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Abstract: In this paper, we consider timed opacity verification for switching output automata
(SOA). We define a subset of global states of the SOA as vulnerable and associate to each
of them a secret dwell interval. A SOA is opaque if an intruder, based on the observation of
the outputs over time, cannot determine whether the current global state is vulnerable and
the corresponding dwell time belongs to the secret dwell interval. We define a secret-dependent
evolution automaton as the logical abstraction of the SOA’s evolution when incorporating timed
secrets. We show how an observer, i.e., the deterministic finite automaton equivalent to the
secret-dependent evolution automaton, can be used to verify timed opacity.

Keywords: Timed opacity verification, switching output automata, observer.

1. INTRODUCTION

Opacity describes the security and privacy characteristics
of a system. Several opacity properties have been thor-
oughly studied in the context of Discrete Event Systems
(DES): see Bryans et al. (2005), Saboori et al. (2013),
Falcone et al. (2015) and Tong et al. (2017).

Timed opacity is an extended notion of opacity which has
been described as the inability of an external observer
to accurately infer the system’s secret behaviors based
on timing information by Cassez (2009). Timed bounded
opacity extends the concept of timed opacity by adding
a global time upper bound: if an attacker is unable to
disclose the secret before a given time upper bound, then
the system is timed bounded opaque (Ammar et al., 2021;
André et al., 2023). More generally, in a timed setting
the secret itself may be a time-varying property, which
depends, say, on the current state and on the current value
of the timers associated to the system. In this paper we
consider such a notion of secret.

Up to now, most research on timed opacity has been based
on timed automata (TAs). Cassez (2009) first introduced
the timed opacity problem for timed automata. Ammar
et al. (2021) primarily address the issue of static par-
tial observability within nondeterministic timed automata
models, proposing the attribute of bounded timed opacity
and proving its complexity. This work enhances the under-
standing of systems’ security and privacy traits, especially
in contexts where timing is a critical factor. André et al.
(2023) investigate the expiring timed opacity problem in
timed automata, analyzing a range of time bounds that en-
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sure system opacity and demonstrating when these bounds
can be effectively computed for timed automata.

In this paper, we consider a particular model called Switch-
ing Output Automaton (SOA) defined by Liu et al. (2023).
This is an intuitive formalism, well suited to describe
man-made systems where the output can take discrete
values, or even piecewise-continuous values which can be
quantized. Timing information is intricately intertwined
with its evolution process and is subject to observation.
We focus on whether a SOA is timed opaque.

In our previous work (Liu et al. (2023)), we assumed the
secret is a subset of discrete states of a SOA. We say an
observation is stable if the current output has remained
constant for a period greater than or equal to the minimum
dwell time. When defining opacity we considered that the
intruder has no way of exploiting the information obtained
from a nonstable observation because in a very short
time it becomes outdated. Therefore we were interested
in estimating the set of states consistent with any stable
observation. In this work, we consider a more general
setting, where the secret set is defined in terms of the
current global state – i.e., current discrete state and output
– but also on the current dwell time in such a global state.
An SOA is not timed opaque if for some evolutions the
intruder can detect that the current global state and dwell
time belong to the secret.

In this paper, we provide the following contributions.

First, we formally define a new notion of secret and of
timed opacity for an SOA. The secret in this context is
time-dependent. A global state of the system is considered
secret only when its dwell time belongs to a defined time
interval.

Second, we define a secret-dependent evolution automa-
ton and provide an algorithm for its computation. This
automaton provides a purely logical abstraction of the
evolution of the SOA: the dwell time in each global state
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(2023) investigate the expiring timed opacity problem in
timed automata, analyzing a range of time bounds that en-

⋆ This work was partially supported by the China Scholarship Coun-
cil, the project Research on Interdisciplinary Issues in Mechatron-
ics Integration (YJSJ24001) funded by the Fundamental Research
Funds for the Central Universities and the Innovation Fund of Xidian
University, and the project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the European
Union - NextGenerationEU.

sure system opacity and demonstrating when these bounds
can be effectively computed for timed automata.

In this paper, we consider a particular model called Switch-
ing Output Automaton (SOA) defined by Liu et al. (2023).
This is an intuitive formalism, well suited to describe
man-made systems where the output can take discrete
values, or even piecewise-continuous values which can be
quantized. Timing information is intricately intertwined
with its evolution process and is subject to observation.
We focus on whether a SOA is timed opaque.

In our previous work (Liu et al. (2023)), we assumed the
secret is a subset of discrete states of a SOA. We say an
observation is stable if the current output has remained
constant for a period greater than or equal to the minimum
dwell time. When defining opacity we considered that the
intruder has no way of exploiting the information obtained
from a nonstable observation because in a very short
time it becomes outdated. Therefore we were interested
in estimating the set of states consistent with any stable
observation. In this work, we consider a more general
setting, where the secret set is defined in terms of the
current global state – i.e., current discrete state and output
– but also on the current dwell time in such a global state.
An SOA is not timed opaque if for some evolutions the
intruder can detect that the current global state and dwell
time belong to the secret.

In this paper, we provide the following contributions.

First, we formally define a new notion of secret and of
timed opacity for an SOA. The secret in this context is
time-dependent. A global state of the system is considered
secret only when its dwell time belongs to a defined time
interval.

Second, we define a secret-dependent evolution automa-
ton and provide an algorithm for its computation. This
automaton provides a purely logical abstraction of the
evolution of the SOA: the dwell time in each global state

Timed Opacity Verification
for Switching Output Automata ⋆

T. Liu C. Seatzu A. Giua

DIEE, University of Cagliari, Cagliari 09123, Italy,
(e-mail: t.liu@studenti.unica.it; carla.seatzu@unica.it; giua@unica.it).

