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Abstract: This paper considers a class of timed discrete event systems (DESs) with a single clock. The
timing structure is characterized by a timing function and a clock resetting function, where the former
restricts transitions to occur when the clock takes a value in a given time interval, and the latter indicates
how the clock value is updated upon the occurrence of transitions. Given a set of current discrete states
in which the system can be, we assume that no information on the occurrence of events is captured (all
such information is destroyed or lost), and only the clock that measures the time is reliable. We propose a
state observer, in terms of a deterministic finite automaton, which enables us to compute the set of states
in which the system can be at a certain time instant. The proposed observer is the basic step towards the
construction of an observer that considers both unobservable and observable evolutions. Thus it can be
considered as a first step in solving various problems related to partial observation of timed DESs such
as opacity verification, fault diagnosis and diagnosability analysis.
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1. INTRODUCTION

A discrete event system (DES) is an event-driven system where
its state space is a discrete set and transitions from one discrete
state to another are triggered by the occurrence of an event.
The methodology employed in the context of DES can be
extended to various real-world systems, including networking
systems and batch processes utilized in manufacturing systems
and chemical systems. In these systems, operations progress
through distinct stages or batches, each of which can be charac-
terized by a sequence of discrete events. Within the DESs com-
munity, a significant area of research revolves around partial
observation. This is motivated by limited sensor availability for
recording specific events, loss of system output measurements,
and interruptions during communication and data transmission.
In such instances, only a subset of events can be effectively
measured. Researchers in the DESs community have dedicated
to developing methods, tools and strategies based on partial
observations, making it a fundamental and critical area of study.

In the context of dynamical systems, including logical and
timed aspects, the notion of observer is a fundamental concept.
In the domain of DESs, an observer is defined as a deterministic
automaton that reconstructs with the utmost precision the set
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of current states consistent with an observation. It allows one
to make informed decisions and ensures the robust and reliable
operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.

Timed DESs introduce a specific timing structure characterised
by a set of additional constraints governing the system’s evo-
lution. The concept of observers has been explored for several
specific classes of timed DESs. For instance, Lai et al. (2019)
design observers for a specific class of weighted automata,
known as Max-plus automata. These automata are closely re-
lated to timed automata, particularly when timed interpreta-
tions are applied to their weights. Additionally, Zhang. (2021)
contributes to the field by developing an observer for real-
time automata, focused on estimating the current state based on
timed output sequences. However, the proposed observer may
not be unique due to various possible selections of the set of
events under consideration.

Li et al. (2021) focus on designing observers for a class of
single-clock timed DESs, where events occur at constant time
instants. In contrast, Gao et al. (2023) and Lefebvre et al.
(2023) focus on a class of timed automata, where transitions
are associated with specific time intervals indicating when they
may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
online approach is derived to recursively estimate the current
discrete state as new observations are collected. State estima-
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events under consideration.
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instants. In contrast, Gao et al. (2023) and Lefebvre et al.
(2023) focus on a class of timed automata, where transitions
are associated with specific time intervals indicating when they
may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
online approach is derived to recursively estimate the current
discrete state as new observations are collected. State estima-

tion of timed DESs has also been considered in the framework
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2. BASIC DEFINITIONS

Given an alphabet E representing a set of events, we denote by
E∗ the set of all finite strings on E, including the empty word
ε . A string of events w ∈ E∗ is also called a word on E. The
concatenation of two words w1 ∈ E∗ and w2 ∈ E∗ is a new word
w = w1 ·w2 ∈ E∗ composed by the sequence of symbols in w1
followed by the sequence of symbols in w2.

A nondeterministic finite automaton (NFA) is a four-tuple
Gnd = (X ,E,∆,X0), where X and E are the sets of discrete
states and events, respectively; ∆ ⊆ X ×E ×X is the transition
relation; X0 ⊆ X is the set of initial states, which may include
more than one state in X . The transitive and reflexive closure of

∆ is the relation ∆∗ ⊆ X ×E∗ ×X such that (x,s,x′) ∈ ∆∗ if the
word s is generated from x and reaches x′. In particular, we have
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numbers as R≥0 and N, respectively, the set of real numbers
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time interval is denoted by [m,n]. In addition, an open segment
(m,n) and semi-open segments [m,n) or (m,n] can also be time
intervals. We denote the set of all time intervals and the set of
all closed time intervals as I and Ic, respectively, where Ic ⊆ I.
Given two time intervals I1, I2 ∈ I, we define their addition 1

as I1
⊕

I2 = {t1 + t2 ∈ R≥0 | t1 ∈ I1, t2 ∈ I2}, and the distance
range between them as D(I1, I2) = {|t1 − t2| | t1 ∈ I1, t2 ∈ I2}.
For instance, given I1 = [0,1) and I2 = [3,4], it holds that
I1
⊕

I2 = [3,5) and D(I1, I2) = (2,4].
Definition 1. A timed finite automaton (TFA) is a six-tuple
G = (X ,E,∆,Γ,Reset,X0) that operates under a single clock,
where X is a finite set of discrete states, E is an alphabet,
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function, Reset : ∆ → Ic ∪ {id} is a clock resetting function
such that for δ ∈ ∆, the clock is reset to be an integer value
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(Reset(δ ) = id), and X0 ⊆ X is the set of initial discrete states.⋄

For simplicity, we assume the initial clock value is set to 0.
A transition (x,e,x′) ∈ ∆ signifies that the occurrence of event
e ∈ E leads to a state transition from x to x′ in the state space X .
The time interval Γ((x,e,x′)) specifies the range of clock values
during which the event e may occur, and Reset((x,e,x′)) ∈ Ic
denotes the range of values to which the clock is reset, with
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{(x,e,x′) ∈ ∆ | e ∈ E,x′ ∈ X}, and the set of input transitions
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permits a system to persist in any discrete state indefinitely. A
timed state is defined as a pair (x,θ)∈X ×R≥0, where θ ∈R≥0
is the current value of the clock. In other words, a timed state
(x,θ) keeps track of the current clock assignment θ while G
stays at state x. The behaviour of a TFA is described via its
timed runs. A timed run ρ of length k ≥ 0 from t0 ∈ R≥0 to
tk ∈ R≥0 is a sequence of k + 1 timed states (x(i),θ(i)) ∈ X ×
R≥0 (i = 0, · · · ,k), and k pairs (ei, ti) ∈ E ×R≥0 (i = 1, · · · ,k),
represented as

ρ : (x(0),θ(0))
(e1,t1)−−−→·· ·(x(k−1),θ(k−1))

(ek,tk)−−−→(x(k),θ(k)) (1)

such that (x(i−1), ei, x(i)) ∈ ∆, ti−1 ≤ ti and the following
conditions hold for all i = 1, · · · ,k:

• θ(i) ∈ Reset((x(i−1), ei, x(i))) and θ(i−1) + ti − ti−1 ∈
Γ((x(i−1), ei, x(i))), if Reset((x(i−1), ei, x(i))) ̸= id;

• θ(i) = θ(i−1)+ti−ti−1 ∈Γ((x(i−1), ei, x(i))), if Reset((x(i−1),
ei, x(i))) = id.

