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Abstract: We investigate the diagnosability verification problem in the framework of discrete-
event systems. Most of the existing works on this topic assume that faults are related to the
internal behaviors of the system such as occurrences of particular events. In this work, motivated
by information-flow security considerations, we model faults as some critical information leakages
of the system to an intruder, which may have different observations from the system user.
Specifically, we say that a fault occurs if the intruder knows that the system has passed by a
secret state. We present a formal notion called epistemic diagnosability to capture whether or
not the system user can always detect, based on its own observation, the critical information
leakage to an intruder within a bounded delay. We show that this new notion subsumes the
standard notion of event-based diagnosability. Furthermore, an effective algorithm is provided

to verify this new notion.
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1. INTRODUCTION

With the advancement of network and information tech-
nologies, cyber-physical systems (CPSs) have become ex-
tensively used in our society. While CPSs enhance the
flexibility and intelligence of engineering systems, they
concurrently introduces increased complexity. Large-scale
CPSs, in particular, face the dual challenges of vulnerabil-
ity to failures and potential leakage of critical information
due to their intricate operation logic and frequent data in-
teractions. Therefore, to ensure the performance of safety-
critical CPSs, fault diagnosis and security analysis have
become more crucial and have drawn a lot of attention in
recent years (Basilio et al., 2021; Liu et al., 2022).

In this paper, we consider the fault diagnosis problem
in the context of discrete-event systems (DESs), a class
of dynamic systems with discrete-state spaces and event-
triggered dynamics widely used in describing high-level
behaviors of CPSs (Cassandras and Lafortune, 2008). In
the context of fault diagnosis, it is assumed that the
system may experience faults during its operation. Then
a system is said to be diagnosable if the system user can
always detect the occurrences of faults based on its own
observations within a finite delay (Sampath et al., 1995).
During the past few years, fault diagnosis of DES has
drawn a lot of interest due to its importance; see, e.g.,
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Yin et al. (2019); Carvalho et al. (2021); Takai (2021); Ma
et al. (2023); Dong et al. (2023b); Zhao et al. (2024).

Since diagnosability requires the system user to always be
able to detect the occurrence of fault, one key ingredient
in this notion is what is a fault and how to describe
its occurrence. In the context of diagnosability analysis,
one of the most commonly used approaches is to model
faults as the occurrences of particular events or transitions
(Lefebvre and Delherm, 2007; Basile et al., 2014). An
equivalent approach is to consider state-based fault, where
the system is faulty if it has visited a fault state (Zad et al.,
2003). In a more general setting, faults can be defined
as the executions of incorrect sequences of events, i.e.,
behavior patterns, (Jéron et al., 2006; Yin and Lafortune,
2017; Pencolé and Subias, 2021; Ma et al., 2023). There
are also works in the literature describing faults as the
violations of logical formulae such as linear temporal logic
or metric interval temporal logic; see, e.g., Jiang and
Kumar (2004); Chen and Kumar (2015); Dong et al.
(2023a).

Note that the previously mentioned concepts of faults
are directly associated with the internal behavior of sys-
tems. However, in certain applications, faults can also
be linked to the external knowledge of the system based
on its information-flow. To illustrate this, consider the
information-flow security property of DES known as opac-
ity. This property demands that the system maintains
plausible deniability against a passive intruder with re-
spect to some critical information, such as secret states.
A violation of opacity implies the existence of a trajec-
tory generated by the system where critical information is
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disclosed to the intruder. Therefore, from a security point
of view, such leakage of critical information can also be
viewed as a fault. Detecting such information leakage in
a timely manner becomes essential to prevent potential
catastrophic consequences.

In this paper, we revisit the diagnosability verification
problem from a new perspective. Specifically, we assume
that the system is under observation from two distinct
entities: the system user and the intruder, each having
its own information-flow. The intruder aims to expose
critical information of the system, while the user seeks to
identify such information leakage as they occur. Drawing
inspiration from the concept of strong infinite-step opacity
(Falcone and Marchand, 2015; Ma et al., 2021), we repre-
sent critical information leakage as detecting if the system
has visited specific secret states, which is considered as
a fault in our setting. We formalize this awareness of
information leakages as the notion of “epistemic diagnos-
ability” . Formally, a system is considered K- epistemically
diagnosable if the user can detect, in no more than K
steps, that the intruder has detected the system’s secret.
We provide an effective algorithm for verifying this new
notion of diagnosability.

