)
and let L be a regular specification language. If L satisfies the conditions of Theorem 9,
the supervisor S such that L(S/G) = L may be represented as a FMS. If L satisfies the
conditions of Theorem 10, the supervisor S" such that L,,(S"/G) = L may be represented
as a FMS.

3.6 Supremal controllable sublanguage

Assume one wants to restrict the closed behavior of a system G within the limits of a legal
language L that is not controllable. By Theorem 9 a supervisor S such that L(S/G) = L
does not exist. However one may consider a controllable sublanguage K C L that may
be enforced by a supervisor S’. Thus the behavior of the closed loop system is now
L(S'"/G) = K C L, i.e., it is a subset of the legal behavior.

It is also necessary to minimally restrict the behavior of the system, i.e., one wants to
construct the supervisor which allows the largest behavior of the system within the limits
given by the specification L. This behavior is called the supremal controllable sublanguage.

Let us define C(G) = {K | KX,NL(G) C K} as the set of all languages controllable with
respect to L(G) and ¥,. Given a language L the supremal controllable sublanguage of L
[32] is defined as LT =sup{K | K C L, K € C(G)}.

An extremely general result is the following [32].
Theorem 13. The supremal controllable sublanguage for a given supervisory control prob-
lem exists and is unique.

However it may well be the case that L' contains only the empty word or is even the
empty language.
Ezample 14. In Example 11.(a)ii LT = {\}. o

[t may be interesting to observe [18] that the uniqueness ensured by Theorem 13 does not

14

correspond to a unique maximally permissible control if we consider strictly concurrent
systems, i.e., systems where two or more events may occur simultaneously, as shown in
Example 36 in Section 5.3.1.

A second point to be stressed is related to the complexity of solving a given control prob-
lem. Theorems 9, 13 are extremely general and seem to imply that a solution always
exists. However, it may well be the case that: (a) it is not decidable whether a given
language is controllable or L,,(G)-closed; (b) there is no algorithm to compute the supre-
mal controllable sublanguage; (c) the supervisor cannot be implemented using the same
discrete event model used to represent the system and the specification.

In the FSM case, all properties are trivially decidable by state space search and further-
more Ramadge and Wonham have shown that in the regular case (i.e., when both the
system behavior and the specification behavior are regular languages) the supremal con-
trollable sublanguage is a regular language and can be computed in a finite number of
steps. In the next section these issues will be discussed in the PN framework.

4 Petri Net Languages for Supervisory Control

In this section the theoretical issues related to the use of PN’s in supervisory control are
treated by stydying the corresponding languages.

4.1 Petri nets and blocking

A first issue when using Petri nets as discrete events models for supervisory control regards
the trimming of blocking nets. The problem is the following: given a PN generator G

with languages L,,(G) and L(G) D L,,(G) one wants to modify the structure of the net
to obtain a new DES G’ such that L,,(G") = L,(G) and L(G') = L,,,(G') = L, (G).

On a simple model such as a state machine this may be done, trivially, by removing all
states that are reachable but not coreachable (i.e., no final state may be reached from
them) and all their input and output edges.

On Petri net models the trimming may be more complex. If the Petri net is bounded,
it was shown in [9] how the trimming may be done without major changes of the net
structure, in the sense that one has to add new arcs and eventually duplicate transitions
without introducing new places.

Unbounded Petri net models may require more extensive changes of the net structure, as

15

P,)
r
a b a a
c b b
-+ OO
Py Ps Py Ps Py
€) (©)

Figure 4: Blocking net in Example 15 (a) and its trimmed structure (b). Blocking net in
Example 17 (c).

the following example shows.

Ezample 15. Let G be the PN generator in Figure 4.(a), with My = (100)” and set of
final markings F' = {(001)”}. The marked (L-type) and closed behaviors of this net are:
Ln(G) = Ly(G) = {a™cb” | m = rn,n > 0} and L(G) = {a™cb® | m > rn,n > 0}. The
net is clearly blocking, since the word, say, w = a""'b € L(G) cannot be completed to a
word in L,,(G) (assuming r > 1). To avoid reaching a blocking state one requires that py
contain a multiple of r tokens when the transition labeled ¢ is allowed to fire. A possible
solution is shown in Figure 4.(b), where r — 1 new places and new transitions labeled a
have been introduced. o

When the marked language of a net is its L-type Petri net language, it may happen that
the trimming of the net is not possible. The reason for this is given by the following
theorem.

Theorem 16. There exist L-type Petri net languages whose prefix closure is not a P-type
Petri net language, i.e., 3L € L3> L & P.

The proof of this theorem will be given by means of the following example.

Ezample 17. Let G be the deterministic PN generator in Figure 4.(c), with My = (1000)7
and set of final markings F' = {(0001)"}. The marked (L-type) and closed behaviors of
this net are: L,,(G) = {a™ba™b | m > 0} and L(G) = {a™ba™b | m > n > 0}. To
avoid reaching a blocking state one requires that p, be empty before firing the transition
inputting into p,. However, since p, is unbounded this may not be done with a simple
place/transition structure. It is possible to introduce an inhibitor arc from p, to the
transition inputting into p4. Inhibitor arcs increase the modeling power, and the analysis
complexity, of Petri nets to that of a Turing machine [39], thus these models cannot be
properly considered as P/T nets. o

It is possible to prove formally that the prefix closure of the marked language of the net

16

discussed in Example 17 is not a P-type Petri net language. The proof is based on the
pumping lemma for P-type PN languages, given in [17].

Lemma 18. (Pumping lemma). Let L € P. Then there exist numbers £k, such that any
word w € L, with | w |> k, has a decomposition w = zyz with 1 <| y |< [such that
rylz € L,Vi > 1.