1 The addition operation is associative and commutative and can be extended

to n > 2 time intervals
n⊕

i=1
Ii = I1

⊕
· · ·

⊕
In.
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1. INTRODUCTION

A discrete event system (DES) is an event-driven system where
its state space is a discrete set and transitions from one discrete
state to another are triggered by the occurrence of an event.
The methodology employed in the context of DES can be
extended to various real-world systems, including networking
systems and batch processes utilized in manufacturing systems
and chemical systems. In these systems, operations progress
through distinct stages or batches, each of which can be charac-
terized by a sequence of discrete events. Within the DESs com-
munity, a significant area of research revolves around partial
observation. This is motivated by limited sensor availability for
recording specific events, loss of system output measurements,
and interruptions during communication and data transmission.
In such instances, only a subset of events can be effectively
measured. Researchers in the DESs community have dedicated
to developing methods, tools and strategies based on partial
observations, making it a fundamental and critical area of study.

In the context of dynamical systems, including logical and
timed aspects, the notion of observer is a fundamental concept.
In the domain of DESs, an observer is defined as a deterministic
automaton that reconstructs with the utmost precision the set
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of current states consistent with an observation. It allows one
to make informed decisions and ensures the robust and reliable
operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.

Timed DESs introduce a specific timing structure characterised
by a set of additional constraints governing the system’s evo-
lution. The concept of observers has been explored for several
specific classes of timed DESs. For instance, Lai et al. (2019)
design observers for a specific class of weighted automata,
known as Max-plus automata. These automata are closely re-
lated to timed automata, particularly when timed interpreta-
tions are applied to their weights. Additionally, Zhang. (2021)
contributes to the field by developing an observer for real-
time automata, focused on estimating the current state based on
timed output sequences. However, the proposed observer may
not be unique due to various possible selections of the set of
events under consideration.

Li et al. (2021) focus on designing observers for a class of
single-clock timed DESs, where events occur at constant time
instants. In contrast, Gao et al. (2023) and Lefebvre et al.
(2023) focus on a class of timed automata, where transitions
are associated with specific time intervals indicating when they
may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
online approach is derived to recursively estimate the current
discrete state as new observations are collected. State estima-
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operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.
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may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
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of current states consistent with an observation. It allows one
to make informed decisions and ensures the robust and reliable
operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.

Timed DESs introduce a specific timing structure characterised
by a set of additional constraints governing the system’s evo-
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specific classes of timed DESs. For instance, Lai et al. (2019)
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considered as a first step in solving various problems related to partial observation of timed DESs such
as opacity verification, fault diagnosis and diagnosability analysis.
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1. INTRODUCTION

A discrete event system (DES) is an event-driven system where
its state space is a discrete set and transitions from one discrete
state to another are triggered by the occurrence of an event.
The methodology employed in the context of DES can be
extended to various real-world systems, including networking
systems and batch processes utilized in manufacturing systems
and chemical systems. In these systems, operations progress
through distinct stages or batches, each of which can be charac-
terized by a sequence of discrete events. Within the DESs com-
munity, a significant area of research revolves around partial
observation. This is motivated by limited sensor availability for
recording specific events, loss of system output measurements,
and interruptions during communication and data transmission.
In such instances, only a subset of events can be effectively
measured. Researchers in the DESs community have dedicated
to developing methods, tools and strategies based on partial
observations, making it a fundamental and critical area of study.

In the context of dynamical systems, including logical and
timed aspects, the notion of observer is a fundamental concept.
In the domain of DESs, an observer is defined as a deterministic
automaton that reconstructs with the utmost precision the set
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of current states consistent with an observation. It allows one
to make informed decisions and ensures the robust and reliable
operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.

Timed DESs introduce a specific timing structure characterised
by a set of additional constraints governing the system’s evo-
lution. The concept of observers has been explored for several
specific classes of timed DESs. For instance, Lai et al. (2019)
design observers for a specific class of weighted automata,
known as Max-plus automata. These automata are closely re-
lated to timed automata, particularly when timed interpreta-
tions are applied to their weights. Additionally, Zhang. (2021)
contributes to the field by developing an observer for real-
time automata, focused on estimating the current state based on
timed output sequences. However, the proposed observer may
not be unique due to various possible selections of the set of
events under consideration.

Li et al. (2021) focus on designing observers for a class of
single-clock timed DESs, where events occur at constant time
instants. In contrast, Gao et al. (2023) and Lefebvre et al.
(2023) focus on a class of timed automata, where transitions
are associated with specific time intervals indicating when they
may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
online approach is derived to recursively estimate the current
discrete state as new observations are collected. State estima-
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of current states consistent with an observation. It allows one
to make informed decisions and ensures the robust and reliable
operation of DESs. The notion of observer is pivotal to address-
ing a wide range of critical challenges in the field, including
supervisory control, system diagnosis, and diagnosability.

Timed DESs introduce a specific timing structure characterised
by a set of additional constraints governing the system’s evo-
lution. The concept of observers has been explored for several
specific classes of timed DESs. For instance, Lai et al. (2019)
design observers for a specific class of weighted automata,
known as Max-plus automata. These automata are closely re-
lated to timed automata, particularly when timed interpreta-
tions are applied to their weights. Additionally, Zhang. (2021)
contributes to the field by developing an observer for real-
time automata, focused on estimating the current state based on
timed output sequences. However, the proposed observer may
not be unique due to various possible selections of the set of
events under consideration.

Li et al. (2021) focus on designing observers for a class of
single-clock timed DESs, where events occur at constant time
instants. In contrast, Gao et al. (2023) and Lefebvre et al.
(2023) focus on a class of timed automata, where transitions
are associated with specific time intervals indicating when they
may occur. However, these works deal with state estimation
and fault diagnosis of a class of timed automata under a rather
restrictive scenario, where the endowed single clock is reset to
zero after each event occurrence. Gao et al. (2024) discuss a
more general class of one-clock timed automata that do not
necessarily require clock resetting at each event occurrence. An
online approach is derived to recursively estimate the current
discrete state as new observations are collected. State estima-

tion of timed DESs has also been considered in the framework
of time Petri nets in Basile et al. (2016), but no general approach
concerning the construction of an observer exists.

Another parallel line of research is that of hybrid systems
(HS). The timed automata proposed in Alur et al. (1994) are
subclasses of HS models which provide a convenient frame-
work for appropriately representing and efficiently reasoning
about cyber-physical systems subject to real-time constraints.
Related works such as Tripakis (2002) and Bouyer et al. (2021)
embed state estimation into the diagnosis of timed automata.
These works propose online diagnosers to keep track of all the
possible discrete states and the associated clock constraints at
each time an event is measured after a delay. Nevertheless, an
approach to construct an offline observer that provides all pos-
sible state estimations that can be encountered in this context
remains elusive, motivating us to explore observer design for
timed automata as a self-standing problem.