Abstract: In this paper, we consider timed opacity verification for switching output automata
(SOA). We define a subset of global states of the SOA as vulnerable and associate to each
of them a secret dwell interval. A SOA is opaque if an intruder, based on the observation of
the outputs over time, cannot determine whether the current global state is vulnerable and
the corresponding dwell time belongs to the secret dwell interval. We define a secret-dependent
evolution automaton as the logical abstraction of the SOA’s evolution when incorporating timed
secrets. We show how an observer, i.e., the deterministic finite automaton equivalent to the
secret-dependent evolution automaton, can be used to verify timed opacity.

Keywords: Timed opacity verification, switching output automata, observer.

1. INTRODUCTION

Opacity describes the security and privacy characteristics
of a system. Several opacity properties have been thor-
oughly studied in the context of Discrete Event Systems
(DES): see Bryans et al. (2005), Saboori et al. (2013),
Falcone et al. (2015) and Tong et al. (2017).

Timed opacity is an extended notion of opacity which has
been described as the inability of an external observer
to accurately infer the system’s secret behaviors based
on timing information by Cassez (2009). Timed bounded
opacity extends the concept of timed opacity by adding
a global time upper bound: if an attacker is unable to
disclose the secret before a given time upper bound, then
the system is timed bounded opaque (Ammar et al., 2021;
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is quantized and belongs to a finite set of intervals. This
abstraction, which depends on the particular secret, is
guaranteed to keep all the info that is needed to solve
the opacity verification problem.

Third, we construct an observer which provides the set of
states consistent with a logical observation of the secret-
dependent evolution automaton. Finally, we show how to
verify timed opacity using the proposed observer.

The paper is structured as follows. We recall preliminaries
in Section 2. The problem is addressed in Section 3. Sec-
tion 4 discusses the secret-dependent evolution automaton
and its equivalent observer. Timed opacity is verified in
Section 5. Section 6 concludes the paper.

2. PRELIMINARIES

Definition 1. A switching output automaton is defined as
G = (X,Y,B,h, x0, y0), where
● X is a finite set of states;
● Y is an output alphabet ;
● B ⊆X ×X is a set of arcs (or edges) ;
● h ∶X → 2Y is the output function;
● x0 ∈X is the initial state;
● y0 ∈ h(x0) is the initial output symbol.

We denote by h(x) ⊆ Y the set of possible output symbols
which may be produced when the current state is x. An
arc b = (x,x′) ∈ B is considered to be directed from state x
to state x′; in such a case x′ is said to be a direct successor
of state x and state x is said to be a direct predecessor of
state x′. We denote by σ(x) = {x′ ∈X ∣∃b = (x,x′) ∈ B} the
set of direct successors of x.

An alphabet Y is a finite set of symbols and Y ∗ denotes
the set of all (finite length) strings of symbols in Y , while
Y + = Y Y ∗.

The evolution of the state can be described by means of a
state run

t0�→x(0) t1�→x(1) t2�→⋯ tk�→x(k)

where for all i = 0, . . . , k it holds that x(i) ∈ X and for all
i = 0, . . . , k − 1 it holds that (x(i), x(i+1)) ∈ B. Such a run
has length k ≥ 0. It describes the evolution process of an
automaton, which initially is in state x(0) at time t0, and
then at time ti transitions from state x(i−1) to state x(i).
While the automaton is in a given state its output may
change. This is described by an output run associated to
a state x(i):
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state x(i) is reached at time τ
(i)
0 = ti the output takes value

y
(i)
0 and changes from y

(i)
j−1 to y

(i)
j at time τ

(i)
j .

A state-output run can thus be represented as follow:
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(i+1)
1

⋯�→
τ
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hi

( x
(k)

y
(k)
hi
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where each state of the run q = (x, y) ∈ X × Y is a global
state of the system: it consists of a pair whose first element
is a discrete state x ∈ X and whose second element is an
output value y ∈ h(x) ⊆ Y .

An SOA has multiple state-output runs, which consists of
three types of transitions.

Type 1 refers to a state change with no output change.
It can be explained as follows. During the time interval

[τ (i)hi
, ti+1), the system is in state x(i) and produces output

y
(i)
hi

. At time instant ti+1, the system transitions to state

x(i+1), while maintaining the same output value, i.e., y
(i)
hi
=

y
(i+1)
0 .

Type 2 indicates a simultaneous state and output change.

During the time interval [τ (i)hi
, ti+1), the system is in state

x(i) and produces output y
(i)
hi

. At time ti+1, the system

transitions to state x(i+1) and generates a new output,

which means that y
(i)
hi
≠ y(i+1)0 .

Type 3 indicates an output change with no state change. In
a run as described above, the system undergoes hi changes
in the output while the current state remains x(i) and the

output changes are represented as y
(i)
0 → y

(i)
1 →⋯→ y

(i)
hi

.

We assume that the time distance between the occurrence
of any two such transitions must be greater than or equal
to the minimum dwell time δ, i.e., ∀i = 0, . . . , k, ∀j =
0, . . . , hi − 1: τ (i)j+1 − τ

(i)
j ≥ δ and ∀i = 0, . . . , k − 1: τ (i+1)0 −

τ
(i)
hi
≥ δ. The minimum dwell time has been introduced to

avoid Zeno phenomena, namely to avoid an infinite number
of switches in the ouput and the discrete state in a time
interval of finite length.