Our work is conceptually related to the field of epistemic
logic within knowledge theory (Van Ditmarsch et al.,
2007), where properties based on knowledge relationships,
such as “you know that I know”, can be formalized. How-
ever, in epistemic logic, these properties are typically inter-
preted by using a Kripke model. To the best of our knowl-
edge, diagnosis of faults based on epistemic considerations
has not been explored in the context of DES. A related
concept, termed high-order opacity, has been investigated
in our previous work (Cui et al., 2022). Nevertheless, this
notion primarily addresses the requirement to secure the
knowledge of the system user, whereas our present paper
focuses on the awareness of information leakages. These
two notions are not equivalent to each other.

The rest of this paper is organized as follows. Section 2
provides some basic preliminaries. Then, we introduce
the notion of epistemic diagnosability in Section 3. The
verification procedure for this notion is outlined in Sec-
tion 4. Finally, we conclude the paper and discuss future
directions in Section 5.

2. PRELIMINARIES
2.1 System Model

Let X be a finite set of events. A string is a finite sequence
of events and ¥* denotes the set of all strings over X
including the empty string e. For any string s € X*, |s]
denotes the length of s with |¢|] = 0. A language L C ¥* is
a set of strings. For any string s € L, we denote by L/s the
post-language of s in L, i.e., L/s :== {w € ¥* : sw € L}.
Also, we denote by L the prefix-closure of language L, i.e.,
L={seX :JweX* st swelL}.

We consider a DES modeled by a deterministic finite-state
automaton (DFA)

G == (X, 27(5, Io),
where X is a finite set of states, X is a finite set of events,
6 : X x X — X is the partial transition function, where

for any z,2’ € X, 0 € &, ' = §(x,0) means that there
exists a transition from state x to state z’ via event o, and
2o € X is the initial state. The transition function is also
extended to ¢ : X x ¥* — X recursively by: (i) for any
x € X, 0(x,e) = x and (ii) for any x € X,s € ¥*,0 € X,
we have §(z,s0) = §(6(x,s),0). The set of all strings
generated by G starting from state x € X is defined
as L(G,z) = {s € ¥* : (x,s)!}, where “!” means “is
defined”. The set of all strings generated by G is defined
as L(G) := L(G, ). For any s € L(G), we write d(zq, s)
simply as d(s). For the sake of simplicity, we assume that
system G is live, i.e., for any x € X, there exists o0 € X
such that 6(z,0)! holds.

In a partially observed system, the occurrence of each
event is imperfectly observed through an observation func-
tion defined as follows
H: X — AU{e},

where A is a new set of observation symbols. That is, we
observe H (o) upon the occurrence of event o € X. We say
event o € ¥ is observable if H(o) € A and unobservable
if H(o) = e. The observation function is also extended to
H :X* — A* as follows: for any s € X*, H(s) is obtained
by replacing each event o in string s with H (o).

2.2 Fvent-Based Fault Diagnosis

In the context of fault diagnosis of DES, it is assumed that
the system is subject to faults modeled by a set of fault
events ¥y C X. We say a string s € £(G) is faulty if it
contains at least one fault event, denoted as Xy N's # (.
We define ¥(X) as the set of all finite faulty strings where
fault events occur for the first time, i.e.,

U(Ef):={s€L(G): [Esns # DAVt € {s}\{s}: XNt = 0]}

To capture whether or not fault events can always be
detected in a finite number of steps after their occurrences,
the notion of diagnosability has been proposed. Formally,
the definition of K-diagnosability is as follows.

Definition 1. (Diagnosability). A system G is said to be
K-diagnosable w.r.t. function H and fault events X if

(Vs € ¥(Xp))(Vt € L(G)/s: |t| > K)
(Vw € L(Q))[H(st) = H(w) =2y Nw#0]. (1)

3. NOTION OF EPISTEMIC DIAGNOSABILITY

In this section, we first formalize the information leakage,
which is considered as fault in this paper. Then we provide
the notion of epistemic diagnosability.

The issue of epistemic diagnosability arises when there are
two different observation sites of the underlying system:

e the user, who observes the system through function
Ho: 2 — AU{e}; and

e the intruder, who observes the system through func-
tion Hey : 32 — A U{e}.