In this paper, we assume the worst-case scenario where no logi-
cal information is captured (all such information is destroyed or
lost), and only the clock that measures the time is reliable. This
paper models such a system using the framework of one-clock
timed DESs studied in Gao et al. (2024). The time structure
is characterized by a timing function and a clock resetting
function, where the former restricts transitions to occur when
the clock takes a value in an associated time interval, and the
latter indicates how the clock value is updated when a transition
occurs. This paper provides an offline observer. The observer is
a finite structure that permits the estimation of the state of a TFA
as a function of the time that has elapsed since its initialization.
Each observer state is a set of pairs; the first entry of which is
a discrete state of the timed DES and the second entry is an
interval of possible values for the clock.

The alphabet of the proposed observer consists of two events,
0+ and 1, which are clock events. Assume that an agent aiming
to estimate the state of the timed DES initiates an observer
timer, which is set to 0 with the start of the observation. Then,
the observer is initialized. As time elapses, when the observer
timer passes from an integer to a non-integer value, it generates
an event 0+, when it passes from a non-integer to an integer
value, it generates an event 1. The sequence of clock events,
when executed in the observer, yields the state estimate.

This manuscript is organized as follows. Section 2 introduces
the background of timed finite automata, and Section 3 details
the problem statement. Section 4 recalls the notion of region
automaton. Section 5 presents a method to design an observer
for all possible unobservable evolutions emerging from a set of
discrete states. Finally, Section 6 concludes this paper.

2. BASIC DEFINITIONS

Given an alphabet E representing a set of events, we denote by
E∗ the set of all finite strings on E, including the empty word
ε . A string of events w ∈ E∗ is also called a word on E. The
concatenation of two words w1 ∈ E∗ and w2 ∈ E∗ is a new word
w = w1 ·w2 ∈ E∗ composed by the sequence of symbols in w1
followed by the sequence of symbols in w2.

A nondeterministic finite automaton (NFA) is a four-tuple
Gnd = (X ,E,∆,X0), where X and E are the sets of discrete
states and events, respectively; ∆ ⊆ X ×E ×X is the transition
relation; X0 ⊆ X is the set of initial states, which may include
more than one state in X . The transitive and reflexive closure of

∆ is the relation ∆∗ ⊆ X ×E∗ ×X such that (x,s,x′) ∈ ∆∗ if the
word s is generated from x and reaches x′. In particular, we have
(x,ε,x) ∈ ∆∗. In a deterministic finite automaton (DFA), the
transition function is defined in such a way that for each discrete
state x ∈ X and an enabled event e ∈ E, there is precisely one
transition to another discrete state. This deterministic property
ensures that the transition from one state to another is uniquely
determined by the current state and the event.

By denoting the sets of non-negative real numbers and natural
numbers as R≥0 and N, respectively, the set of real numbers
in R≥0 lying between a lower bound m ∈ N and an upper
bound n ∈ N∪ {+∞} is said to be a time interval. A closed
time interval is denoted by [m,n]. In addition, an open segment
(m,n) and semi-open segments [m,n) or (m,n] can also be time
intervals. We denote the set of all time intervals and the set of
all closed time intervals as I and Ic, respectively, where Ic ⊆ I.
Given two time intervals I1, I2 ∈ I, we define their addition 1

as I1
⊕

I2 = {t1 + t2 ∈ R≥0 | t1 ∈ I1, t2 ∈ I2}, and the distance
range between them as D(I1, I2) = {|t1 − t2| | t1 ∈ I1, t2 ∈ I2}.
For instance, given I1 = [0,1) and I2 = [3,4], it holds that
I1
⊕

I2 = [3,5) and D(I1, I2) = (2,4].
Definition 1. A timed finite automaton (TFA) is a six-tuple
G = (X ,E,∆,Γ,Reset,X0) that operates under a single clock,
where X is a finite set of discrete states, E is an alphabet,
∆ ⊆ X ×E ×X is a transition relation, Γ : ∆ → Ic is a timing
function, Reset : ∆ → Ic ∪ {id} is a clock resetting function
such that for δ ∈ ∆, the clock is reset to be an integer value
in a time interval I ∈ Ic (Reset(δ ) = I), or the clock is not reset
(Reset(δ ) = id), and X0 ⊆ X is the set of initial discrete states.⋄

For simplicity, we assume the initial clock value is set to 0.
A transition (x,e,x′) ∈ ∆ signifies that the occurrence of event
e ∈ E leads to a state transition from x to x′ in the state space X .
The time interval Γ((x,e,x′)) specifies the range of clock values
during which the event e may occur, and Reset((x,e,x′)) ∈ Ic
denotes the range of values to which the clock is reset, with
Reset((x,e,x′)) = id indicating no clock reset.

The set of output transitions at state x is defined as Out(x) =
{(x,e,x′) ∈ ∆ | e ∈ E,x′ ∈ X}, and the set of input transitions
at x is defined as In(x) = {(x′,e,x) ∈ ∆ | e ∈ E,x′ ∈ X}. We
assume that a TFA operates under weak time semantics that
permits a system to persist in any discrete state indefinitely. A
timed state is defined as a pair (x,θ)∈X ×R≥0, where θ ∈R≥0
is the current value of the clock. In other words, a timed state
(x,θ) keeps track of the current clock assignment θ while G
stays at state x. The behaviour of a TFA is described via its
timed runs. A timed run ρ of length k ≥ 0 from t0 ∈ R≥0 to
tk ∈ R≥0 is a sequence of k + 1 timed states (x(i),θ(i)) ∈ X ×
R≥0 (i = 0, · · · ,k), and k pairs (ei, ti) ∈ E ×R≥0 (i = 1, · · · ,k),
represented as

ρ : (x(0),θ(0))
(e1,t1)−−−→·· ·(x(k−1),θ(k−1))

(ek,tk)−−−→(x(k),θ(k)) (1)

such that (x(i−1), ei, x(i)) ∈ ∆, ti−1 ≤ ti and the following
conditions hold for all i = 1, · · · ,k:

• θ(i) ∈ Reset((x(i−1), ei, x(i))) and θ(i−1) + ti − ti−1 ∈
Γ((x(i−1), ei, x(i))), if Reset((x(i−1), ei, x(i))) ̸= id;

• θ(i) = θ(i−1)+ti−ti−1 ∈Γ((x(i−1), ei, x(i))), if Reset((x(i−1),
ei, x(i))) = id.

1 The addition operation is associative and commutative and can be extended

to n > 2 time intervals
n⊕

i=1
Ii = I1

⊕
· · ·

⊕
In.

