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Abstract

The paper discusses the problem of enforcing generalized mutual exclusion con-
straints on place/transition nets with uncontrollable transitions. For a class of Petri
nets, marked graphs with control safe places, two Petri net structures capable of
enforcing these constraints are presented. The first one, is a monitor-based solution;
the second one a supervisory based solution. Both structures are fully compiled, i.e.,
they are given as simple place/transition nets with no associated predicates, thus
permitting the construction and the analysis of a closed loop-model of the controlled

system.
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1 Introduction

Mutual exclusion constraints are a natural way of expressing the concurrent use of a finite
number of resources, shared among different processes. For systems represented as Petri
nets, Giua et al. (1992) have defined a generalized mutual exclusion constraint (GMEC)

as a condition that limits a weighted sum of tokens contained in a subset of places.

In traditional Petri net modeling all transitions are assumed to be controllable, i.e., may
be prevented from firing by a control agent. A single GMEC may be easily implemented
by a monitor, i.e., a place whose initial marking represents the available units of a resource
and whose outgoing and incoming transitions represent, respectively, the acquisition and

release of units of the resource.

In the framework of Supervisory Control (Ramadge and Wonham, 1989) the complex-
ity of enforcing a GMEC is enhanced by the presence of uncontrollable transitions, i.e.,
transitions that may be observed but not prevented from firing by a control agent. To
enforce a given GMEC, it is necessary to prevent the system from reaching not only the
forbidden markings (i.e., those markings that do not satisfy the constraint), but also all
those markings from which a forbidden one may be reached by firing a sequence of un-
controllable transitions as discussed in Golaszewski and Ramadge (1988). Unfortunately,
in this case it was shown that there exist problems which do not have a “monitor-based”
solution (Giua et al., 1992).

In this context, this paper discusses GMEC for systems represented as marked graphs. The
goal is that of constructing a supervisor capable of enforcing the constraints. A solution
to this problem has been given by Krogh and Holloway (1991). In their approach, which
may be defined as fully interpreted, the control policy is efficiently computed by an on-line
controller as a feedback function of the marking of the system. In this work, instead, a net
based structure for the supervisor is built. The paper presents and compares two different
solutions that are fully compiled, i.e., the corresponding supervisor is represented by a

place/transition net.

There are several advantages in fully compiling the supervisor action into a net structure.
Firstly, the computation of the control action is faster, since it does not require separate
on-line computation. Secondly, the same Petri net system execution algorithms may be
used for both the original system and the supervisor. Finally, a closed-loop model of

the system under control may be built with standard net composition constructions, and



efficiently analyzed for structural properties of interest.

The proofs of the propositions presented in the paper can be found in Giua (1992).

2 Generalities

A place/transition net (P/T net) is a structure N = (P, T, Pre, Post). Readers unfamiliar
with the notation may refer to Murata (1989).

The preset (postset) of a subset of places P; C P is the set: *P; = {t € T | Post(p,t) > 0}
(P?={teT| Pre(p,t) > 0}). A marked graph (MG ) is a P/T net such that each place

has exactly one input arc and one output arc.

A marking is a vector M : P — IN. IN'"I will denote the set of all possible markings that
may be defined on the net. One writes M [t) M’ to denote that an enabled ¢ may fire
at M yielding M'. R(N, M) denotes the set of markings reachable on the net N from
an initial marking My. A P/T system or net system (N, M) is a net N with an initial
marking Mj.

Let (N, My) be a net system with set of places P. A single generalized mutual exclusion
constraint (0, k) defines a set of legal markings: M(w, k) = {M € NI | & - M < k},
where w : P — IN is a weight vector, and k¥ € INT. The support of W is the set
Qw ={p € P|w(p) > 0}. All markings that are not legal are called forbidden.

A set of GMEC (W, k), with W = [, ... @] and k = (ki ... k,)7, defines a set of legal
markings M(W, k) = {M € IN'"I | WT . M < k}.

As a particular case, when @ < 1, i.e., w(p) =1 (¥p € Qu), the unweighted GMEC (0, k)
is reduced to the set condition considered by Krogh and Holloway (1991).

We assume, now, that the set of transitions 7" of a net is partitioned into two disjoints
subsets: T, the set of uncontrollable transitions; and T, the set of controllable transitions.
A controllable transition may be disabled by the supervisor, a controlling agent which
ensures that the behavior of the system is within a legal behavior. An uncontrollable

transition represents an event which may not be prevented from occurring by a supervisor.