We denote the sets of observable events of the user and the
intruder as ¥, and X, respectively, and their unobservable
events are denoted by ¥,, := ¥\ X, and ¥,, := ¥\
Y4, respectively. Here we do not assume any relationship
between X, and 3,, i.e., they can be incomparable in
general.
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3.1 Critical Information Leakage

During the operation of the system, the system can release
some information to the intruder based on its observation
function H,. However, such information release might be
critical to the system user and some critical information
should not be revealed to the intruder. In general, the
leakage of critical information can be defined as a predicate
on the system languages

rev, : L(G) — {true,false}

such that “rev,(s) = true” indicates that the intruder
knows some secret based on the observation H,(s), where
s € L(G) is the string actual occurred. Therefore, for any
two strings s,t € L£(G) such that H(s) = He(t), we always
have rev,(s) = rev,(t).

In this paper, we describe the critical information leakage
motivated by the notion of strong infinite-step opacity
(Falcone and Marchand, 2015; Ma et al., 2021). Specifi-
cally, we assume that the critical information of the system
user is captured by a set of secret states Xg C X. The
leakage of the critical information is defined as follows.

Definition 2. (Critical Information Leakage). Given G, a
set of secret states Xg and an intruder’s observation
function H,, for any string s € L(G) generated by the
system, we have rev,(s) = true iff

(Vr € L(G) : Ha(r) = Ha(s))Bw € {r})[6(w) € Xs]. (2)

Intuitively, critical information leakage captures the situ-
ation where the intruder knows for sure that the system
has visited a secret state based on its own observation.

Remark 1. We note that the critical information leakage
considered here is irreversible. That is, for any s € L(G),
if revy(s) = true, then we have rev,(st) = true for
all ¢ € L(G)/s. This is because that, by using further
observations, the intruder can only exclude impossible
strings from the previous estimate. Therefore, by observing
Ha(s), if all possible strings of the system have been
passing through secret states, then it will be the same case
by further observing H,(st).

3.2 Epistemic Diagnosability

Before formally introducing the definition of epistemic
diagnosability, we first summarize the capabilities of the
system user:

e It knows the DFA model G of the system;

e It can observe the occurrence of each event in X,
generated online through function H,;

e It knows that the intruder can observe the occurrence
of each event in ¥, online through H,, but it cannot
observe the occurrences of events %, \ X,.

The notion of epistemic diagnosability follows the basic
idea of diagnosability, which is to detect the occurrence
of “fault events” within a finite horizon. Differently, in
the setting of epistemic diagnosability, “fault events” are
captured by epistemic behaviors of the system, i.e., the
leakage of critical information. We define ¥(rev,) as the
set of all finite strings where the critical information
leakage occurs for the first time, i.e.,

LD DD

Fig. 1. System G with Xg = {3,3'}.

o) = o, 2@y SRl — rven )

rev,(s) = false
Then the definition of epistemic diagnosability is given as
follows.
Definition 3. (Epistemic Diagnosability). We say system
G is epistemically K -diagnosable w.r.t. H,, H, and secret
states Xg C X if

(Vs € U(revy,))(Vt € L(G)/s: |t| > K)

(Vw € L(G))[Ho(st) = Ho(w) = revy(w) = true]. (3)

Epistemic diagnosability can be understood as follows. Let
s € L(G) be an actual string generated by the system.
Upon the occurrence of s, the intruder observes H,(s)
and the information leakage is determined by H,(s) com-
pletely. However, the user may not be immediately aware
of the information leakage, and it may require further
observations to detect such leakage. Suppose t € L(G)/s is
an actual string generated by the system thereafter, where
the length of ¢ satisfies |t| > K. Then upon the occurrence
of st, from the user’s point of view, the intruder may have
observed any string in Hq(H, ' (Ho(st)) N L(G)). If for all
string w in H; 1 (Ho(st)) NL(G), we have rev,(w) = true,
then the user knows for sure that predicate rev, holds
true from the intruder’s point of view.

We use the following example to illustrate the notion of
epistemic diagnosability.