Proposition 19. L = {a™ba™b | m > 0} is not a P-type Petri net language.

Proof. Given k according to the pumping lemma, consider the word w = a*ba*b € L.
Obviously, there is no decomposition of this word that can satisfy the pumping lemma. O

Let us define a new class of L-type Petri net languages whose prefix closure can be
generated by a deterministic nonblocking Petri net generator. This class will play an
important role in characterizing the existence of Petri net supervisors, as will be discussed
in Section 4.2.

Definition 20. A language L € L (not necessarily deterministic) is said to be deter-
ministic P-closed (DP-closed for short) if and only if its prefix closure is a deterministic
P-type Petri net language, i.e., L € P;. The class of DP-closed Petri net languages is
denoted Lpp.

As a side note, it should be pointed out that the class Lpp that we have defined does not
coincide with any of the classes of PN languages generally considered in literature [17].
The proof follows from the fact that Lpp is not closed under intersection, as shown in
[10], while all previously defined classes of PN languages are closed under intersection.

When the marked language of a net is its G-type Petri net language, the trimming of the
net is always possible. In fact, next theorem proves that all deterministic G-type languages
are DP-closed. In [11], was actually proven a slightly stronger property, namely that given

a deterministic PN generator G = (N, ¢, My, F') with L,(G) C L(G), there exists a finite
procedure to construct a new deterministic PN generator G’ such that L,(G') = L,(G)

and L(G") = L,(G@").
Theorem 21. The class G4 is included in Lpp.

4.2 Supremal controllable sublanguage and Petri net supervi-
sors
In this section the closure of PN languages under the supremal controllable sublanguage

operator T [41] is discussed and some necessary and sufficient conditions for the existence
of PN supervisors are given.

17

@ (b) ©

Figure 5: Generator in Example 23 (a); its rechability tree (b); generator of L(F)" and
Ly(E)' = L,(E)" in Example 23.

Theorem 22. The classes Py, G; and Lpp of PN languages are not closed under the T
operator.

The proof of this proposition will be given by means of the following example.

Ezample 23. Let G be the PN generator in Figure 5.(a) (including the dotted arcs and
transition) with ¥, = {a}, and set of final markings F' = {(0001)"}. Let now E be the
same net without the dotted arcs and transition and with the same set of final markings
F = {(0001)7}. The languages L(E) € Py, L,(E) € G4 and L,(E) € Lpp are not
controllable. To show this in Figure 5.(b) are drawn the reachability trees of the two nets;
since F refines (G, the arcs that belong to the reachability tree of both nets have been
represented with continuous lines, while the arcs that only belong to the reachability tree
of G have been represented by dotted lines. L(FE) is the prefix language of the generator
in Figure 5.(b), L,(E) is the language accepted reaching any final state, and L,(E) is the
language accepted reaching state g. None of these languages is controllable because of the
presence of the dotted arcs associated to the uncontrollable transition a. Applying the T
operator, one obtains the supremal controllable sublanguages: L(E)" = {a™ba™ (bc)*b |
m > 0} and Ly(E)' = L (E)" = {a™ba™(bc)*b | m > 0}, that are the closed and
marked behavior of the generator in Figure 5.(c). L(E)" & Py, as can be proved using the
pumping lemma (the word w = a*ba*b may be used to prove that no pumping is possible).
LZ(E)T ¢ Lpp, since LZ(E)T = L(E)T ¢ Py. LQ(E)T ¢ Gy, since G, C Lpp. <o

Given a language L in any of the previous classes, say in G4, when the language L' is not in
G4, one may be tempted to consider the supremal element of the class: C,(L) = {K | K C
L, K is controllable, K € G;}. Note, however, that this supremal element does not always
exist. In fact, the existence and uniqueness of the supremal controllable sublanguage in
[41] follows from the fact that the class of controllable languages is closed under arbitrary
union, while the classes of deterministic languages are not closed under union (see [11]). In
the previous example, for instance, for all i € N the language K; = {a"ba"(bc)*b | n < i}
isin Cy(Ly(E)) and K; C K;41. As shown in Example 23, K, = L,(E)" is not in G,.

18

Finally, let us consider two theorems [10] that give necessary and sufficient conditions for
the existence of PN supervisors.

The first theorem, similar to Theorem 9, regards the case in which one wants to restrict
the closed behavior of G within the limits of a legal behavior L.

Theorem 24. Let G be a PN generator and let L C L(G) be a non empty language.
There exists a PN supervisor S such that L(S/G) = L iff L € Py and L is controllable.

Let us consider now the case in which one wants to restrict the marked behavior of
G within the limits of a legal behavior L. In this case, unfortunately, the necessary
requirements that L be controllable and L,,(G)—closed (by Theorem 10) are not sufficient
to insure the existence of a nonblocking PN supervisor even if L € L;. The additonal
assumption that legal behavior L be DP-closed is needed.

Theorem 25. Let G be a nonblocking PN and let L C L,,(G) be a nonempty language.
There ezists a nonblocking PN supervisor S such that L,,(S/G) = L iff L € Lpp, L is
controllable, and L is L,(G)—-closed.

4.3 Decidability

In this section the decidability of some properties of discrete event systems are derived
from the closure properties of the corresponding languages. The results were originally
presented in [11].

It is well known [30] that the inclusion problem: “Is L; C Ly?”, with L;,Ly € P, is
undecidable. However, the emptiness problem: “Is L = ()?”, with L € L, is decidable
since it may be reduced to the reachability problem, shown to be decidable [25].
Definition 26. Given a language L C X*, its complement language is CL = X* \ L.
Given a class of languages A, let us denote co-A = {CL | L € A} the class of all the
complements of languages in A.

For deterministic PN languages the following lemma holds.
Lemma 27. The inclusion problem: “Is Ly C Lo?” s decidable if Ly € L and Lo €
LaUGy.