2
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We define the timed word generated by ρ as σ(ρ) = (e1, t1)(e2,
t2) · · ·(ek, tk) ∈ (E ×R≥0)

∗, the logical word generated by ρ
as S(σ(ρ)) = e1e2 · · ·ek via a function defined as S : (E ×
R≥0)

∗ → E∗. For the timed run of length 0 as ρ : (x(0),θ(0)), we
have S(σ(ρ)) = ε and σ(ρ) = λ , where λ denotes the empty
timed word in E ×R≥0. For the timed word σ(ρ) generated
from an arbitrary timed run ρ , it is λ ·σ(ρ) = σ(ρ) = σ(ρ) ·λ .
The starting discrete state and the ending discrete state of a
timed run ρ are denoted by xst(ρ) = x(0) and xen(ρ) = x(k),
respectively. The starting time and the ending time of ρ are
denoted by tst(ρ) = t0 and ten(ρ) = tk, respectively. In addition,
the duration of ρ is denoted as T (ρ) = tk − t0. The set of timed
runs generated by G is denoted as R(G). A timed evolution of
G from time 0 to t ∈ R≥0 is defined by a pair (σ(ρ), t) ∈ (E ×
R≥0)

∗ ×R≥0, where ten(ρ)≤ t. Note that t − ten(ρ) is the time
that the system stays at the ending discrete state xen(ρ).
Example 1. Given a TFA G = (X , E, ∆, Γ, Reset, X0) in
Fig. 1(a) with X = {x0,x1,x2,x3}, and E = {b,c,d,e, f}, the
initial state in X0 = {x0} is marked by an input arrow. The
information given by the timing function Γ and the clock
resetting function Reset defined in Fig. 1(b) is presented on
the edges. Given an edge denoting a transition δ ∈ ∆, the label
θ ∈ Γ(δ )? on the edge specifies if δ is enabled with respect to
θ ; the label θ :∈ Reset(δ ) (resp., θ := id) on the edge specifies
to which range θ belongs (resp., specifies that the clock is
not reset) after the transition is fired. Consider a timed run

ρ : (x0,0)
(c,2)−→ (x1,2)

(d,3)−→ (x0,0) that starts from xst(ρ) = x0
at tst(ρ) = 0 and terminates in xen(ρ) = x0 at ten(ρ) = 3.
Two transitions (x0,c,x1), and (x1,d,x0) occur at time instants
t1 = 2, and t2 = 3, respectively. ⋄

(a) A TFA G.

δ ∈ ∆ Γ(δ ) Reset(δ )
(x0,c,x1) [2,2] id
(x0,b,x2) [0,1] id
(x1,d,x0) [3,3] [0,0]
(x2,e,x3) [1,2] id
(x3, f ,x1) [2,2] id

(b) Timing function and clock reset-
ting function.

Fig. 1. A TFA G w.r.t. the given timing function and clock
resetting function.

3. PROBLEM STATEMENT

In this paper, we focus on a state estimation problem. In
particular, we consider scenarios where all measurements are
lost, e.g., due to sensor failures or communication interruptions.
Thus, we assume that all events in E are unobservable. Given
a set of initial states X0, we design an observer, implemented
as a DFA, which provides the set of discrete states in which
the system can be at any time instant t, referred as the state
estimation at t.
Definition 2. Given a TFA G = (X ,E,∆,Γ,Reset,X0), x′ ∈ X
is said to be a reachable state from x ∈ X at T ∈ R≥0 if there
exists a timed evolution (σ(ρ), t) ∈ (E ×R≥0)

∗ ×R≥0 of G
such that t − tst(ρ) = T , xst(ρ) = x, and xen(ρ) = x′. The set of
all reachable states from x at T is denoted as UR(x,T ). ⋄

In simple words, if there exists a timed evolution that leads the
system from x to x′ with an elapsed time T , then x′ is reachable
from x at time T . Given X0 ⊆ X , the proposed observer aims
at providing the reachable discrete states from all x ∈ X0 at all
time instants T ≥ 0.

4. REGION AUTOMATON

Alur et al. (1994) propose the notion of region automaton,
which represents the behavior of a timed automaton over re-
gions of the time domain. In this section, we first recall the
notion of region automaton in Gao et al. (2020), which provides
a discrete event description of a given TFA. Then, we formalize
the evolution of a region automaton utilizing the notion of NFA.
Definition 3. Let mx (resp., Mx) be the minimal (resp., max-
imal) integer in {Γ(δ )|δ ∈ Out(x) ∨ (δ ∈ In(x),Reset(δ ) =
id)} ∪ {Reset(δ ) ̸= id|δ ∈ In(x)}. The regions of a discrete
state x is defined as R(x) = {[mx,mx], (mx,mx + 1), · · · , (Mx −
1,Mx), [Mx,Mx], (Mx,+∞)}, and the initial region of x is de-
fined as rini(x) = [mx,mx]. The successor region of r ∈ R(x) \
{(Mx,+∞)} is defined as

succ(r) =

{
[ j, j] if r = ( j−1, j);
( j−1, j) if r = [ j−1, j−1] ̸= [Mx,Mx],
(Mx,+∞) if r = [Mx,Mx].

The integer mx (resp., Mx) represents the minimal (resp., max-
imal) clock value that can enable an output transition at x and
that can reach x by an input transition. The set of regions R(x)
partitions the clock values in [mx,+∞) at x into the integer
points belonging to the interval [mx,Mx], the open segments
between them, and an interval [Mx,+∞).
Definition 4. (Gao et al. (2020)). Given a TFA G = (X , E, ∆,
Γ, Reset, X0), the region automaton of G is an NFA RA(G) =
(V,Er,∆r,V0), where

• V ⊆ X ×
⋃

x∈X
R(x) is the finite set of extended states, where

each extended state is a pair (x,r) with x ∈ X and r ∈ R(x);
• Er ⊆ E ∪ {τ} is the alphabet, where the event τ implies

time elapsing from any clock value θ ∈ r to any θ ′ ∈
succ(r) when G stays at x ∈ X ;

• ∆r ⊆ V × Er × V is the transition relation, where the
transitions in ∆r are defined by the following rules:

· ((x,r),τ,(x,succ(r))) ∈ ∆r if r,succ(r) ∈ R(x); this
corresponds to a time-driven evolution of G from a
clock value in r to another clock value in succ(r)
while G is at x;

· ((x,r),e,(x′,r′)) ∈ ∆r if (x, e, x′) ∈ ∆, r ⊆ Γ((x, e,
x′)), and one of the following conditions holds: (a)
Reset((x,e,x′)) ̸= id, r′ ∈ Reset((x,e,x′)), namely the
clock is reset after (x,e,x′) occurs; (b) Reset((x, e,
x′)) = id, r′ = r, namely the clock is not reset after
(x,e,x′) occurs. This indicates that the occurrence of
event e yields extended state (x′,r′) when the current
state of the system is x and the current clock is in r.

• V0 = {(x, [0,0]) | x ∈ X0} ⊆V is the set of initial states.