The observation of the system is a mapping T → Y ,
where T = R≥0 represents the time that can be divided
into a countably infinite number of time intervals as
detailed above, in accordance with the state-output run.
We define y(t) as the output symbol produced by the
system at time t. Function y(t) is piecewise continuous
and each value it takes has a duration at least equal to
δ. Note that, by definition, the output of two adjacent
time intervals is different. We use (y, τ) to denote that
the output takes value y for a time interval of duration

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
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Fig. 1. A switching output automaton.

is quantized and belongs to a finite set of intervals. This
abstraction, which depends on the particular secret, is
guaranteed to keep all the info that is needed to solve
the opacity verification problem.

Third, we construct an observer which provides the set of
states consistent with a logical observation of the secret-
dependent evolution automaton. Finally, we show how to
verify timed opacity using the proposed observer.

The paper is structured as follows. We recall preliminaries
in Section 2. The problem is addressed in Section 3. Sec-
tion 4 discusses the secret-dependent evolution automaton
and its equivalent observer. Timed opacity is verified in
Section 5. Section 6 concludes the paper.

2. PRELIMINARIES

Definition 1. A switching output automaton is defined as
G = (X,Y,B,h, x0, y0), where
● X is a finite set of states;
● Y is an output alphabet ;
● B ⊆X ×X is a set of arcs (or edges) ;
● h ∶X → 2Y is the output function;
● x0 ∈X is the initial state;
● y0 ∈ h(x0) is the initial output symbol.

We denote by h(x) ⊆ Y the set of possible output symbols
which may be produced when the current state is x. An
arc b = (x,x′) ∈ B is considered to be directed from state x
to state x′; in such a case x′ is said to be a direct successor
of state x and state x is said to be a direct predecessor of
state x′. We denote by σ(x) = {x′ ∈X ∣∃b = (x,x′) ∈ B} the
set of direct successors of x.

An alphabet Y is a finite set of symbols and Y ∗ denotes
the set of all (finite length) strings of symbols in Y , while
Y + = Y Y ∗.

The evolution of the state can be described by means of a
state run

t0�→x(0) t1�→x(1) t2�→⋯ tk�→x(k)

where for all i = 0, . . . , k it holds that x(i) ∈ X and for all
i = 0, . . . , k − 1 it holds that (x(i), x(i+1)) ∈ B. Such a run
has length k ≥ 0. It describes the evolution process of an
automaton, which initially is in state x(0) at time t0, and
then at time ti transitions from state x(i−1) to state x(i).
While the automaton is in a given state its output may
change. This is described by an output run associated to
a state x(i):
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where each state of the run q = (x, y) ∈ X × Y is a global
state of the system: it consists of a pair whose first element
is a discrete state x ∈ X and whose second element is an
output value y ∈ h(x) ⊆ Y .

An SOA has multiple state-output runs, which consists of
three types of transitions.

Type 1 refers to a state change with no output change.
It can be explained as follows. During the time interval

[τ (i)hi
, ti+1), the system is in state x(i) and produces output

y
(i)
hi

. At time instant ti+1, the system transitions to state

x(i+1), while maintaining the same output value, i.e., y
(i)
hi
=

y
(i+1)
0 .

Type 2 indicates a simultaneous state and output change.

During the time interval [τ (i)hi
, ti+1), the system is in state

x(i) and produces output y
(i)
hi

. At time ti+1, the system

transitions to state x(i+1) and generates a new output,

which means that y
(i)
hi
≠ y(i+1)0 .

Type 3 indicates an output change with no state change. In
a run as described above, the system undergoes hi changes
in the output while the current state remains x(i) and the

output changes are represented as y
(i)
0 → y

(i)
1 →⋯→ y

(i)
hi

.

We assume that the time distance between the occurrence
of any two such transitions must be greater than or equal
to the minimum dwell time δ, i.e., ∀i = 0, . . . , k, ∀j =
0, . . . , hi − 1: τ (i)j+1 − τ

(i)
j ≥ δ and ∀i = 0, . . . , k − 1: τ (i+1)0 −

τ
(i)
hi
≥ δ. The minimum dwell time has been introduced to

avoid Zeno phenomena, namely to avoid an infinite number
of switches in the ouput and the discrete state in a time
interval of finite length.

The observation of the system is a mapping T → Y ,
where T = R≥0 represents the time that can be divided
into a countably infinite number of time intervals as
detailed above, in accordance with the state-output run.
We define y(t) as the output symbol produced by the
system at time t. Function y(t) is piecewise continuous
and each value it takes has a duration at least equal to
δ. Note that, by definition, the output of two adjacent
time intervals is different. We use (y, τ) to denote that
the output takes value y for a time interval of duration
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Fig. 2. A possible evolution of the switching output au-
tomaton in Fig. 1.

τ where y ∈ Y and τ ∈ R≥0. The output behavior of G
is defined as L(G) = {ω ∈ (Y × R≥δ)+∣∀i = 1,2, . . . , n ∶
ω = (y[0,τ1), τ1)(y[τ1,τ2), τ2 − τ1)⋯(y[τi−1,τi), τi − τi−1) and
y[τk−1,τk) ≠ y[τk,τk+1), k = 1, . . . , i − 1 and τi − τi−1 ≥ δ}.
The state of the system is also a piecewise continuous
function x ∶ T → X. The state x(t) cannot be directly
measured but an estimation of it can be computed based
on the knowledge of the system model and the output
y(t). Clearly, since the same observation can in general
be produced by different states, x(t) cannot always be
uniquely reconstructed.