Proof. Pelz [29] noted that if CLy, € L the inclusion problem may be reduced to the
emptiness problem for the language L = L; N CLy, € L. She also proved that co-L; C L.
In [8] it was shown that co-G; C L. O

A different proof for the decidability of the inclusion problem when Lq, L, € P, has also
been presented in [35].

19

Using this lemma, it is possible to prove the following propositions that shows that three
important properties, blockingness, L.-closure, and controllability are decidable for deter-
ministic systems [11].

Proposition 28. It is decidable whether a deterministic Petri net generator G is blocking
if Ly (G) € Lpp.

Proposition 29. It is decidable whether a language K € Lpp is controllable with respect
to a Petri net generator G.

Proposition 30. [t is decidable whether a language K € GgU (Lq4NLpp) is L-closed with
LelLl.

A remark on the complexity of these decision procedures. Assume G; and G4 are two nets
whose closed (or marked) behaviors are the languages L; and L,. As suggested by the
proof of Lemma 27, to check whether L; C L, one may follow these steps: (a) construct
a PN G}, generating CL, (this is possible if G5 is deterministic); (b) construct the net G
as the intersection of the nets G; and GY; (c) check whether the language generated by
G is empty.

The first step may be carried out with the construction shown in [29], whose complexity
has not been computed. The second step may be done efficiently, as shown in [9]. The
last step has the same complexity of checking the reachability of a given marking, that is
at best decidable in exponential space [17].

More efficient techniques for deciding these properties may exist. This is an open area for
further work.

4.4 Other issues

Gaubert and Giua [7] have explored the use of infinite sets of final markings in the defini-
tion of the marked behavior of a net. With each more or less classical subclass of subsets
of N™ — finite, ideal (or upper), semi-cylindrical, star-free, recognizable, rational (or
semilinear) subsets — it is possible to associate the class of Petri net languages whose set
of accepting states belongs to the class. When comparing the related Petri net languages,
it was seen that for arbitrary or A-free PN generators, the above hierarchy collapses: one
does not increase the generality by considering semilinear accepting sets instead of the
usual finite ones. However, for free-labeled and deterministic PN generators, it is shown
that one gets new distinct subclasses of Petri net languages, for which several decidability
problems become solvable.

Another interesting class of problems, the existence and design of supervisors for PN
generators subject to regular legal behaviors has been discussed by Kumar and Holloway

20

21].

Sreenivas has also explored the decidability and the existence of control structures for
enforcing on PN’s several classes of specifications that cannot be easily expressed as
languages.

In [36] a necessary and sufficient condition is derived for the existence of a supervisory
policy that enforces liveness in partially controlled PN’s. This condition is decidable
if all transitions are controllable or if the PN is bounded. However, for unbounded nets
with uncontrollable transitions the condition becomes undecidable. In [37] the supervisory
policies that enforce liveness in non-live free-choice nets are characterized with a technique
similar to Commoner’s Liveness Theorem. Enforcing liveness is complex problem that
may not always be solved using supervisory policies. However, Sreenivas showed that if
a supervisory policy that enforces liveness exists, then there exist a minimally restrictive
policy as well.

In [38] decidable procedures are given to check the existence of a supervisory policy that
enforces global fairness and bounded fairness in partially controlled PN’s and to check the
existence of a minimally restrictive policy that enforces the above notions of fairness for
bounded PN’s. The class of policies that enforces fairness is not closed under disjunction,
so a minimally restrictive policy may not exist.

5 Generalized Mutual Exclusion Constraints

A classic approach to discrete event modeling and control considers complex systems as
being built out of interacting subsystems. Depending on the particular tasks demanded to
the system, and on the way the subsystems are interconnected, specific constraints must
be imposed on the system’s behavior. In this section discrete event systems modelled by
Petri nets are considered and a class of constraints, that can be seen as a generalization
of mutual exclusion (or mutex) constraints, is discussed.

Several authors have presented solutions to this problem. The notation and definitions
vary from author to author. Here some of these approaches are reviewed presenting them
with a consistent notation.

5.1 Monitors

Let us define a generalized mutual exclusion constraint (GMEC) as a condition that limits
a weighted sum of tokens contained in a subset of places [12, 13].

21

Definition 31. Let (N, M) be a net system with set of places P, W : P — Z a weight
vector of integers, and k € Z a constant. The support of W is the set Q, = {p €
P | w(p) # 0}. A single generalized mutual exclusion constraint (w, k) defines a set
of legal markings on (N, My) M(w,k) = {M € R(N,M,) | &' - M < k}. A set of
GMEC’s (W, k), with W = [, ...,] and k = (ky ... k)T, defines a set of legal markings
MW, k) = {M € R(N, My) | W" - M < k}.

Markings in R(N, My) that are not legal will be denoted forbidden markings.

Example 32. As an example of the modeling power of GMEC’s, consider the simple
manufacturing process with two machines, a robot and a buffer shown in Figure 6.(a).
There exists an infinite supply of parts of type 1 (type 2) that are loaded by the robot on
machine 1 (machine 2). After machining the parts are directly deposited into the buffer.
Machined parts are taken in pairs from the buffer to be assembled.

The process can be represented by the net in Figure 6.(b), where: t; and ¢y (t4 and t5)
represent the start and the end of the loading operation of machine 1 (machine 2); 3
(tg) represents the storing of a part of type 1 (type 2) in the buffer; ¢; represents the
withdrawal of two parts of different type from the buffer. The places have the following
interpretation: p; (ps4) represents the parts being loaded on machine 1 (machine 2); po
(ps) represents the parts being machined on machine 1 (machine 2); ps (pg) represents
the parts of type 1 (type 2) in the buffer.