Given v = (x,r) ∈ V , we further define a function fX : V → X
(resp., fR : V →

⋃
x∈X

R(x)) that maps an extended state in V

to a discrete state fX (v) = x (resp., a region of the associated
discrete state fR(v) = r). ⋄

Consider a timed run ρ of G with the form of Equation (1). The
region automaton describes both the time-elapsed evolution and
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We define the timed word generated by ρ as σ(ρ) = (e1, t1)(e2,
t2) · · ·(ek, tk) ∈ (E ×R≥0)

∗, the logical word generated by ρ
as S(σ(ρ)) = e1e2 · · ·ek via a function defined as S : (E ×
R≥0)

∗ → E∗. For the timed run of length 0 as ρ : (x(0),θ(0)), we
have S(σ(ρ)) = ε and σ(ρ) = λ , where λ denotes the empty
timed word in E ×R≥0. For the timed word σ(ρ) generated
from an arbitrary timed run ρ , it is λ ·σ(ρ) = σ(ρ) = σ(ρ) ·λ .
The starting discrete state and the ending discrete state of a
timed run ρ are denoted by xst(ρ) = x(0) and xen(ρ) = x(k),
respectively. The starting time and the ending time of ρ are
denoted by tst(ρ) = t0 and ten(ρ) = tk, respectively. In addition,
the duration of ρ is denoted as T (ρ) = tk − t0. The set of timed
runs generated by G is denoted as R(G). A timed evolution of
G from time 0 to t ∈ R≥0 is defined by a pair (σ(ρ), t) ∈ (E ×
R≥0)

∗ ×R≥0, where ten(ρ)≤ t. Note that t − ten(ρ) is the time
that the system stays at the ending discrete state xen(ρ).
Example 1. Given a TFA G = (X , E, ∆, Γ, Reset, X0) in
Fig. 1(a) with X = {x0,x1,x2,x3}, and E = {b,c,d,e, f}, the
initial state in X0 = {x0} is marked by an input arrow. The
information given by the timing function Γ and the clock
resetting function Reset defined in Fig. 1(b) is presented on
the edges. Given an edge denoting a transition δ ∈ ∆, the label
θ ∈ Γ(δ )? on the edge specifies if δ is enabled with respect to
θ ; the label θ :∈ Reset(δ ) (resp., θ := id) on the edge specifies
to which range θ belongs (resp., specifies that the clock is
not reset) after the transition is fired. Consider a timed run

ρ : (x0,0)
(c,2)−→ (x1,2)

(d,3)−→ (x0,0) that starts from xst(ρ) = x0
at tst(ρ) = 0 and terminates in xen(ρ) = x0 at ten(ρ) = 3.
Two transitions (x0,c,x1), and (x1,d,x0) occur at time instants
t1 = 2, and t2 = 3, respectively. ⋄

(a) A TFA G.
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(x0,c,x1) [2,2] id
(x0,b,x2) [0,1] id
(x1,d,x0) [3,3] [0,0]
(x2,e,x3) [1,2] id
(x3, f ,x1) [2,2] id

(b) Timing function and clock reset-
ting function.

Fig. 1. A TFA G w.r.t. the given timing function and clock
resetting function.

3. PROBLEM STATEMENT

In this paper, we focus on a state estimation problem. In
particular, we consider scenarios where all measurements are
lost, e.g., due to sensor failures or communication interruptions.
Thus, we assume that all events in E are unobservable. Given
a set of initial states X0, we design an observer, implemented
as a DFA, which provides the set of discrete states in which
the system can be at any time instant t, referred as the state
estimation at t.
Definition 2. Given a TFA G = (X ,E,∆,Γ,Reset,X0), x′ ∈ X
is said to be a reachable state from x ∈ X at T ∈ R≥0 if there
exists a timed evolution (σ(ρ), t) ∈ (E ×R≥0)

∗ ×R≥0 of G
such that t − tst(ρ) = T , xst(ρ) = x, and xen(ρ) = x′. The set of
all reachable states from x at T is denoted as UR(x,T ). ⋄

In simple words, if there exists a timed evolution that leads the
system from x to x′ with an elapsed time T , then x′ is reachable
from x at time T . Given X0 ⊆ X , the proposed observer aims
at providing the reachable discrete states from all x ∈ X0 at all
time instants T ≥ 0.

4. REGION AUTOMATON

Alur et al. (1994) propose the notion of region automaton,
which represents the behavior of a timed automaton over re-
gions of the time domain. In this section, we first recall the
notion of region automaton in Gao et al. (2020), which provides
a discrete event description of a given TFA. Then, we formalize
the evolution of a region automaton utilizing the notion of NFA.
Definition 3. Let mx (resp., Mx) be the minimal (resp., max-
imal) integer in {Γ(δ )|δ ∈ Out(x) ∨ (δ ∈ In(x),Reset(δ ) =
id)} ∪ {Reset(δ ) ̸= id|δ ∈ In(x)}. The regions of a discrete
state x is defined as R(x) = {[mx,mx], (mx,mx + 1), · · · , (Mx −
1,Mx), [Mx,Mx], (Mx,+∞)}, and the initial region of x is de-
fined as rini(x) = [mx,mx]. The successor region of r ∈ R(x) \
{(Mx,+∞)} is defined as

succ(r) =

{
[ j, j] if r = ( j−1, j);
( j−1, j) if r = [ j−1, j−1] ̸= [Mx,Mx],
(Mx,+∞) if r = [Mx,Mx].

The integer mx (resp., Mx) represents the minimal (resp., max-
imal) clock value that can enable an output transition at x and
that can reach x by an input transition. The set of regions R(x)
partitions the clock values in [mx,+∞) at x into the integer
points belonging to the interval [mx,Mx], the open segments
between them, and an interval [Mx,+∞).
Definition 4. (Gao et al. (2020)). Given a TFA G = (X , E, ∆,
Γ, Reset, X0), the region automaton of G is an NFA RA(G) =
(V,Er,∆r,V0), where

• V ⊆ X ×
⋃

x∈X
R(x) is the finite set of extended states, where

each extended state is a pair (x,r) with x ∈ X and r ∈ R(x);
• Er ⊆ E ∪ {τ} is the alphabet, where the event τ implies

time elapsing from any clock value θ ∈ r to any θ ′ ∈
succ(r) when G stays at x ∈ X ;

• ∆r ⊆ V × Er × V is the transition relation, where the
transitions in ∆r are defined by the following rules:

· ((x,r),τ,(x,succ(r))) ∈ ∆r if r,succ(r) ∈ R(x); this
corresponds to a time-driven evolution of G from a
clock value in r to another clock value in succ(r)
while G is at x;

· ((x,r),e,(x′,r′)) ∈ ∆r if (x, e, x′) ∈ ∆, r ⊆ Γ((x, e,
x′)), and one of the following conditions holds: (a)
Reset((x,e,x′)) ̸= id, r′ ∈ Reset((x,e,x′)), namely the
clock is reset after (x,e,x′) occurs; (b) Reset((x, e,
x′)) = id, r′ = r, namely the clock is not reset after
(x,e,x′) occurs. This indicates that the occurrence of
event e yields extended state (x′,r′) when the current
state of the system is x and the current clock is in r.

• V0 = {(x, [0,0]) | x ∈ X0} ⊆V is the set of initial states.

Given v = (x,r) ∈ V , we further define a function fX : V → X
(resp., fR : V →

⋃
x∈X

R(x)) that maps an extended state in V

to a discrete state fX (v) = x (resp., a region of the associated
discrete state fR(v) = r). ⋄

Consider a timed run ρ of G with the form of Equation (1). The
region automaton describes both the time-elapsed evolution and
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the event-driven evolution in a discrete way via a string sR = e0 ·
sτ0 · · ·ek · sτk ∈ E∗

r such that the following conditions hold by
denoting e0 = ε:

• ((x(i),ri), sτi, (x(i),r′i)) ∈∆∗
r and sτi ∈ {τ}∗ for i= 0, · · · ,k;

• ((x(i−1),r′i−1)), ei, (x(i),ri)) ∈∆r, θ(i−1)+ti−ti−1 ∈ r′i−1 ⊆
Γ((x(i−1),ei,xi)), and one of the following conditions
holds: (a) θ(i) ∈ ri ⊆ Reset((x(i−1), ei, x(i))) ̸= id; (b)
θ(i) = θ(i−1) + ti − ti−1 ∈ r′i−1 = ri ⊆ Γ((x(i−1), ei, x(i))),
Reset((x(i−1), ei, x(i))) = id.