Given a system (NN, M) and a set of GMEC (W, k), in the presence of uncontrollable

transitions it is necessary to restrict the behavior of the system, avoiding not only all



forbidden markings but also the set M, (W, %) = {M € IN'"' | M[o)M' & M(W,k) Ao €
T*} of all those markings from which a forbidden marking may be reached by firing
only uncontrollable transitions. The set of legal markings is in this case: M.(WV, l;) =
MW, E)\ My (W, E).

3 Enforcing GMEC on Marked Graphs

3.1 Control Subnet

To enforce a GMEC it is necessary to prevent some transition firing. Although one cannot
prevent the firing of an uncontrollable transition ¢ € T),, one may prevent the firing of a
set of controllable transitions (called control transitions of t) whose firing is required prior
to the firing of t.

Definition 1. Let N = (P, T, Pre, Post) be a net, and let t; be an uncontrollable tran-
sition. The control subnet for t; is N; = (P;, T;, Pre;, Post;) where P; C P is the set of
places connected to t; by a path containing only uncontrollable transitions; T; = *P; N P’ ;
Pre; = Pren (P; x T;), and Post; = Post N (P; x T;). The set of control transitions for
t; is the set A; = *P; \ P?. It is obvious that A; C T,.

This definition may be extended to controllable transitions as well. Given a net N =
(P, T, Pre, Post) and a controllable transition ¢; € T., the control subnet for ¢; is not
defined but the set of control transitions for ¢; is the set A; = {¢;}, i.e., the transition
itself. This will allows us, in the following, to use the same formalism for both controllable

and uncontrollable transitions.

In the case of marked graphs (MG), given a constraint (&, k) the problem is that of
controlling the firing of the single input transition of all places in @), to ensure that
the constraint is always verified. Given a place p; € @), one may denote: t; its output
transition; ¢; its input transition; N; = (PB;, T;, Pre;, Post;) the control subnet for t;;
A; = {t},--- "} the set of control transitions for ¢;. Thus, one may speak of control
subnets and control transitions associated to a place p; € Q,,.

Example 1. In Fig. 1 places py,ps,p3 belong to the support of a GMEC. The figure
also shows the control subnets for their input transitions, with the corresponding control
transitions. The remaining structure of the marked graph is not shown. The controllable

transitions are shown as white boxes; the uncontrollable ones are shown as black bozes.



tll tzl tsl tlz t22 t32 tlg t23

t; to ts
P1 P2 Ps
t°; t% %

Figure 1: Control subnets for places pi, ps, p3.

For MG systems it is possible to analytically compute the dependency between the firing
of an uncontrollable transition and the firing of its control transitions. One may thus
characterize the set of legal markings M. (), k) for a GMEC (), k) on marked graphs
based solely on the structure of the net, without resorting to the construction of the space

of reachable markings.

Here it is assumed that no place p € @), belongs to the control subnet of another place
P € Qup. In Giua (1992) it was shown that this restriction is purely technical and does
not cause any loss of generality for the classes of nets considered in the following.

Proposition 1. Let (N, My) be an MG system and (W,k) a GMEC. For each place

i € Qu, let its input transition be t;; let A; be the set of control transitions for t;.

e Given a marking M € R(N, My), the mazimum number of times t; may fire without
firing any transition in A; (the deviation bound between t; and A;) is: DB(M,t;, A;) =
min{td(M,t',t;) | t' € A;}, where td(M,t',t;) is the token distance between transi-
tions t' and t;, i.e., the minimum token content among all possible direct paths from

t' to t; at marking M.

o The set of legal markings is: M(@, k) = {M € NV | @&" - (M + D)) < k}, where
D(p;) = DB(M,t, A") if p; € Q,, else Dy(p;) = 0.

3.2 Control Safe Places

Let us consider in the following a special class of MG systems introduced in the next

definition.



Definition 2. A place p; of an MG system (N, My) is said to be control safe iff for all
M € R(N, My) and for allt' € A;: DB(M,t',t;) <1 and DB(M,t',t?) <1 (here t; and

t? are the input and ouptut transitions of p;).

Given a GMEC (), k), it will be assumed in the following that the places in @), are control
safe. This restriction will permit a simplification of the control problem, in the sense that
will allow one to derive simple control structures. The idea here is that to check whether
a place p; € @@, may be marked by a firing sequence of uncontrollable transitions one
needs to check only how many firings of transitions in A; have occurred.