The following constraints should be imposed on the system’s behavior. a) Only one robot
is available, hence only one loading operation may be executed at a given time, i.e.,
M(p1) + M(ps) < 1. b) Only one part can be machined at a given time on each machine,
i.e., M(p2) < 1, and M(ps;) < 1. ¢) The buffer has k slots, and each part of type 1
takes two slots, while each part of type 2 takes one slot. To avoid overflow one wants
2M (p3) + M (ps) < k. d) In the buffer, the number of parts of one type should not exceed
the number of parts of the other type by more that &' units, i.e., M(ps) — M(ps) < k',
and M(pg) — M(ps) < k' o

As this very simple example shows, mutual exclusion constraints are a natural way of
expressing the concurrent use of a finite number of resources, shared among different
processes. The use of weights permits to assign different units of resources to the various
processes. The use of negative weights permits to express fairness constraints in the
allocation of the shared resources. Note also that constraints to prevent underflow (i.e.,
of the form M (p;) + M(p2) > k > 0) may also be expressed, using negative weights, as
—M(p1) — M(p2) < —k.

It is important to note that GMEC problems may be solved by state feedback. In fact,
at each step the control law depends on the present marking of the net, and not on its

22

[iype] ™
LN

Buffer -

Robot /
[iype 2l M (2)

-5}—#—@—#—&
r-c}—r—@—r—o/

t, Py tg Ps (C)

Figure 6: A manufacturing process: (a) layout; (b) Petri net model; (¢) Petri net controlled
with monitors.

previous evolution.

In traditional Petri net modeling all transitions are assumed to be controllable, i.e., may
be prevented from firing by a control agent. A single GMEC may be easily implemented
by a monitor, i.e., a place whose initial marking represents the available units of a resource
and whose outgoing and incoming transitions represent, respectively, the acquisition and
release of units of the resource (see [5, 43] for some manufacturing examples).
Definition 33. Given a system (N, My), with N = (P, T, Pre, Post), and a GMEC
(w, k), the monitor that enforces this constraint is a new place S to be added to N. The
resulting system is denoted (N®, My, with N = (P U {S},T, Pre®, Post®). Let C be
the incidence matriz of N. Then N° will have incidence matriz

C
C® = .
[—a" - C]
Note that there are no selfloops containing S in N°, hence Pre® and Post® may be

uniquely determined by C*. The initial marking of (N°, My is

M,
My = :
0 (k—zﬁT-M())

The initial marking My of the system is assumed to satisfy the constraint (W, k).

According to the definition, the monitor that enforces a constraint (w, k) will have arcs
going to (coming from) all input (output) transitions of a place p € |@Q,| and such that
w(p) > 0. If the place p is such that w(p) < 0, then the directions of the arcs is reversed.

23

The weight of these arcs depends on the coefficient of w and on the coefficients of the
incidence matrix C'.

As an example, in Figure 6.(c) monitors have been added to the net in Figure 6.(b) to
enforce the constraints discussed in Example 32. Monitor S; enforces the constraint a);
monitors Sy and S3 constraints b); monitor Sy constraint c); and monitors S5 and Sg
constraints d).

A set of GMEC’s can be enforced adding a monitor for each constraint in the set.

The following theorem was proved in [12].

Theorem 34. Let (N, My) be a system, (0, k) a GMEC, and (N°, M) the system with
the addition of the corresponding monitor S. 1] S ensures that the projection on P of the
reachability set of (NS, M) is contained in the set of legal reachable markings of (N, M),
i.e., R(N®, Mg) 1pC M(w, k).

2] S minimally restricts the behavior of (NS, My, in the sense that it prevents only
transition firings that yield forbidden markings.

Part 1 of the previous theorem means that the addition of a monitor to the net structure
modifies the behavior of a system, to avoid reaching markings that do not satisfy the
corresponding GMEC. Part 2 implies that the monitor is also maximally permissive,
i.e., it only disables transitions whose firing would yield a marking that violates the
corresponding GMEC.

Let us compare GMEC’s with the most general kind of constraint that can be defined
on the marking set of a system, the forbidden markings constraint [15, 19]. A forbidden
marking constraint consists of an ezplicit list of markings F that one wants to forbid.

Let F be any set of forbidden markings on a net system (N, My). Is it possible to find
a set of GMEC’s (W, k) equivalent to F, i.c., such that R(N, M) \ F = M(W,k)? In
general the answer is no. In fact given three markings M;, M, M3 € R(N, My) with
My = (My + M,)/2 it follows that My, My € M(W, k) => M3 € M(W, k), since the set
of vectors that satisfy a GMEC is a convex set. However, F may be chosen such that
My, My ¢ F and M3 € F. This proves that there may not exist a GMEC equivalent to a
forbidden marking constraint.

For some classes of nets there exists a set of GMEC’s equivalent to any forbidden marking
constraint (see [12]).

Theorem 35. Let (N, My) be a safe net system. Then given a set of forbidden markings
F there ezists a set of GMEC’s (W, k) such that R(N, My) \ F = M(W, k).

24

5.2 Nets with uncontrollable transitions

In the framework of supervisory control the complexity of enforcing a GMEC is enhanced
by the presence of uncontrollable transitions [14].

Let us assume that the set of transitions 7" of a net is partitioned into two disjoints subsets:
T,, the set of uncontrollable transitions, and 7., the set of controllable transitions. A
controllable transition may be disabled by a supervisor, a controlling agent which ensures
that the behavior of the system is within a legal behavior. An uncontrollable transition
represents an event which may not be prevented from occurring by a supervisor. Thus
arcs from monitors to uncontrollable transitions are not allowed, since the effect of such
an arc would be that of preventing the firing of the transition when the monitor place is
not marked.