In simple words, sτi involves only event τ and states (x(i),r),
where r ∈ R(x(i)). It essentially represents the time elaps-
ing in a discrete way while G is at x(i). The transition
((x(i−1),r′(i−1)),ei,(x(i),r(i)))∈∆r for i= 1, · · · ,k implies event-
driven evolution of G because of the occurrence of ei at ti.
Based on that, we define the duration range of sR as d(sR) =

k⊕
i=0

D(r(i),r′(i)).

Example 2. Given the TFA G in Fig. 1, the region automaton
RA(G) is depicted in Fig. 2. Each state of RA(G) indicates
a discrete state and a time interval to which G may belong.
The transitions labelled with event τ imply only time elapses
without the evolution of discrete states. The transitions labelled
with an event in E imply discrete state evolution of G.

Continue with Example 1 and the timed evolution (σ(ρ),3).
In RA(G), there is a string sR which can represent the
time evolution and state evolution associated with (σ(ρ),3)
in a discrete way, highlighted in red in Fig. 2, such that
((x0, [0,0]),sR,(x1, [0,0]]))) ∈ ∆∗

r , where sR = ττττcττd. In
details,

• ((x0, [0,0]),ττττc,(x1, [2,2])) corresponds to the timed
evolution from (x0,0) to (x1,2) by a pair (c,2); the dura-
tion equals to the time interval [2,2] implying the elapsed
time t ∈ [2,2] at x0 before c occurs;

• ((x1, [2,2]),ττd,(x0, [0,0])) corresponds to the timed evo-
lution from (x1,2) to (x0,0) by a pair (d,3); the duration
equals to the time interval [1,1] implying the elapsed time
t ∈ [1,1] at x1 before d occurs.

The duration of sR can be computed as [2,2]
⊕

[1,1] = [3,3],
implying the range of the total elapsed time. ⋄

Fig. 2. Region automaton RA(G).

5. OBSERVER DESIGN

In this section, we present the design of an observer in the form
of a DFA. Suppose that an agent endeavors to estimate the state
of a TFA without observing any sensor label. The agent initiates
a clock for the observer, which starts at 0 when the observation

begins. As time elapses, the observer timer generates an event
0+ when the observer timer transits from an integer to a non-
integer value, and it generates an event 1 when the observer
timer transits from a non-integer to an integer value. The
execution of this event sequence in the observer produces the
state estimates. We provide a formal algorithm to construct
such an observer. Given an elapsed time with no observable
event being measured starting from a set of discrete states, all
the possible reached states can be inferred by analysing the
reachability of the proposed observer.

We first introduce a time string function T S : R≥0 → {0+,1}∗
to show how the elapsed time t recorded by the agent can be
associated with a logical string T S(t) defined by

T S(t) =
{
(0+ ·1)⌊t⌋ if ⌊t⌋= t;
(0+ ·1)⌊t⌋ ·0+ if ⌊t⌋< t,

where ⌊t⌋ denotes the floor of t. In other words, the observer
produces strings composed of alternating logical events 0+ and
1. For instance, given a measured elapsed time 0 < t1 < 1, the
observer string denoted as T S(t1) = 0+ yields the correspond-
ing state estimation. Similarly, another string T S(t2) = (0+) ·1
leads to the state estimates corresponding to an elapsed time
t2 = 1, and so forth. We next propose the definition of the
proposed observer.
Definition 5. Given a TFA G=(X ,E,∆,Γ,Reset,X0) and its re-
gion automaton RA(G) = (V,Er,∆r,V0), an observer for unob-
servable evolutions from X0 is defined as a DFA Obs(G,X0) =
(Q,{0+,1},δobs,q0), where

• Q ⊆ 2V is the set of observer states, each of which is a set
of extended states in V ;

• {1,0+} is the set of clock events;
• δobs : Q × {0+,1} → Q is the transition function. It is

δ ∗
obs(q0, T S(t)) = q if and only if

(∀v ∈ q0)(∃v′ ∈ q)(v,sR,v′) ∈ ∆r, t ∈ d(sR);
that is to say, the word T S(t) on the alphabet {0+,1}
leads from the initial state q0 to state q, which is a set of
extended states of RA(G) that can be reached by a string
sR implying elapsed time t;

• q0 = {(x,rini(x)) | x ∈ X0} is the initial state. ⋄

Given a region automaton RA(G) = (V,Er,∆r,V0) and a time
interval I ∈ {[0,0],(0,1), [1,1], · · ·}, we denote the estimation
from v ∈V at a time instant t ∈ I with unobservable evolutions
as EST (v, I) = {v′ ∈ V | (∃sR ∈ E∗

r )(v,sR,v′) ∈ ∆∗
r ,d(sR)∩ I ̸=

/0}. In simple words, the estimation comprises the extended
states in V reachable from v through sequences with a duration
falling within the range I. Next, we prove that the set of
reachable states from x at time t, denoted as UR(x, t), aligns
with the observer state reached by a string T S(t).
Theorem 1. Consider a TFA G = (X ,E,∆,Γ,Reset,X0) and its
observer Obs(G,X0) = (Q, {0+,1}, δobs,q0). There exists an
evolution (q0,sobs,q) in Obs(G,X0) if and only if there exists
t ∈ R≥0 such that T S(t) = sobs and fX (q) =

⋃
x∈X0

UR(x, t).

Proof. (if) Let x,x′ ∈ X and t ∈ R≥0 satisfy that x′ =⋃
x∈X0

UR(x, t). It can be inferred that there exists a timed evolu-

tion (σ(ρ), t) from (x,θ) to (x′,θ ′) starting from time 0. Let
RA(G) = (V,Er,∆r,V0) be the region automaton of G. Then
there exists a string sR in RA(G) such that ((x,r),sR,(x′,r′)) ∈
∆r, where θ ∈ z and θ ′ ∈ z′. Accordingly, there exists I ∈
{(0,1), [1,1], · · ·} such that t ∈ I and (x′,r′) ∈ EST ((x,r), I).

4
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Therefore, a transition (q0,sobs,(x′,r′)) exists in Obs(G,X0),
and the sufficient condition holds.