Example 2. Let us consider the SOAG = (X,Y,B,h, x0, y0)
in Fig. 1, with states set X = {x0, x1, x2, x3}, output
alphabet Y = {1,2,3}, arcs set B = {(x0, x1), (x0, x2),
(x1, x3), (x2, x3), (x3, x2)}, output function defined by
h(x0) = {1,2}, h(x1) = {2}, h(x2) = {1,2}, h(x3) = {1,3},
initial state x0 and initial output symbol y0 = 1. The set
of direct successors of x0, x1, and x2 are σ(x0) = {x1, x2},
σ(x1) = {x3}, σ(x2) = {x3}, and σ(x3) = {x2}.
Fig. 2 shows the evolution of the state x(t) and the output
y(t) corresponding to the following run:
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τ
(0)
0 =0

( x0

1
) t1�→

τ
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0
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2
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0
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1
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τ
(3)
0

( x2

1
) �→

τ
(3)
1

( x2

2
) .

We can find three types of transitions in the above run.
At time t1, the system transitions from state (x0,1) to
state (x1,2), which corresponds to Type 2 transitions. The
system moves from state (x3,1) to state (x2,1) at time t3,
a situation that is consistent with Type 1 transitions. The
system moves from state (x2,1) to state (x2,2) at time

τ
(3)
1 , a situation consistent with Type 3 transitions. ◇

3. PROBLEM STATEMENT

In this work, we investigate timed opacity for SOA mod-
eled as G = (X,Y,B,h, x0, y0). A global state of the au-
tomaton (as defined in Section 2) is a pair q = (x, y) ∈X×Y
such that y ∈ h(x) ⊆ Y . The set of global states is denoted
Q. The number of global states is

nQ = ∣Q∣ = ∑
x∈X
∣h(x)∣ ≤ ∣X ∣ ⋅ ∣Y ∣.

We consider a problem of timed opacity where a set of
vulnerable global states Qv = {q1, q2, . . . , qs} ⊆ Q is given.
A mapping Iv associates with each state qi ∈ Qv a secret
dwell interval Iv(qi) = [δ′i, δ′′i ). We assume that the lower

and upper bounds of each interval are multiple of the
minimum dwell time δ, i.e.,

δ′i = k′iδ, δ′′i = k′′i δ, k′i ∈ N, k′′i ∈ N+ ∪ {+∞} and k′i < k′′i .
Definition 3. We denote a secret

S = S(Qv,Iv) = {(q, t) ∈ Q ×R ∣ q ∈ Qv, t ∈ Iv(q)}
which depends on the set of vulnerable global states Qv

and secret dwell intervals Iv(q) where q ∈ Qv. ◇
Definition 4. An SOA is opaque with respect to a timed
secret S if the intruder is never able to determine if the
pair (q, t) – where q ∈ Q is the current global state and t is
the current dwell time, i.e., the time spent in q – belongs
to S. ◇

We plan to construct a new evolution automaton whose
states depend on the particular secret, and then build
an observer for the evolution automaton to verify timed
opacity.

4. SECRET-DEPENDENT EVOLUTION
AUTOMATON AND OBSERVER

To better describe the evolution of an SOA G with respect
to a timed secret S, we construct a nondeterministic
secret-dependent evolution automaton Ge(S). According
to Definition 3, we can partition the set of possible
dwell times associated with a global state in suitable
intervals and, correspondingly, in the secret-dependent
evolution automaton we represent a time-driven evolution
(no change of discrete state or output) as a sequence of
logical states, each one associated to one of such intervals.
Logical state (x, y)j denotes a condition in which the
global state is (x, y) and its dwell time is in interval Ij .
Here δ denotes the minimum dwell time.

● If q = (x, y) /∈ Qv, i.e., q is not vulnerable, intervals of
interest are:

I0 = [0, δ) and I1 = [δ,+∞)
corresponding to logical sequence

(x, y)0
δ�→ (x, y)1 ⟲ δ

● If q = (x, y) ∈ Qv is vulnerable with secret dwell
interval Iv(q) = [k′δ, k′′δ), let k = k′′ if k′′ ∈ N
else k = max{1, k′}. In such a case, intervals of
interest are: I0 = [0, δ), I1 = [δ,2δ), . . . , Ik−1 = [(k −
1)δ, kδ) and Ik = [kδ,+∞) corresponding to logical
sequence

(x, y)0
δ→ (x, y)1

δ→ . . .
δ→ (x, y)k−1

δ→ (x, y)k⟲ δ.

From logical state (x, y)0 (i.e., until the minimum dwell
time elapses) no event may occur, while from all other
logical states changes of output and transitions to a
different discrete state are possible. For a vulnerable global
state (x, y), logical states (x, y)j with k′ ≤ j < k (called
secret logical states) correspond to conditions in which the
SOA is in global state q = (x, y) with a dwell time t such
that (q, t) ∈ S.
We define a function R ∶ Q → N+ to represent the
maximum value of j for each global state q ∈ Q. Clearly,
when q is not vulnerable, R(q) = 1; while when q is
vulnerable with secret dwell interval Iv(q) = [k′δ, k′′δ),
R(q) = k where k = k′′ if k′′ ∈ N else k =max{1, k′}.
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Fig. 2. A possible evolution of the switching output au-
tomaton in Fig. 1.

τ where y ∈ Y and τ ∈ R≥0. The output behavior of G
is defined as L(G) = {ω ∈ (Y × R≥δ)+∣∀i = 1,2, . . . , n ∶
ω = (y[0,τ1), τ1)(y[τ1,τ2), τ2 − τ1)⋯(y[τi−1,τi), τi − τi−1) and
y[τk−1,τk) ≠ y[τk,τk+1), k = 1, . . . , i − 1 and τi − τi−1 ≥ δ}.
The state of the system is also a piecewise continuous
function x ∶ T → X. The state x(t) cannot be directly
measured but an estimation of it can be computed based
on the knowledge of the system model and the output
y(t). Clearly, since the same observation can in general
be produced by different states, x(t) cannot always be
uniquely reconstructed.