When the net has uncontrollable transitions, to enforce a given GMEC it is necessary
to prevent the system from reaching a superset of the forbidden markings, containing
all those markings from which a forbidden one may be reached by firing a sequence of
uncontrollable transitions.

Given a system (N, My) and a set of GMEC’s (W, k), in the presence of uncontrollable
transitions the set of legal markings is given as: M.(W, k) = M(W,k)\{M € R(N, Mj) |
AM' ¢ M(W, k), Mlo)M' Ao € T:}, ie., one does not consider legal the markings
that satisfy (W, E) but from which a forbidden marking may be reached by firing only
uncontrollable transitions. it is necessary to introduce this restriction because a firing
sequence o € T,; may not be prevented by a controlling agent.

Let us now discuss the concept of mazimally permissible control policy [18], that is the
counterpart of the supremal controllable sublanguage discussed in Section 3.6. When all
transitions are controllable, it was shown that a monitor is capable of enforcing a given
GMEC (), k), with a maximally permissible control, in the sense that a) only markings
in M (W, k) can be reached by the system under control; b) all transition firings that yield
a marking in M (W, k) are be allowed.

In the case of uncontrollable transitions, the maximally permissible control policy should
ensure that: a) only markings in M_(w, k) will be reached by the system under control;
b) all transition firings that yield a marking in M. (, k) should be allowed.

It is possible to prove [12] that there may not exist a GMEC (W, k) such that M(W, k) =
M (W, k). Thus in presence of uncontrollable transitions, a problem of mutual exclusion
is transformed into a more general forbidden marking problem, which is a qualitatively
different problem, in the sense that it may not always be solved with the same techniques
used when all transitions are controllable. Note, however, that for safe and conservative

25

systems the result of Theorem 35 ensures that, even if some transitions are not control-
lable, (@, k) may be enforced by a set of monitors.

5.3 Petri net techniques for GMEC’s

Two ways have been explored for reducing the computational complexity involved in
solving a GMEC problem for nets with uncontrollable transitions.

On one hand, one may consider special PN structures for which the maximally permissible
control policy can be easily computed and implemented. There have been several inter-
esting approaches in this sense. Holloway and Krogh [15, 19] presented an approach in
which the problem of controlling the marking of a place can be decomposed into the con-
trol of paths of uncontrollable transitions and used these techniques to enforce GMEC’s
on safe marked graphs. Li and Wonham [22, 23] showed how closed-form solutions for
GMEC problems may be computed for restricted classes of nets. By closed-form solution
the authors mean that the controller may be represented as a net. Giua et al. [13] have
discussed several control structures (including monitors) capable of enforcing GMEC’s on
marked graphs with control safe places.

On an another hand, one may give up the requirement that the control policy be maximally
permissible and may be willing to accept a more restrictive control policy provided it can
be easily computed. This approach has been followed by Moody et al. [26, 27, 42]. In their
approach the idea is that of always using very simple controllers in the form of monitor
places that only constrain controllable transitions. An algorithm is given to compute such
a monitor to ensure that a given GMEC will never be violated.

These approaches will be briefly reviewed in the following.

5.3.1 Holloway and Krogh’s approach

The PN model considered by Holloway and Krogh is called controlled PN. A controlled
PN is a P/T net with 2 sets of places, the state places P represented by circles and the
input control places C' represented as boxes (see Figure 7.(a)). Hence the marking has
two components, M (related to P) and U (related to C'). U is assumed to be binary.

The marking of places in C' is computed by an external agent as a function of the marking
of the state places, i.e., U = f(M). The firing of a transition modifies M in the usual
way. The control input U is computed again each time a new marking is reached. There
are two difference wrt the firing policy of P/T nets: a) two enabled transitions may
fire simultaneously; b) control places allow interpreted parallelism (no conflict), i.e., if a

26

control place ¢ is the input place for two or more transitions, and U(c) = 1, then all its
output transitions may fire if they are also enabled by M.

The basic restriction Holloway and Krogh consider is that the net be a safe marked graph,
i.e., a safe P/T net such that each place has exactly one input arc and one output arc.
In the examples given here, only GMEC (), k) where w(p) € {0, 1} will be considered.

Given a GMEC (w, k) the control law is computed in two steps.

Off-line computation. For each place in @), compute backwards the paths until controlled
transitions are found.

On-line computation. Given a marking M define for each p € Q,,: a) A,(M) = 1 if all its
path are marked (i.e., p may be marked uncontrollably) else A,(M) = 0; b) A, (M) = 1if,
unless some control input is disabled, at the next marking all paths of p may be marked
(M is a boundary marking for p) else A,(A) = 0.

Let: L be the number of places in @), such that A,(A) = 1; B be the number of places
in @, such that A,(M) = 1; D(U) be the number of places in @, such that A, (M) =1
but such that U disables some transition whose firing will increase A,. Then a control
input is admissible if: D(U) > L+ B — k.

FEzample 36. Let us consider the GMEC M (p;) + M(p2) < 1. In Figure 7.(a), we have
represented the subnet computed during the off-line computations for places p; and ps.

Given the marking in the figure, A, (M) = Ap(M) = 0, and Ay (M) = Ap(M) =1,
hence L = 0, B = 2. The possible markings for the control places and the corresponding
values of D are: D(0 0 0) = D(010) =1 (p; and ps cannot be marked); D(0 0 1) =
D(011) =1 (p; cannot be marked); D(1 0 0) = D(1 1 0) =1 (p, cannot be marked);
D(101)=D(111)=1 (both p; and py can be marked).

One needs D(U) > L+ B — k = 1, hence one can choose either U = (0 1 1)7 or
U'=(110)7, ie., there are two maximally permissible controls. o

The approach of Holloway and Krogh is extremely efficient, since it requires very simple
computations, both in the off-line and on-line steps. However, because the controller is
given as a feedback law it is not possible to built a net model of the closed-loop system.