(only if) Let (q0,sobs,q) be a transition of Obs(G,X0) such that
sobs = T S(t). Then, there exists I ∈ {(0,1), [1,1], · · ·} such that
t ∈ I and q =

⋃
v∈q0

EST (v, I). Then, in the region automaton

RA(G) = (V,Er,∆r,V0), there exists a transition (q0,sR,q) ∈
∆r such that t ∈ d(sR). The transition (q0,sR,q) implies a
timed evolution (σ(ρ), t) produced by G. Therefore fX (q) =⋃
x∈X0

UR(x, t) holds. �

By defining the successor region for each I ∈ {[0,0], (0,1),
[1,1], · · ·} as

φ(I) =
{
[ j, j] if r = ( j−1, j);
( j−1, j) if r = [ j−1, j−1],

where j ∈ N≥0, we present an approach to constructing the
above observer based on an analysis of the reachability of the
region automaton RA(G). In particular, we propose Algorithm 1
for constructing the observer Obs(G) = (Q,{0+,1},δobs,q0)
for unobservable evolutions from a given set of discrete states
X0. The algorithm follows these steps:

(1) Initialization: initialize the set of states Q as {q0},
where q0 represents the union of estimations from each
(x,rini(x)) at 0 for x ∈ X0; initialize δobs as an empty set;
designate the index state of the observer as q, which is set
to be q0 initially, designate the interval I as [0,0], and the
end test STOP as false, i.e., 0.

(2) The while loop updates the states and transitions of the
observer until STOP becomes true, i.e., 1. For each loop,
we update I as the successor region φ(I), and denote the
estimation from v ∈ q0 at a time instant t ∈ I as q̄. If I
is one of the open segments (0,1), (1,2), · · · , we update
δobs by including the transition (q,0+, q̄); if I equals to
an integer value as [1,1], [2,2], · · · , we update δobs by
including the transition (q,1, q̄). The former implies that
the observer state evolves from q to q̄ after the time elapses
more than 0 from the previous measurement, and the latter
implies that the observer state evolves from q to q̄ after the
elapsed time reaches 1. After implementing the transition,
we check if q̄ is in Q or not: if not, we update Q by
including q̄ and update q by q̄. If q̄ ∈ Q, which implies
that all states and transitions have been implemented, the
algorithm designates the end test STOP to become true,
and stops the while loop. At the end, the algorithm returns
the observer.

In summary, this algorithm constructs an observer that captures
information for any given time instant t ≥ 0 with no event ob-
servation. Observe that the number of extended states is finite,
and the algorithm returns a structure in finite steps. Notice also
that the observer obtained by Algorithm 1 is consistent with
Definition 5. Specifically, the initial state q0 of the observer
provides the estimation for an immediate time t ∈ [0,0] without
any observation. The reachable states from x ∈ X0 at t ∈ (0,1)
are equivalent to the discrete states fX (q1), where q1 is an
observer state reached by an event 0+ from q0. Then, the tran-
sition with 1 from q1 leads to an observer state, from which the
reachable states from x ∈ X0 at t ∈ [1,1] can be inferred. Each
string generated by the observer, such as 0+, 0+ ·1, 0+ ·1 ·0+,
etc., is composed of alternating clock events 0+ and 1. These
correspond to time instants in the respective partitions: [0,0],
(0,1), [1,1], etc., during which no observations are received.

Algorithm 1: Constructing an observer for unobservable
evolutions of a TFA
Input: A region automaton RA(G) = (V,Er,∆r,V0), and a

set of discrete states X0 =
⋃

v∈V0

fX (v)

Output: Observer Obs(G,X0) = (Q,{0+,1},δobs,q0)
1 let q0 ←

⋃
x∈X0

EST ((x,rini(x)), [0,0]), Q ←{q0}

2 let δobs ← /0, q ← q0, I ← [0,0], and STOP ← 0
3 while STOP = 0 do
4 let I ← φ(I) and q̄ ←

⋃
v∈q0

{EST (v, I)}

5 if I = {(0,1),(1,2), · · ·} then
6 δobs ← δobs ∪{(q,0+, q̄)}
7 else
8 δobs ← δobs ∪{(q,1, q̄)}
9 if q̄ /∈ Q then

10 let Q ← Q∪{q̄} and q ← q̄

11 else
12 let STOP ← 1
13 return Obs(G)← (Q,{0+,1},δobs,q0)

The state estimation for no observation at t can be inferred by
an observer state reached by a corresponding string T S(t).

In the subsequent discussion, we provide an illustrative ex-
ample to demonstrate how the proposed observer offers esti-
mations for unobservable evolutions. In the example, we also
highlight an intuitive process of obtaining a simplified observer
from the proposed observer. However, due to space constraints,
the algorithm for constructing the simplified observer is omit-
ted. The simplified observer can be utilized to maintain the
key aspects of discrete state estimation without delving into the
specifics of clock values.
Example 3. Consider the TFA G in Fig. 1 and its region
automaton RA(G) in Fig. 2. Suppose that no further obser-
vations are recorded after the system moves to state X0 =
{x0}. The observer Obs(G,X0) designed for unobservable evo-
lutions is illustrated in Fig. 3. Each state of the observer
corresponds to a set of extended states in RA(G), provid-
ing estimations for discrete states and a range of potential
clock values. The initial observer state, denoted as q0 =
{(x0, [0,0]),(x2, [0,0])}, provides the estimation at time 0 with
no observation at states x0 and x2, both having a clock value
equal to 0. Starting from q0, the string labeled with 0+ (or
0+ ·1) signifies an elapsed time t ∈ (0,1) (or t ∈ [1,1]). Sub-
sequently, the transition labeled with 0+ from q0 leads to q1 =⋃
v∈q0

EST (v,(0,1)) = {(x0,(0,1)),(x2,(0,1))}, while the transi-

tion labeled with 1 from q1 leads to q2 =
⋃

v∈q0

EST (v, [1,1]]) =

{(x0, [1,1]),(x2, [1,1]),(x3, [1,1])}, respectively. Consider the
scenario where no observation is recorded for t = 6.5. The
observer Obs(G,X0) in Fig. 3 provides an estimation repre-
sented by {(x0,(0,1)), (x0,(2,+∞), (x1,(3,+∞)), (x2,(0,1)),
(x2,(2,+∞)), (x3,(2,+∞))}, derived from the reached observer
state by string sobs = 0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·
0+, implying an elapsed time t ∈ (6,7).

In comparison to the observer Obs(G,X0), whose states are
collections of extended states from RA(G) that include clock
information, a simplified observer depicted in Fig. 4, can be
obtained by filtering out the clock information associated with
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Therefore, a transition (q0,sobs,(x′,r′)) exists in Obs(G,X0),
and the sufficient condition holds.

(only if) Let (q0,sobs,q) be a transition of Obs(G,X0) such that
sobs = T S(t). Then, there exists I ∈ {(0,1), [1,1], · · ·} such that
t ∈ I and q =

⋃
v∈q0

EST (v, I). Then, in the region automaton

RA(G) = (V,Er,∆r,V0), there exists a transition (q0,sR,q) ∈
∆r such that t ∈ d(sR). The transition (q0,sR,q) implies a
timed evolution (σ(ρ), t) produced by G. Therefore fX (q) =⋃
x∈X0

UR(x, t) holds. �

By defining the successor region for each I ∈ {[0,0], (0,1),
[1,1], · · ·} as

φ(I) =
{
[ j, j] if r = ( j−1, j);
( j−1, j) if r = [ j−1, j−1],

where j ∈ N≥0, we present an approach to constructing the
above observer based on an analysis of the reachability of the
region automaton RA(G). In particular, we propose Algorithm 1
for constructing the observer Obs(G) = (Q,{0+,1},δobs,q0)
for unobservable evolutions from a given set of discrete states
X0. The algorithm follows these steps:

(1) Initialization: initialize the set of states Q as {q0},
where q0 represents the union of estimations from each
(x,rini(x)) at 0 for x ∈ X0; initialize δobs as an empty set;
designate the index state of the observer as q, which is set
to be q0 initially, designate the interval I as [0,0], and the
end test STOP as false, i.e., 0.