Example 2. Let us consider the SOAG = (X,Y,B,h, x0, y0)
in Fig. 1, with states set X = {x0, x1, x2, x3}, output
alphabet Y = {1,2,3}, arcs set B = {(x0, x1), (x0, x2),
(x1, x3), (x2, x3), (x3, x2)}, output function defined by
h(x0) = {1,2}, h(x1) = {2}, h(x2) = {1,2}, h(x3) = {1,3},
initial state x0 and initial output symbol y0 = 1. The set
of direct successors of x0, x1, and x2 are σ(x0) = {x1, x2},
σ(x1) = {x3}, σ(x2) = {x3}, and σ(x3) = {x2}.
Fig. 2 shows the evolution of the state x(t) and the output
y(t) corresponding to the following run:
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We can find three types of transitions in the above run.
At time t1, the system transitions from state (x0,1) to
state (x1,2), which corresponds to Type 2 transitions. The
system moves from state (x3,1) to state (x2,1) at time t3,
a situation that is consistent with Type 1 transitions. The
system moves from state (x2,1) to state (x2,2) at time

τ
(3)
1 , a situation consistent with Type 3 transitions. ◇

3. PROBLEM STATEMENT

In this work, we investigate timed opacity for SOA mod-
eled as G = (X,Y,B,h, x0, y0). A global state of the au-
tomaton (as defined in Section 2) is a pair q = (x, y) ∈X×Y
such that y ∈ h(x) ⊆ Y . The set of global states is denoted
Q. The number of global states is

nQ = ∣Q∣ = ∑
x∈X
∣h(x)∣ ≤ ∣X ∣ ⋅ ∣Y ∣.

We consider a problem of timed opacity where a set of
vulnerable global states Qv = {q1, q2, . . . , qs} ⊆ Q is given.
A mapping Iv associates with each state qi ∈ Qv a secret
dwell interval Iv(qi) = [δ′i, δ′′i ). We assume that the lower

and upper bounds of each interval are multiple of the
minimum dwell time δ, i.e.,

δ′i = k′iδ, δ′′i = k′′i δ, k′i ∈ N, k′′i ∈ N+ ∪ {+∞} and k′i < k′′i .
Definition 3. We denote a secret

S = S(Qv,Iv) = {(q, t) ∈ Q ×R ∣ q ∈ Qv, t ∈ Iv(q)}
which depends on the set of vulnerable global states Qv

and secret dwell intervals Iv(q) where q ∈ Qv. ◇
Definition 4. An SOA is opaque with respect to a timed
secret S if the intruder is never able to determine if the
pair (q, t) – where q ∈ Q is the current global state and t is
the current dwell time, i.e., the time spent in q – belongs
to S. ◇

We plan to construct a new evolution automaton whose
states depend on the particular secret, and then build
an observer for the evolution automaton to verify timed
opacity.

4. SECRET-DEPENDENT EVOLUTION
AUTOMATON AND OBSERVER

To better describe the evolution of an SOA G with respect
to a timed secret S, we construct a nondeterministic
secret-dependent evolution automaton Ge(S). According
to Definition 3, we can partition the set of possible
dwell times associated with a global state in suitable
intervals and, correspondingly, in the secret-dependent
evolution automaton we represent a time-driven evolution
(no change of discrete state or output) as a sequence of
logical states, each one associated to one of such intervals.
Logical state (x, y)j denotes a condition in which the
global state is (x, y) and its dwell time is in interval Ij .
Here δ denotes the minimum dwell time.

● If q = (x, y) /∈ Qv, i.e., q is not vulnerable, intervals of
interest are:

I0 = [0, δ) and I1 = [δ,+∞)
corresponding to logical sequence

(x, y)0
δ�→ (x, y)1 ⟲ δ

● If q = (x, y) ∈ Qv is vulnerable with secret dwell
interval Iv(q) = [k′δ, k′′δ), let k = k′′ if k′′ ∈ N
else k = max{1, k′}. In such a case, intervals of
interest are: I0 = [0, δ), I1 = [δ,2δ), . . . , Ik−1 = [(k −
1)δ, kδ) and Ik = [kδ,+∞) corresponding to logical
sequence

(x, y)0
δ→ (x, y)1

δ→ . . .
δ→ (x, y)k−1

δ→ (x, y)k⟲ δ.

From logical state (x, y)0 (i.e., until the minimum dwell
time elapses) no event may occur, while from all other
logical states changes of output and transitions to a
different discrete state are possible. For a vulnerable global
state (x, y), logical states (x, y)j with k′ ≤ j < k (called
secret logical states) correspond to conditions in which the
SOA is in global state q = (x, y) with a dwell time t such
that (q, t) ∈ S.
We define a function R ∶ Q → N+ to represent the
maximum value of j for each global state q ∈ Q. Clearly,
when q is not vulnerable, R(q) = 1; while when q is
vulnerable with secret dwell interval Iv(q) = [k′δ, k′′δ),
R(q) = k where k = k′′ if k′′ ∈ N else k =max{1, k′}.