This approach has received a lot of attention in the literature and has also been extended
to classes of nets other than marked graphs: controlled state machines [2], forward and
backward conflict-free nets [3], colored nets [1, 24].

Finally, necessary and sufficient conditions for liveness under control have been presented
in [16].

27

?

el
b
Q)
t, -Y—
0
X

P

()

Figure 7: Nets in Examples 36-39.

5.3.2 Li and Wonham’s approach

Li and Wonham have considered Vector Discrete Event Systems, a model that is known
to be equivalent to Petri nets [30].

In a first approach they used incidence matrix analysis to compute the control law that
enforces GMEC’s (that they call Linear Predicates).

Let (N, My) be a net system, and let N, be the uncontrollable subnet, i.e., the subnet
obtained from N by removing all controllable transitions. Let (@, k) be a GMEC. Then
one can write the set of legal markings defined in Section 5.2 as: M.(w, k) = {M | (VM' €
R(Ny, M))w" - M' < k}.

They also observed that the state equation of a net may be used to decide reachability
if the net is acyclic, i.e., if no direct path in the net forms a cycle [28]. Thus if N,
is acyclic, a given marking M is in M.(w, k) if and only if the following integer pro-
gramming problem IPP (where C, is the incidence matrix of N,) has solution z* < k:
r= maxda’ - M
st. M'=M+C,-a,
M',& > 0.

The following algorithm can used to enforce a GMEC (), k) on nets whose uncontrollable
subnet is acyclic.
1. Let the initial marking M, be in M.(w, k). (Solve IPP with M = M,.)
2. Let M be the present marking. For any controllable ¢ enabled by M:

a) compute M; such that M[t) M;;

b) solve IPP with M = M;;

28

¢) if 2* < k then ¢ should be enabled else it should be disabled.
3. As soon as a transition fires go back to step 2.

The condition that the uncontrollable subnet be acyclic is not too restrictive, in the sense
that in many practical applications it holds. However, the problem is that the controller
has to solve on-line at each step several IPP’s. The complexity of IPP’s is an open
problem. It is doubtful that these problems have polynomial complexity in the size of the
constraint set. Thus, the approach is unfeasible in practical applications.

This motivated Li and Wonham to study other classes of nets for which the controller may
be represented as a net. The method can be applied to ordinary nets whose uncontrollable
transitions form either tree structures of type TS1 (each transition has a single output arc)
or tree structures of type TS2 (each transition has a single input arc) as defined in [23].
Another mild restriction is that the uncontrollable subnet be composed by non connected
components and two or more places in @),, cannot belong to the same component (mutual
independence).

In the case of TS2 nets they show that given a GMEC (w, k), there exists a new constraint
(., k.) such that the set of legal markings can be written as: M.(w, k) = {M | @] - M <
k.} and the monitor that enforces (., k.) does not have arcs going to uncontrollable
transitions. Thus (@, k) can be enforced using the monitor for (., k.).

In the case of TS1 nets they show that given a GMEC (), k), there exists a new set of
constraints (;, k;) (i = 1,...,7) such that: M.(w, k) = {M | \/i_, @] - M < k;} (\ is
the disjunction operator, i.e., the logical OR) and the monitor that enforces each (;, k;)
does not have arcs going to uncontrollable transitions. Note, however, that in this second
case the net structure corresponding to the disjunction operator cannot be represented
as a net. In fact the addition of r monitors, one for each (w;, k;), would enforce the
conjunction (logical AND) of these constraints.

In [23] is defined a new structure, called generalized vector addition system, that can
enforce a disjunction of constraints.

Ezample 37. Let us consider the GMEC (), k) requiring M (p;) + M(p2) < 1 and the net
in Figure 7.(a). The uncontrollable subnets for p; and p, (controllable transitions ts, tg
and t7 should be removed), are TS1 nets.

Let (wy, k) and (s, k) be the constraints requiring, respectively: M (p;) + M(p2) +
M(ps) + M(ps) < 1and M(p1) + M(p2) + M (ps) + M(ps) < 1. Clearly, M.(w, k) = {M |
Wi - M < ky Vs - M < ky}. o

29

5.3.3 Giua, DiCesare, and Silva’s approach

The authors consider marked graphs with control safe places and GMEC’s with @ € N™.

A transition ¢ belongs to the set of control transitions A, of a place p iff: a) ¢ is controllable;
b) there exists a path from ¢ to p that does not contain controllable transitions except
t. A place p is control safe if on at least one path from each ¢ € A, to p the number of
tokens cannot exceed one. A transition ¢t € A, is said to be constraining at a marking M
if there exists a path from ¢ to p that is unmarked at M.

For this classes of nets and constraints, the authors showed that given a GMEC (), k),
there exists a set of GMEC’s (W,, k) such that {M | WT - M < k.} = M_(i, k). Hence
a maximally permissible control law for (), k) may always be implemented by a set of
monitors.

In particular, if (@, k) is such that w(p) € {0,1} and |Qu| = k + 1, then the set (W, k)
reduces to a single constraint. This constraint can be enforced by a monitor place py, with
(for all p € Qy): a) one arc going from py to each transitions in A, ; b) |4,| arcs going
from the output transition of p to py.

The initial marking of pg is equal to d—1, where d is the number of constraining transitions
in A = Upeg, Ap at the initial marking M,.

Ezample 38. Let us consider the GMEC (W, k) requiring M (p1)+ M (p2) < 1 and the net in
Figure 7.(b) without places py and py; and their input/output arcs. Here the controllable
transitions (5, t¢ and t7) are shown as boxes.