(2) The while loop updates the states and transitions of the
observer until STOP becomes true, i.e., 1. For each loop,
we update I as the successor region φ(I), and denote the
estimation from v ∈ q0 at a time instant t ∈ I as q̄. If I
is one of the open segments (0,1), (1,2), · · · , we update
δobs by including the transition (q,0+, q̄); if I equals to
an integer value as [1,1], [2,2], · · · , we update δobs by
including the transition (q,1, q̄). The former implies that
the observer state evolves from q to q̄ after the time elapses
more than 0 from the previous measurement, and the latter
implies that the observer state evolves from q to q̄ after the
elapsed time reaches 1. After implementing the transition,
we check if q̄ is in Q or not: if not, we update Q by
including q̄ and update q by q̄. If q̄ ∈ Q, which implies
that all states and transitions have been implemented, the
algorithm designates the end test STOP to become true,
and stops the while loop. At the end, the algorithm returns
the observer.

In summary, this algorithm constructs an observer that captures
information for any given time instant t ≥ 0 with no event ob-
servation. Observe that the number of extended states is finite,
and the algorithm returns a structure in finite steps. Notice also
that the observer obtained by Algorithm 1 is consistent with
Definition 5. Specifically, the initial state q0 of the observer
provides the estimation for an immediate time t ∈ [0,0] without
any observation. The reachable states from x ∈ X0 at t ∈ (0,1)
are equivalent to the discrete states fX (q1), where q1 is an
observer state reached by an event 0+ from q0. Then, the tran-
sition with 1 from q1 leads to an observer state, from which the
reachable states from x ∈ X0 at t ∈ [1,1] can be inferred. Each
string generated by the observer, such as 0+, 0+ ·1, 0+ ·1 ·0+,
etc., is composed of alternating clock events 0+ and 1. These
correspond to time instants in the respective partitions: [0,0],
(0,1), [1,1], etc., during which no observations are received.

Algorithm 1: Constructing an observer for unobservable
evolutions of a TFA
Input: A region automaton RA(G) = (V,Er,∆r,V0), and a

set of discrete states X0 =
⋃

v∈V0

fX (v)

Output: Observer Obs(G,X0) = (Q,{0+,1},δobs,q0)
1 let q0 ←

⋃
x∈X0

EST ((x,rini(x)), [0,0]), Q ←{q0}

2 let δobs ← /0, q ← q0, I ← [0,0], and STOP ← 0
3 while STOP = 0 do
4 let I ← φ(I) and q̄ ←

⋃
v∈q0

{EST (v, I)}

5 if I = {(0,1),(1,2), · · ·} then
6 δobs ← δobs ∪{(q,0+, q̄)}
7 else
8 δobs ← δobs ∪{(q,1, q̄)}
9 if q̄ /∈ Q then

10 let Q ← Q∪{q̄} and q ← q̄

11 else
12 let STOP ← 1
13 return Obs(G)← (Q,{0+,1},δobs,q0)

The state estimation for no observation at t can be inferred by
an observer state reached by a corresponding string T S(t).

In the subsequent discussion, we provide an illustrative ex-
ample to demonstrate how the proposed observer offers esti-
mations for unobservable evolutions. In the example, we also
highlight an intuitive process of obtaining a simplified observer
from the proposed observer. However, due to space constraints,
the algorithm for constructing the simplified observer is omit-
ted. The simplified observer can be utilized to maintain the
key aspects of discrete state estimation without delving into the
specifics of clock values.
Example 3. Consider the TFA G in Fig. 1 and its region
automaton RA(G) in Fig. 2. Suppose that no further obser-
vations are recorded after the system moves to state X0 =
{x0}. The observer Obs(G,X0) designed for unobservable evo-
lutions is illustrated in Fig. 3. Each state of the observer
corresponds to a set of extended states in RA(G), provid-
ing estimations for discrete states and a range of potential
clock values. The initial observer state, denoted as q0 =
{(x0, [0,0]),(x2, [0,0])}, provides the estimation at time 0 with
no observation at states x0 and x2, both having a clock value
equal to 0. Starting from q0, the string labeled with 0+ (or
0+ ·1) signifies an elapsed time t ∈ (0,1) (or t ∈ [1,1]). Sub-
sequently, the transition labeled with 0+ from q0 leads to q1 =⋃
v∈q0

EST (v,(0,1)) = {(x0,(0,1)),(x2,(0,1))}, while the transi-

tion labeled with 1 from q1 leads to q2 =
⋃

v∈q0

EST (v, [1,1]]) =

{(x0, [1,1]),(x2, [1,1]),(x3, [1,1])}, respectively. Consider the
scenario where no observation is recorded for t = 6.5. The
observer Obs(G,X0) in Fig. 3 provides an estimation repre-
sented by {(x0,(0,1)), (x0,(2,+∞), (x1,(3,+∞)), (x2,(0,1)),
(x2,(2,+∞)), (x3,(2,+∞))}, derived from the reached observer
state by string sobs = 0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·0+ ·1 ·
0+, implying an elapsed time t ∈ (6,7).

In comparison to the observer Obs(G,X0), whose states are
collections of extended states from RA(G) that include clock
information, a simplified observer depicted in Fig. 4, can be
obtained by filtering out the clock information associated with
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Fig. 3. Observer Obs(G,X0).

the states of G and merging identical estimations for discrete
states. It basically provides the following information:

• The observer begins in the state {x0,x2}.
• In the absence of observations at t = 1, the discrete state

estimation expands to {x0,x2,x3}.
• In the absence of observations at t = 2, the observer up-

dates the estimation of discrete states as {x0,x1,x2,x3}. ⋄
Remark 1. Note that, due to the considered semantics where
a system can indefinitely remain in a discrete state, the set
of consistent discrete states is non-decreasing as time elapses
when no observation is collected.

Fig. 4. A simplified observer, each state of which is a set of
discrete states.

6. CONCLUSIONS

In this paper, we consider timed DESs equipped with a single
clock. The timing structure is characterized by a timing function
and a clock resetting function. Focusing on a designated set
of discrete states as initial states, our contribution lies in the
proposal of an observer that tracks elapsed time instants. Each
state of the observer is a set of states of the associated region
automaton, implying the possible current discrete states and
the clock range. The proposed observer is implemented as a
deterministic finite automaton, offering a further possibility for
developing other properties from the aspect of discrete event
systems. The proposed observer can be applied to real-world
challenges. For instance, it can be employed in scenarios where
no observations are measured for a certain duration due to
interruptions or the loss of output measurements from a system.
For future work, we are interested in the opacity of timed DES
based on the proposed observer. In addition, we aim to develop
an observer that provides accurate clock estimation.
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