Definition 5. Given an SOA G = (X,Y,B,h, x0, y0) and
a secret set S = {(qi, t) ∈ Q × R ∣ qi ∈ Qv, t ∈
Iv(qi)}, its secret-dependent evolution automaton is a
nondeterministic finite automaton Ge(S) = (Q̄, Ye,∆, q̄0)
where

● Q̄ = {(x, y)j ∣q = (x, y) ∈ Q, j ∈ {0,⋯,R(q)} is a finite
set of logical states;
● Ye = Y ∪ {δ} is the alphabet;
● ∆ ⊆ Q̄ × Ye ∪ {ε} × Q̄ is the transition relation;
● q̄0 = (x0, y0)0 is the initial state. ◇

Algorithm 1 Constructing the secret-dependent evolu-
tion automaton
Input: G = (X,Y,B,h, x0, y0), a switching output au-

tomaton and S = {(qi, t) ∈ Q×R ∣ qi ∈ Qv, t ∈ Iv(qi)},
the secret set

Output: Ge(S) = (Q̄, Ye,∆, q̄0), the secret-dependent
evolution automaton

1: Set q̄0 = (x0, y0)0, Q̄new = {q̄0}, Q̄ = ∅
2: Set Ye = Y ∪ {δ}
3: Set ∆ = ∅
4: while Q̄new ≠ ∅ do
5: select a state q̄ = (x, y)j ∈ Q̄new

6: if j ∈ {0,1,⋯,R(q̄) − 1} then
7: q̄′ = (x, y)j+1, ∆ =∆ ∪ {(q̄, δ, q̄′)}
8: end if
9: if q̄′ ∉ Q̄new ∪ Q̄ then

10: Q̄new = Q̄new ∪ {q̄′}
11: end if
12: if j = R(q̄) then
13: ∆ =∆ ∪ {(q̄, δ, q̄)}
14: end if
15: if j > 0 then
16: for all x̄ ∈ σ(x) do
17: if y ∈ h(x̄) then
18: q̄′ = (x̄, y)0, ∆ =∆ ∪ {(q̄, ε, q̄′)}
19: if q̄′ ∉ Q̄new ∪ Q̄ then
20: Q̄new = Q̄new ∪ {q̄′}
21: end if
22: end if
23: for all ȳ ∈ h(x̄) ∖ {y} do
24: q̄′ = (x̄, ȳ)0, ∆ =∆ ∪ {(q̄, ȳ, q̄′)}
25: if q̄′ ∉ Q̄new ∪ Q̄ then
26: Q̄new = Q̄new ∪ {q̄′}
27: end if
28: end for
29: end for
30: for all ȳ ∈ h(x) ∖ {y} do
31: q̄′ = (x, ȳ)0, ∆ =∆ ∪ {(q̄, ȳ, q̄′)}
32: if q̄′ ∉ Q̄new ∪ Q̄ then
33: Q̄new = Q̄new ∪ {q̄′}
34: end if
35: end for
36: end if
37: Q̄new = Q̄new ∖ {q̄}, Q̄ = Q̄ ∪ {q̄}
38: end while

In the evolution automaton a transition 1 denotes the
logical event: a period of time equal to the minimum
dwell time has elapsed. Such a transition, from a logical
global state (x, y)j yields the logical global state (x, y)j+1
if j < R(x, y) else it is a self-loop.

1 In this definition δ is not a real number but a symbol. labeled δ

In addition to a δ-transition, from a logical state (x, y)j
when j > 0 three types of transitions may occur: type 1
(state change with no output change), type 2 (simultane-
ous state and output change), type 3 (output change with
no state change).

When in G a transition of type 1 occurs from a discrete
state x to a discrete state x̄ ≠ x, the output y does
not change and an external observer cannot detect its
occurrence. This also means that the system transitions
from the global state (x, y) to the global state (x̄, y). The
duration of stay in (x̄, y) starts from zero. In the evolution
automaton we denote this by a transition labeled with the
empty string 2 ε from a logical state (x, y)j to another
logical state (x̄, y)0.
When a transition of type 2 or 3 occurs, the output changes
from y to ȳ and thus an external agent detects that a
transition has occurred. However, due to the possibility
of non-empty intersections in the output sets of different
states, the output agent may not be able to detect whether
a change in the state has also occurred.

A transition of type 2 describes the system changing from
the global state (x, y) to the global state (x̄, ȳ) where x ≠ x̄
and y ≠ ȳ. The dwell time of (x̄, ȳ) starts from zero. We
denote this with a transition from (x, y)j to (x̄, ȳ)0.
A transition of type 3 describes the system changing from
the global state (x, y) to the global state (x, ȳ) where y ≠ ȳ.
The dwell time of (x, ȳ) starts from zero. We denote this
with a transition from (x, y)j to (x, ȳ)0.
Algorithm 1 describes how a secret-dependent evolution
automaton can be constructed. Starting from an initial
state, new states are added considering, in the following
order, the different situations.

● New states could be created because of the time
elapsing. When j reaches its maximum value, no new
states will be generated. (line 4 to line 14).
● New states could be created based on type 1 transi-
tions (line 15 to line 22).
● New states could be created based on type 2 transi-
tions (line 23 to line 29).
● New states could be created based on type 3 transi-
tions (line 30 to line 38).

The secret-dependent evolution automaton Ge(S) is a
nondeterministic structure because it contains (unobserv-
able) events labeled with the empty string ε or (undistin-
guishable) events exiting from the same state and sharing
the same label. The evolution automaton describes all
possible runs of an SOA G with a level of abstraction that
depends on the secret set S.

Example 6. Consider the SOA shown in Fig. 1, we con-
sider the set of vulnerable global states Qv = {(x2,2)},
Iv((x2,2)) = [2δ,4δ), the secret S = {((x2,2), t)∣t ∈
[2δ,4δ)}. For (x2,2), the logical sequence is

(x2,2)0
δ→ (x2,2)1

δ→ (x2,2)2
δ→ (x2,2)3

δ→ (x2,2)4⟲ δ.