Let us assume that places p; and py are control safe. The set control transitions for place
p1is A, = {t5,t6}. The set of control transitions for place py is Ay = {t;}. Transitions
t5 and t7; are constraining.

Since the constraint (&, k) is such that |Qu,| = {p1,p2}| = 2 = £+ 1 and w(py) = 1,
w(py) = 1, this constraint can be enforced by a single monitor, place py in Figure 7.(b). ¢

Assume now (), k) is such that (for some p) w(p) > 1, or |Qu| > k + 1. The previous
construction may not be used. However it was shown in [13] that the original constraint
may be rewritten as a set of at least r constraints (u;, k) where |Q,;,| = k + 1 and
each of these constraints may be enforced by a monitor. However the problem is that
r= (kp:)|1) , thus in the worst case the number of monitors is exponential with respect
to the cardinality of Q.

In the cases in which maximally permissible monitor solutions are not efficient, a different
supervisory based control structure can be used [13]. This structure grows linearly with

30

the number of places in the support of the weight vector.

5.3.4 Moody, Antsaklis, and Lemmon’s approach

These authors use monitors as control structure to be added to the net structure for
enforcing GMEC’s (called place invariants). When there are uncontrollable transitions,
they still use monitor based solutions but in this case the solution may not be maximally
permissible.

Let us consider a set of GMEC’s (W, k) to be enforced on a net system (N, Mo). Let W
be a (m x r) matrix, where m is the number of places of the net and r the number of
constraints in the set. Let C be the incidence matrix of the net and C), the incidence matrix
of the uncontrollable subnet (obtained removing all controllable transitions). The set of
monitors corresponding to (W, E) can be added to net without disabling any uncontrollable
transition if all elements in W7 - C, are less than zero, because in this case there will be
no arcs going from the monitors to uncontrollable transitions.

If such is not the case, one can try to find a new constraint (1, li) (where W, is a matrix
with the same dimension of W) such that: a) W1 - C, has all elements less than zero;
b) M(W,, ks) € M(W, k), i.e., such that all markings that are legal for (W,, k.) are also
legal for (W, E) Note that the set of legal markings for the new constraint may be a
strict subset of the set M.(WV, E) and thus the new constraint may prevent the net from
reaching markings that are legal.

In [27] it was shown how one may try to find such a new set of constraints by performing

wr.C,
each constraint in W new places as will be shown in the next example.
FEzample 39. Let us consider the GMEC (), k) requiring M (p;) + M (p2) < 1 and the net

in Figure 7.(b) without places py and py; and their input/output arcs.

row operations on the matrix [} The main idea is to add to the support of

Here the uncontrollable incidence matrix is C,, = [C(-,t1) C(,t2) C(t3) C(-ta) =

-1 0 1 0
0o -1 0 1
0 0 -1 0 Since @' - C, = (=1 —1 1 1), the constraint cannot be en-
0 0 -1 0
0 0 0 —1|
forced.

Let us add places py and ps to the constraint (places ps and ps could also have been
chosen) to obtain the new constraint (i,, k) with @’ = (1101 1) and k. = 1. Now

31

Wl . C, = (=1 —100), hence this constraint can be enforced by a monitor. Note that
all markings that satisfy the new constraint also satisfy the original one, since M (p;) +
M(p2) < M(p1) + M(p2) + M(ps) + M(ps) < 1.

The monitor corresponding to (., k.) is place pys in Figure 7.(b).

The constraint (., k.) from the marking in Figure 7.(a) prevents the firing of ¢; even if
the marking (0 0 0 1 1)T reachable by firing ¢ is in M. (i, k). o

It is also interesting to note that this approach can be extended by duality to unobservable
transitions. In this case the requirement is that there should not be arcs from unobservable
transitions to a monitor, because the occurrence of such a transition cannot be observed
and cannot be used by the monitor to update its control law.

6 Conclusions

The paper has discussed several issues related to the use of Petri nets in the supervisory
control of discrete event systems. The basic elements of supervisory control have been
presented using Petri nets as discrete event models. The language properties of Petri nets
have been studied in this framework to derive important results on the classes of control
problems that can be effectively solved. Examples of the use of Petri net structural
techniques have been given, discussing the design of control structures for enforcing linear
constraints on the reachability set of a net.

References

[1] R.K. Boel, L. Ben-Naoum, and V. Van Breusegem. On forbidden state problems for colored
closed controlled state machines. In Preprints of the 12th IFAC World Congress, volume 4,
pages 161-164, Sidney, Australia, July 1993.

[2] R.K. Boel, L. Ben-Naoum, and V. Van Breusegem. On forbidden state problems for a class
of controlled Petri nets. IEEE Trans. on Automatic Control, 40(10):1717-1731, 1995.

[3] H. Chen. Synthesis of feedback control logic for controlled Petri nets with forward and
backward conflict-free uncontrolled subnet. In Proc. 33rd IEEE Trans. on Decision and
Control, pages 3098-3103, Lake Buena Vista, FL, Dec 1994.

[4] J.M. Colom and M. Silva. Improving the linearly based characterization of P/T nets.
In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in
Computer Sciences, pages 113-145. Springer Verlag, New York, 1991.

32

[5]

[18]

F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat. Practice of Petri
Nets in Manufacturing. Chapman and Hall, London, 1993.

S. Gaubert and A. Giua. Deterministic weak-and-marked Petri net languages are regular.
IEEE Trans. on Automatic Control, 41(12), December 1996.

S. Gaubert and A. Giua. Petri net languages with infinite sets of final markings. In Proc.
WODES96, Edinburgh, Scotland, August 1996.

A. Giua. On the closure properties of deterministic weak Petri net languages. Technical
Report 59, Istituto di Elettrotecnica, University of Cagliari (Italy), February 1994.