Example 1. Let’s consider system G as shown in Fig-
ure 1, where observable events of the two sites are ¥, =
{a,b,e,d’,c'} and X, = {uo,d’, '}, respectively. We define
Ho(x) = Ho(z') for x € {a,c}. Given Xg = {3,3'},
this system is not epistemically 2-diagnosable but is 3-
diagnosable. To see this, let us first consider the ac-
tual string generated by the system as woa’ba’ ¢ ab.
Upon the occurrence of uoa’ba’, the intruder observes
Ho(uoa ba’) = uoaa and it knows that the system is at
state 4. By making inference based on the system model,
the intruder knows that the system must have passed
through secret state 3 or 3’ (in fact it knows for sure the
system was at state 3’ one step earlier).

Now, let us consider continuation ¢’ @ with length 2. By
observing H,(uoa’ba’ ¢’ a) = abaca, the user can infer
that the actual string may also be aba ca, for which the
intruder observes nothing and definitely does not know
the secret. Therefore, the system is not epistemically 2-
diagnosable. However, by further observing H,(c'a’b) =
cab, which is a 3-step continuation, the user can determine
the actual string for sure and therefore, it knows for sure
the leakage of the secret. Similarly, for string abauoc,
where the information leakage occurs for the first time,
if we consider the continuation a b, then the user can also
detect the information leakage in 2 steps. Thus, the system
is epistemically 3-diagnosable.
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Remark 2. Tt is worth to note that Definition 3 requires
that for any string, where the intruder knows the secret for
the first time, and for any its continuations longer than K
steps, the user can detect the critical information leakage
for sure by observing the continuation. However, this
definition does not require any detection bound for the first
time the secret state has been visited from the intruder’s
point of view. For example, it is also possible that the
intruder detects the secret N steps after the system visited
secret states, and the user can detect the information
leakage for sure after the secret state is visited in K + IV
steps. This situation does not violate the requirement in
Definition 3.

4. VERIFICATION OF EPISTEMIC
DIAGNOSABILITY

4.1 Augmented Systems

To verify epistemic diagnosability, we first need to capture
the critical information in the system, i.e., whether or not a
secret state has been encountered. To this end, we augment
the state-space of the original system G to encode this
information in the augmented state-space. Specifically, we
define the augmented system as follows.

Definition 4. (Augmented System). Given system G =
(X,X,6,x0), the set of secret states Xg, we define the
augmented system as a four-tuple

é: (Xa2757§:0)
where

X C X x {8, N} is the set of augmented states;
Y. is the set of events;
6 : X x ¥ — X is the transition function defined by:
for any Z = (z,1) € X and o € ¥, we have 6(&,5)! iff
d(z,0)!. Moreover, for any 6(&,5)!, we have
S(;ﬁ&) _ {(5(1’,0’),]\[) ifl = N Nd(z,0) € Xng
(6(x,0),8) otherwise
e I is the initial augmented state which is defined by
Fo = {(ﬁO,N) if 19 € Xns
7 Vw0, S)  otherwise

By definition, the above augmented system has the follow-
ing properties:

e First, the augmented system generates the same lan-
guage as the original system. Specifically, we have
L(G) = L(G).

e Second, define the set of secret augmented states as
X5 = {(z,1) € X : | = S}. Then for any s € £(Q),
such that 0(s) € Xg, there exists t € {s} and
6(t) = («/,1') such that ' € Xg. In other words,
each string that leads to augmented state (z,1) with
| = S must have passed a secret state z € Xg.

By constructing the augmented system, we can describe
the information leakages based on the current-state esti-
mate of the augmented system from the intruder’s point
of view. Formally, define the current-augmented-state es-
timate (w.r.t. H,) upon the observation of « as

Xo(a) = {5(3) € X :3s € L(G) s.t. Hals) = a} ,

we have the following proposition.
Proposition 1. For any s € L(G), we have rev,(s) = true
iff X,(Ha(s)) C Xs.

The above proposition suggests that the information leak-
age can be captured by current-state estimate of the aug-
mented system from the intruder’s perspective. Therefore,
for any string s € £(G), in order to track the information
leakage, it is necessary to track all the strings that the
intruder cannot distinguish.