The set of secret logical states is {(x2,2)2, (x2,2)3}. The
secret-dependent evolution automaton Ge(S) is shown in
Fig. 3. It is readily apparent that Ge(S) is nondeter-
ministic: the logical global state (x0,1)1 can activate the

2 Here ε is used to denote the empty string.
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Fig. 3. The secret-dependent evolution automaton of the switching output automaton in Fig. 1.

Fig. 4. The observer of the switching output automaton in Fig. 1.

transition labeled 2, leading to three different logical global
states: (x0,2)0, (x1,2)0, and (x2,2)0. Additionally, it can
activate the transition labeled ε to reach the logical global
state (x2,1)0. ◇
Definition 7. Given an SOA G = (X,Y,B,h, x0, y0), we
define function ψ ∶ L(G) → Y ∗e as follows: ψ((y, t)) = δk

with k = ⌊t/δ⌋ and ψ(ω(y, t)) = ψ(ω) yδk with k = ⌊t/δ⌋
where ⌊⋅⌋ denotes the floor function and ω ∈ L(G).

This function serves to abstract the output behaviors of
an SOA into logical observations of the secret-dependent
evolution automaton.

Example 8. Consider the SOA in Fig. 1, we set the
minimum dwell time δ = 1 and output behavior ω =
(1,2.5)(2,3)(3,1.6). We compute the corresponding se-
quence s = ψ(ω) = δ22δ33δ.

An equivalent deterministic automaton, that we call ob-
server, can be used to estimate the set of logical global
states consistent with any observation s = ψ(ω) ∈ Y ∗e .
In the following we denote the observer of G as Gobs =
(Z,Ye,∆o, z0) where

● Z ⊆ 2Q̄ is a finite state set;
● Ye is the alphabet;
● ∆o ∶ Z × Ye → Z is a partial transition function;

● z0 = {(x0, y0)0} is the initial state. ◇
The function ∆o can be extended from the domain Z ×Ye

to the domain Z × Y ∗e in the routine recursive manner:
∆o(z, yes) ∶= ⋃z′∈∆o(z,ye)∆o(z′, s) where ye ∈ Ye, s ∈ Y ∗e
and ∆o(z, ε) = z.

Algorithm 2 Constructing the observer

Input: Ge(S) = (Q̄, Ye,∆, q̄0), the evolution automaton
Output: Gobs = (Z,Ye,∆o, z0), the observer
1: Set z0 =Dε(q̄0), Z = {z0}, assign no tag to z0
2: while states with no tag exists in Z do
3: select a state z ∈ Z with no tag
4: for y ∈ Ye do
5: α(z, y) = ⋃q̄∈z Dy(q̄)
6: β(z, y) = ⋃q̄∈α(z,y)Dϵ(q̄)
7: z̄ = β(z, y)
8: if z̄ ∉ Z then
9: Z = Z ∪ {z̄}, assign no tag to z̄

10: end if
11: ∆o(z, y) = z̄
12: end for
13: tag node z ’old’
14: end while
15: Remove all tags
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Fig. 3. The secret-dependent evolution automaton of the switching output automaton in Fig. 1.

Fig. 4. The observer of the switching output automaton in Fig. 1.

transition labeled 2, leading to three different logical global
states: (x0,2)0, (x1,2)0, and (x2,2)0. Additionally, it can
activate the transition labeled ε to reach the logical global
state (x2,1)0. ◇
Definition 7. Given an SOA G = (X,Y,B,h, x0, y0), we
define function ψ ∶ L(G) → Y ∗e as follows: ψ((y, t)) = δk

with k = ⌊t/δ⌋ and ψ(ω(y, t)) = ψ(ω) yδk with k = ⌊t/δ⌋
where ⌊⋅⌋ denotes the floor function and ω ∈ L(G).

This function serves to abstract the output behaviors of
an SOA into logical observations of the secret-dependent
evolution automaton.

Example 8. Consider the SOA in Fig. 1, we set the
minimum dwell time δ = 1 and output behavior ω =
(1,2.5)(2,3)(3,1.6). We compute the corresponding se-
quence s = ψ(ω) = δ22δ33δ.

An equivalent deterministic automaton, that we call ob-
server, can be used to estimate the set of logical global
states consistent with any observation s = ψ(ω) ∈ Y ∗e .
In the following we denote the observer of G as Gobs =
(Z,Ye,∆o, z0) where

● Z ⊆ 2Q̄ is a finite state set;
● Ye is the alphabet;
● ∆o ∶ Z × Ye → Z is a partial transition function;

● z0 = {(x0, y0)0} is the initial state. ◇
The function ∆o can be extended from the domain Z ×Ye

to the domain Z × Y ∗e in the routine recursive manner:
∆o(z, yes) ∶= ⋃z′∈∆o(z,ye)∆o(z′, s) where ye ∈ Ye, s ∈ Y ∗e
and ∆o(z, ε) = z.

Algorithm 2 Constructing the observer

Input: Ge(S) = (Q̄, Ye,∆, q̄0), the evolution automaton
Output: Gobs = (Z,Ye,∆o, z0), the observer
1: Set z0 =Dε(q̄0), Z = {z0}, assign no tag to z0
2: while states with no tag exists in Z do
3: select a state z ∈ Z with no tag
4: for y ∈ Ye do
5: α(z, y) = ⋃q̄∈z Dy(q̄)
6: β(z, y) = ⋃q̄∈α(z,y)Dϵ(q̄)
7: z̄ = β(z, y)
8: if z̄ ∉ Z then
9: Z = Z ∪ {z̄}, assign no tag to z̄

10: end if
11: ∆o(z, y) = z̄
12: end for
13: tag node z ’old’
14: end while
15: Remove all tags

Algorithm 2 describes the construction of the observer and
makes use of the following notation.