Proposition 2. Let (N, My) be a MG system, and p; a control safe place of N. Let
t; be the input transition of p;, t? the output transition of p;, and A; the set of control
transitions of t;, with n; = |A;|. Then VM € R(N, My):

o M(p;) +Du(pi) <1

e M(p;)+ Duy(p;) =1 < (Vt € Ay)[td(M,t,t2) = 1]

4 Control Structures

This section presents two different ways of enforcing a GMEC on MG systems with control
safe places. Both solutions are fully compiled, i.e., the corresponding control structure is

a net, system as well.

4.1 Monitor-based Controller

Definition 3. Let (N, My) be a MG system and (0, k) be an unweighted mutual exclusion
constraint, i.e., W < 1, defined on it. It is assumed that M, € M (W, k). Let Qp =
{p1,.-.,pr} be a set of control safe places of N and assume that r = |Q,| = k+ 1. Given
pi € Qu let A; = {t},... t7} be the set of control transitions for t; and t? be the output
transition of p;. The monitor that enforces this constraint consists of a place S to be
added to the original net with arcs as follows: Pre(S,t) =1 if t € A; else Pre(S,t) = 0;
Post(S,t) = n; if t = t¢ else Post(S,t) = 0. The initial marking will assign s — 1 tokens
to place S where s =| {t |t € A; Atd(My,t,t?) =0} |, i.e., s counts the number of control

transitions that must fire prior to the marking of all places in Q..



Figure 2: Example of monitor.

The previous definition assume that no transition will be selflooped with the monitor
place. E.g., a transition ¢ will be selflooped if 3,5 > ¢t =t At € A;. In this case one
needs to eliminate the arcs in selfloop from the pre-incidence and post-incidence matrices.
Example 2. Let us assume it is required to enforce the constraint M(py) + M(ps) +
M (p3) < 2 over the net in Fig. 1. In Fig. 2 it is shown the monitor place S with its arcs

shown in dotted lines.

It is easy to see that a monitor constructed as in Definition 3 enforces the maximally per-
missible policy that ensures that the constraint (@, k) will be satisfied. In fact the monitor
prevents only transition firings that lead to a marking M such that (Vi =1,...,7)(Vt €
A)[td(M,t,t?) = 1], that by Proposition 1 and 2 are the only illegal markings for un-

weighted constraints of this kind.
A set of constraints (W, E) of this form may be enforced by adding several monitors.

Assume now (i, k), with @ < 1, is such that |Q,| > k + 1. The previous construction
may not be used. However the original constraint may be rewritten as a set of constraints
according to the following proposition.

Proposition 3. Let (i, k) be a mutual exclusion constraint, with @ < T, and |Q,,| > k=+1.

Then: M(w, k) = MW, k) where I, = {0 € {0, 1}/ | ' <0, |Qur| = k+1}.

U—;lelk+1

The previous proposition shows that the unweighted constraint (@, k), with @ < 1 and
)

. . . 7 —/ —
w ) y Ve = ) +1f
|Quw| > k+1, is equivalent to the set of constraints (W, k-1) = {(«&', k) | &' € I41}, hence



kE+1
different subsets of (), of cardinality k+1. Thus in the worst case the number of monitors

may be enforced by a set of monitors. However the problem is that there are ( Qul )

is exponential with respect to the cardinality of @Q,,.

The monitor based construction may also be used, when the weight of the places is not
unitary, explicitly rewriting the set of unweighted constraints equivalent to the single
weighted constraint. Giua et al. (1992) proved that this is always possible for the class

of nets considered here.

4.2 Compiled Supervisor

This section presents a net supervisor, capable of enforcing a set of GMEC. It is assumed
that the supervisor observes the execution of the unconstrained system and at any given
instant provides a control pattern, i.e., specifies which controllable transitions are allowed
to fire. The control pattern is implicit in the transition structure of the supervisor, in the
sense that a controllable transition that belongs to the supervisor structure is enabled by
the control pattern if and only if it is enabled by the marking of the supervisor net.
Definition 4. Let (N, My) be a MG system and (0, k) be a GMEC. It is assumed that
My € M (0, k). Let Qu = {p1,...,pr} be a set of control safe places. Given p; € Q.
let A; = {t},... t'"} be the set of control transitions for t; and t? be the output transition
of p;. The compiled supervisor that enforces this constraint is S = (Ps,Ts, Preg, Postg)
with: Ps = {po, P}, v\, 0\, Dy: -, 0L, 0, D'} Ts = AJUATU A, . UALUATU{E], ... 17}
where A} and Al are sets of transitions synchronized with A;; Pres and Postg are such
that:

e Pre(pg,t) =w(p;) if t € A else Pre(py,t) = 0;