Remark 3. Notice that our notion of epistemic diagnos-
ability subsumes the standard event-based diagnosability
as in defined in Definition 1. To see the reduction, one
can first set H,(0) = o for all 0 € X. Then using the
augmented system, we let

N A (6(33,0’),]\[)
5.0 = {5 s
and let o = (zg, V). Since the intruder knows the current

state perfectly, for any so € L(G), if 6(s) € Xg, then we
have Xy N's # (. Therefore, rev,(st) = true is equivalent
to ¥y Nst # 0 and s € ¥(X¢) by Proposition 1.

ifl=NANocgX;
otherwise,

4.2 Secret Recognizer

For any internal string s € L£(G), in order to track all
possible strings indistinguishable from the intruder’s point
of view, we construct the secret recognizer as follows.
Definition 5. (Secret Recognizer). Given system G and se-
cret states Xg, the secret recognizer is defined as a four-
tuple

T= (Qa27f7q0)

where

Q C X x 2% is the set of states,

¥ is the set of events,

qo = (xo, {6(w) : w € X¥,}) is the initial state, and
f: Q%X — @ is the deterministic transition function
defined by: for any ¢ = (z,y) € Q and ¢ € X, if

o € XY,, we have
fla.o) = (o fo@wr: G0 R)-
f(Qa 0) = (6('7;7 0')’ y)'

Otherwise,
Intuitively, the secret recognizer is constructed by syn-
chronizing the original system G with the current-state
estimator of the augmented system w.r.t. H,. Specifically,
by construction, for any s € L(G), we have f(s) =

(6(s), Xa(Ha(s))), where the first element is the current
state upon the occurrence of s, and the second element
is the current-augmented-state estimate upon observation

Ha(s).

Structure T essentially tracks whether the secret has been
revealed upon any occurrence of string s € £(G). To this
end, we define the information leakage states by: for any
q = (x,y) € Q, we say ¢ is an information leakage state
iff for any = (z,1) € y, we have [ = S, i.e., T € Xg. We
denote the set of information leakage states as Qr C Q.
Then we have the following proposition.
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Fig. 2. Secret recognizer of the system shown in Fig. 1.

Symbol
A

Meaning

{ IN,2N, 35S }

48,58,6S
{I'N,4'S}
{2'N, 375}
@5y
{5'5,6/S}

= | QW

Table 1. State estimates in Fig. 2.

Proposition 2. For any s € L(G), we have rev,(s) = true

iff f(S) € Qr.

The above proposition says that, to check whether the
information is released or not, we can construct the secret
recognizer and check if the corresponding state reached by
f(s) is a information leakage state. We illustrate the above
procedure by the following example.

Example 2. Let us still consider system G as shown in
Figure 1. According to the definition of augmented system
and the structure of G, it is clear that the secret augmented
states should be Xg = {35,4S5,55,65,3'5,4'S,5'S,6'S}.
We build the secret recognizer as shown in Figure 2, in
which the estimate states, from A to FE, are shown in
Table 1. For example, to construct the initial state qq,
we have o = 1, and A = {1N,2N,35,4S5,55,65} since
Yua = {a,b,c}. Then, from the initial state, consider the
event uo, we have §(1,u0) = 1. For 1N,2N,35,4S € A,
consider strings uo,abauo,bauo,auo, whose projections
(w.r.t. He) are all wo. The augmented system G can
reach 1I’N and 4'S. This is why we have f(14,u0) =
1’B. Note that the information leakage states are Qr =
{4'D,5E,6'E} according to the definition. For instance,
consider string s = uwoa’ba’, we have f(s) € Qg, i.e.,
rev,(s) = true, which is consistent with our analysis in
Example 1.

4.8 Verification Structure

Now, to verify epistemic diagnosability, we can further rea-
son the secret recognizer from the user’s perspective, i.e.,
to check whether it can diagnose the critical information
leakage based on its own observations. Therefore, we need
to further build the verification structure as follows.

Definition 6. (Verification Structure). Given system G and
secret states Xg, the verification structure is a four-tuple

V= (QV7 ZVa fV7QO,V)
where

e Qv C @ X Q is the set of states;
o Yy = M3 UXY is the set of events, where

- Z% = {(0’1,0’2) S Eo X EO : HO(O'l) = HO(O'Q)};
- 3 =A{(01,€) 101 € Xyo} U{(€,02) 1 02 € Lo s
o fi:Qy XXy — Qv is the transition function defined
by: for any qv = (q1,¢2) € Qv and oy = (01,02) €
Yy, we have
fviav.ov) = (f(q1,01), f(g2,02));
e go.v = (o, qo) is the initial state.