● For all logical global states q̄ ∈ Q̄ of Ge(S) we define
Dε(q̄) = {q̄′ ∈ Q̄ ∣ (q̄, ε, q̄′) ∈∆∗} as the set containing
all logical global states reachable from q̄ executing
zero or more ε-transitions. Note that by definition
q̄ ∈D∗ε(q̄).
● For all logical global states q̄ ∈ Q̄ of Ge(S) and for all
symbols y ∈ Ye we define Dy(q̄) = {q̄′ ∈ Q̄ ∣ (q̄, y, q̄′) ∈
∆} as the set containing all logical global states
reachable from q̄ executing exactly one observable y-
transition.
● For all sets of logical global states Q̄sub ⊆ Q̄ and for all
symbols y ∈ Ye, we define α(Q̄sub, y) = ⋃q̄∈Q̄sub

Dy(q̄)
as the set of logical global states containing the logical
global states reachable in Ge(S) from a logical global
state q̄ ∈ Q̄sub executing exactly one observable y-
transition. We define β(Q̄sub, y) = ⋃q̄∈α(Q̄sub,y)Dϵ(q̄)
as the set containing all logical global states reachable
in Ge(S) from a logical global state q̄ ∈ α(Q̄sub, y)
executing zero or more ε-transitions.

We have developed a secret-dependent evolution automa-
ton such that for any output behavior ω, we can construct
a corresponding sequence s. String s yields observer state
z = ∆o(z0, s) which represents the set of states of Ge(S)
consistent with logical observation s. In Algorithm 2, for
each iteration we compute the set z̄ which is the set of
states consistent with the sequence s ∈ Y ∗e starting from
z0. This will be the new state of the observer. The set z̄
is calculated in two steps. First to compute α(z, y) where
z ⊆ Q̄ and y ∈ Ye; then, compute β(z, y), and z̄ = β(z, y).
Example 9. Consider the SOA described in Fig. 1 whose
secret-dependent evolution automaton is shown in Fig. 3.
The observer is shown in Fig. 4.

5. VERIFYING CURRENT STATE OPACITY

We define a function R′ ∶ Qv → N+ to represent the
minimum secret value of j for each vulnerable global state
qi ∈ Qv. Clearly, when q is vulnerable with secret dwell
interval Iv(q) = [k′δ, k′′δ),R′(q) = k′. We define a function
R′′ ∶ Qv → N+ to represent the maximum secret value of
j for each vulnerable global state qi ∈ Qv. Clearly, when q
is vulnerable with secret dwell interval Iv(q) = [k′δ, k′′δ),
R′′(q) = R(q) − 1 if k′′ ∈ N else R′′(q) = R(q).
According to the definition of logical states, we define
{qiR′(qi),⋯, qiR′′(qi)} as the set of secret logical states for
the vulnerable global state qi ∈ Qv. To the secret set S, we
associate a set composed of multiple sets of secret logical
states for Qv. Specifically, this is given by

Sv = {{qiR′(qi),⋯, qiR′′(qi)}∣qi ∈ Qv}.
Based on this, we can provide a necessary and sufficient
condition to verify timed opacity for an SOA. This result
is presented with only a sketch of the proof.

Proposition 10. Consider a SOA G and a secret set S.
Ge(S) is its secret-dependent evolution automaton and
Gobs is its observer. Let Z be the set of states of the
observer. The SOA G is timed opaque wrt S iff for all
z ∈ Z, it holds that z ⊈ Sv.

Sketch of the Proof 1. (⇒)Assume thatG is timed opaque
with respect to S. The output behavior ω of the SOA can

be abstracted as the sequence s = ψ(ω) ∈ Y ∗e . The set
of states consistent with s concides with a state of the
observer, namely with a given z ∈ Z. Therefore, being G
timed opaque with respect to S, for all states, it is z ⊈ Sv.

(⇐) Assume that ∃z ∈ Z such that z ∈ Sv. This means
that there exists a string s ∈ Y ∗e with which the state z
is consistent. This implies that there exists at least one
output behavior ω such that ψ(ω) = s. Therefore, there
exists at least one output behavior ofG such that (q, t) ∈ S.
Therefore, the system is not CSO. ◇

If we want to determine whether an SOA is CSO, we need
to focus on the states of the observer. We have to verify
whether at least one of them is a subset of Sv. If such is
the case, the SOA is not opaque with respect to S.

Example 11. Consider the system in Fig.1 and its ob-
server in Fig.4. Only (x2,2) is a vulnerable state, hence
R′((x2,2)) = 2 and R′′((x2,2)) = 3. It is Sv =
{(x2,2)2, (x2,2)3}. If there exists a state within the ob-
server that is a subset of Sv, then the SOA is not timed
opaque. There exists two states of the observer, {(x2,2)2}
and {(x2,2)3}, both of which are subsets of Sv. Thus, the
system is not timed opaque. ◇

6. CONCLUSIONS AND FUTURE WORK

We have introduced a novel concept of secret and timed
opacity based on SOA, and constructed a secret-dependent
evolution automaton grounded in this new definition of
secrecy. Furthermore, the timed opacity of the SOA has
been verified through an observer. As a future work we
plan to investigate fault diagnosis for SOA and study
applications in the area of hydraulic networks and power
systems.
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