A. Giua and F. DiCesare. Supervisory design using Petri nets. In Proc. 30th IEEE Conf.
on Decision and Control, pages 92-97, Brighton, UK, December 1991.

A. Giua and F. DiCesare. Blocking and controllability of Petri nets in supervisory control.
IEEE Trans. on Automatic Control, 39(4):818-823, April 1994.

A. Giua and F. DiCesare. Decidability and closure properties of weak Petri net languages
in supervisory control. IEEE Trans. on Automatic Control, 40(5):906-910, May 1995.

A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclusion constraints on nets
with uncontrollable transitions. In Proc. 1992 IEEE Int. Conf. on Systems, Man, and
Cybernetics, pages 974-979, Chicago, Illinois, October 1992.

A. Giua, F. DiCesare, and M. Silva. Petri net supervisors for generalized mutual exclusion
constraints. In Proc. 12th IFAC World Congress, pages 1:267-270, Sidney, Australia, July
1993.

C.H. Golaszewski and P.J. Ramadge. Mutual exclusion problems for discrete event systems
with shared events. In Proc. 27th IEEE Conf. on Decision and Control, pages 234-239,
Austin, Texas, December 1988.

L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of controlled
Petri nets. IEEE Trans. on Automatic Control, 35(5):514-523, May 1990.

L. E. Holloway and B. H. Krogh. On closed-loop liveness of discrete event systems under
maximally permissive control. IEEE Trans. on Automatic Control, 37(5):692—-697, May
1992.

M. Jantzen. Language theory of Petri nets. In W. Reisig W. Brauer and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
volume 254-1 of Lecture Notes in Computer Sciences, pages 397-412. Springer Verlag, New
York, 1987.

B. H. Krogh. Controlled Petri nets and maximally permissive feedback logic. Proc. 25th
Annual Allerton Conference, pages 317-326, September 1987. University of Illinois, Urbana.

33

[19]

[20]

[21]

22]

[23]

[25]

[26]

B. H. Krogh and L. E. Holloway. Synthesis of feedback control logic for discrete manufac-
turing systems. Automatica, 27(4):641-651, July 1991.

R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems. Kluwer
Academic Publisher, 1995.

R. Kumar and L. E. Holloway. Supervisory control of deterministic Petri net languages
with regular specification languages. IEEE Trans. on Automatic Control, 41(2):245-2494,
February 1996.

Y. Li and W.M. Wonham. Control of vector discrete-event systems I — the base model.
IEEE Trans. on Automatic Control, 38(8):1214-1227, August 1993.

Y. Li and W.M. Wonham. Control of vector discrete-event systems II — controller synthesis.
IEEE Trans. on Automatic Control, 39(3):512-531, March 1994.

M. Makungu, M. Barbeau, and R. St-Denis. Synthesis of controllers with colored Petri
nets. Proc. 32nd Annual Allerton Conference, pages 709-718, September 1994. University
of Tlinois, Urbana.

E.W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. of
Computing, 13(3):441-460, August 1984.

J.0. Moody and P.J. Antsaklis. Petri net supervisors for DES in the presence of uncontrol-
lable and unobservable transitions. In Proc. 35rd Annual Allerton Conference, Monticello,
IL., USA., October 1995.

J.O. Moody, P.J. Antsaklis, and M.D. Lemmon. Automated design of a Petri net feedback
controller for a robotic assembly cell. In Proc. INRIA/IEEE Sym. on Emerging Technologies
and Factory Automation, volume 2, pages 117-128, Paris, France, October 1995.

T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):541—
580, April 1989.

E. Pelz. Closure properties of deterministic Petri net languages. In Proc. STACS 1987,
volume 247 of Lecture Notes in Computer Sciences, pages 373-382. Springer Verlag, New
York, 1987.

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete-event systems.
SIAM J. of Control and Optimization, 25(5):1202-1218, September 1987.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event pro-
cesses. SIAM J. on Control and Optimization, 25(1):206-230, January 1987.

34

[33]

[34]

[35]

[36]

[39]

[40]

[42]

[43]

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proc. of the
IEEE, 77(1):81-98, January 1989.

M. Silva, J.M. Colom, and J. Campos. Linear algebraic techniques for the analysis of petri
nets. In Proc. Int. Symp. on Mathematical Theory of Networks and Systems, Tokyo, Japan,
1992. MITA Press.

R.S. Sreenivas. A note on deciding the controllability of a language K with respect to a
language L. IEEE Trans. on Automatic Control, 38(4):658-662, April 1993.

R.S. Sreenivas. Enforcing liveness via supervisory control in discrete event dynamic systems
modeled by completely controlled petri nets. IEEE Transactions on Automatic Control,
1996. submitted.

R.S. Sreenivas. On Commoner’s liveness theorem and supervisory policies that enforce
liveness in free-choice petri nets. Systems and Control letters, 1996. submitted.

R.S. Sreenivas. On supervisory policies that enforce global fairness and bounded fairness
in partially controlled Petri nets. DEDS, 1996. submitted.

R.S. Sreenivas and B.H. Krogh. On Petri net models of infinite state supervisors. IEEE
Trans. on Automatic Control, 37(2):274-277, February 1992.

G. Vidal-Naquet. Deterministic Petri net languages. In C. Girault and W. Reisig, editors,
Application and Theory of Petri Net 1982, volume 52 of Informatick-Fachberichte, New
York, 1982. Springer Verlag.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a given
language. SIAM J. on Control and Optimization, 25(3):637-659, May 1987.

K. Yamalidou, J.O. Moody, M.D. Lemmon, and P.J. Antsaklis. Feedback control of Petri
nets based on place invariants. Automatica, 32(1), 1996.

M.C. Zhou and F. DiCesare. Petri net synthesis for discrete event control of manufacturing
systems. Kluwer, 1993.

35