Intuitively, V is constructed by synchronizing 7" with its
own copy according to the observations under H,. Each
state in V is a state pair in T and each event in V is
also an event pair in T'. The event set Yy is divided into

¢ and X}°, and (o1,02) is in 3¢ iff 01,00 € ¥, and
H (0’1) H ( 2).A1$O, (0’1,0’2) is in ZQ‘L/O iﬁUl(OQ) € Yo
and o9(01) = €. By construction, the verification structure
has following two properties. First, for any string s =
(s1,82) € L(V), we have H,(s1) = Ho(s2). Second, for
any strings s, so € L(G) such that H,(s1) = Ho(s2), there
exists a string s = (s1, $2) such that s € L(V).

For the sake of convenience, for any ¢y = (¢1,42) € Qv,
we denote 61(qv) = ¢1 and 03(qv) = g2 as the first and
second component of gy, respectively. Now, we are ready
to provide our main theorem.

Theorem 1. System G is not epistemically K-diagnosable
w.r.t. Ho, Hq and secret Xg C X iff in the verification
structure, there exists a string

1 2 n
Ty Oy Ty
Qv — Qv — " —>(qn,V
such that

1) 01(qi,v) € Qg for some i =0,1,...,n

2) 61(qk,v) ¢ QR for all k = 0, 17 ...,i — 1;
3) 02(qjv) ¢ Qr for all j =0,1,...,n; and
) |{OJ+17 -'703} N {(6702) € E?/OH > K.

Note that in condition 3), we do not omit the repetitive
elements in set {oi',...,0%}. Then the above conditions
can be understood as follows. For string s = (s1,$2) =
oy,0%...0%, condition 1) and 2) ensures that, at some
time instant 4, the corresponding prefix of string s; can
lead to information leakage. Condition 3) ensures that s,
and all of its prefixes, do not lead to information leakage.
Condition 4) says that, after the information is released,
sy is still processed for at least K steps in the sense of
non-empty events. By construction, s; and s, have the
same observation from the user’s point of view. Therefore,
such a string essentially is a counterexample of epistemic
diagnosability. We use the following example to illustrate
the above results.

Ezample 3. We still consider the running example, and we
only consider the verification of epistemic 2-diagnosability.
Since we already show the secret recognizer in Figure 2,
we can further construct the verification structure which
is partially shown in Figure 3. Note that in this figure,
without loss of generality and for the purpose of verifi-
cation, we only show the part satisfying the conditions
in Theorem 1 and omit other parts. Let us consider the
string from (1A4,1A) to (6’FE,6A) and consider the part
highlighted by red color, i.e.,

@'D,44) S (5B, 54) “Y (6'E,64)

We notice that condition 1) and 2) is satisfied at state
(4D,4A) because 4D € Qg and 14,1'B,2'C,3'C ¢



Bohan Cui et al. / IFAC PapersOnLine 58-1 (2024) 174-179 179

Y
’[(1A, 1A)](“i€>)[(1'3, 1A)l

*{a/, a) ™
(303442 (20,24))
(

a/7 a)

(4'D, ~1A))ﬁ‘2[
#e, o)
(

(#D,4B))

(E. 5’E)]M[(6’EQ6<’Z)))]

Fig. 3. Verification structure of the system shown in Fig. 1.

Qr. Since all the states passed by another string, i.e.,
1A4,2A,...,6A, are not information leakage states, condi-
tion 3) is satisfied. Finally, in the highlighted part, we
have |{(c¢), (a,a)}| > 2. Therefore, the system is not
epistemically 2-diagnosable, which is consistent with our
previous analysis in Example 1.

5. CONCLUSION

In this paper, we revisited the diagnosability analysis
problem of DES from a new perspective. Specifically, in
contrast to the standard diagnosability analysis, where
faults are related to the internal behaviors of the system,
we considered faults are some critical information leakages
to an intruder with different observation. Then the no-
tion of epistemic diagnosability was proposed to capture
whether or not the system user can always detect the
critical information leakage in time within a given delay
bound. We argued that this new notion subsumes the
notion of event-based diagnosability. We also provided an
effective algorithm to verify this new notion. In the future,
we would like to investigate the control synthesis problem
to enforce epistemic diagnosability.
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