Post(po, t) = w(p;) if t = 12 else Post(py,t) = 0;

Pre(pl,t) =11if t € A} else Pre(p},t) =0;

Post(p},t) = n; — 1 if t = 17 else Post(p},t) = 0;

Pre(p!,t) = n; — 1 if t € A else Pre(p{,t) = 0;

Post(p},t) = 1 if t € A} else Post(p,t) = 0;



Figure 3: Example of compiled supervisor.

o Pre(pi’,t) =1if t =t else Pre(p]’,t) = 0;

e Post(p!',t) =11if t € A! else Post(p!',t) = 0.

The initial marking of S is My such that Vi = 1,...,r: if [My(p;) + D, (p;) = 1] then
(MG () = Mg (p7) = 0 A Mg (pi") = 1] else [MG(p}) =| {t € A; | td(Mo,t,t]) = 0} |

7

AMG (pf) = ni = 1 = Mg (pj) A Mg (pi") = 0], and Mg (po) = k — 35;_ w(p:) M5 (pf")-
Example 3. In Fig. 3 it is shown the supervisor that may be used to enforce the constraint

w(pr) M (p1) + w(p2) M (p2) + w(ps) M (ps) < k over the net shown in Fig. 1.

In the example in Fig. 3 the set of parallel transitions A} (and A}) have been represented as
a single transition. Whenever the system executes a transition ¢ € A;, the corresponding
transition in A} or A} will fire. Note that the behavior is deterministic: if a transition
in A} is enabled, the corresponding transition in A} is not, and conversely. For the
computation of the control pattern, a transition in A; is enabled by the control pattern if

the corresponding transition in A} or in A is enabled.

In the previous definition there are two assumptions. Firstly, it is assumed that (Vi =
1,...,7)n; > 1;if n; = 1 one may remove the places p; and p; and the set of transitions
AL Secondly, it is assumed that (Vi # j) A; N A; = 0; if this is not the case, we need to
slightly change the structure of the supervisor by merging the transitions of A, and A7 in

common with A; and A;’ )

The supervisor constructed according to Definition 4 enforces the required maximally per-

missible policy. First, let us note that given a marking M of the system and a correspond-



ing marking M*® of the supervisor it holds: (Vi = 1,...,7)[M(p;) + Dar(p;) = M (p!")].
Since the place py is enforcing the constraint Y i, w(p;) M®(p!") < k it follows, by Propo-

sition 1 and 2, that the supervisor enforces the required policy.

In the case of a set of constraints (W, E) one needs to construct a supervisor for each single
constraint (;, k;). Should a controllable transition belong to more that one supervisor,
say S;, and S;,, it will be enabled by the control pattern if and only if it is enabled on
both S;, and S;,.

4.3 Comparison of the Models

The monitor-based controller is an extension to systems with uncontrollable transitions
of the controller studied by Giua et al. (1992) for nets with only controllable transitions.
Thus all the structural properties of monitors may be used to analyze the system under
control. The drawback is that a monitor-based solution may require an exceedingly large
number of monitors. However, in those cases in which it may be used efficiently, it is the

simpler and most straightforward solution.

The compiled supervisor has the advantage of always maintaining a compact structure
that grows linearly with the number of places in the support of the weight vector. However,
since it requires all control transitions to be represented twice, it leads to a closed-loop

model less easy to analyze.

5 Conclusion

The paper has presented two Petri net structures capable of enforcing generalized mutual
exclusion constraints on marked graphs with control safe places and uncontrollable tran-
sitions. The first one, is a monitor-based solution; the second one a supervisory based.
Both structures are fully compiled, i.e., they are given as place/transition nets with no

associated predicates.

The monitor-based structure is conceptually simpler but in the worst case it is requires
a number of monitors that grows exponentially with the number of places in the support
of the constraint weight vector. The supervisory based structure grows linearly with the

number of places in the support of the weight vector, thus always maintaining a compact

10



control structure.
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