
Fault Diagnosis of Timed Discrete Event Systems

Chao Gao 1 , Dimitri Lefebvre 2 , Carla Seatzu 3 , Zhiwu Li 4 , and Alessandro Giua 5

Abstract

In this paper, we consider partially observable timed discrete event systems (DESs) endowed with a single clock that

is reset at each event occurrence. A time interval with integer bounds is associated with each transition specifying at

which clock values it may occur. This work deals with the fault diagnosis problem of such timed DESs, assuming that

faulty behaviours are described by means of timed transitions. We present a zone automaton that provides a purely

discrete event description of the behaviour of the timed DES with faults and construct a fault recognizer as the parallel

composition of the zone automaton with a fault monitor that recognizes the occurrence of faults. The diagnosis approach

allows one to compute the diagnosis state for each timed observation, which consists in a timed sequence of observed

events.

Index Terms

Discrete event system, timed discrete event system, observation, diagnosis.

Published as:

C. Gao, D. Lefebvre, C. Seatzu, Z. Li and A. Giua, “Fault Diagnosis of Timed Discrete Event Systems,” In Proceedings

of 22nd IFAC World Congress (Yokohama, Japan), July 9-14, 2023.

1 Chao Gao is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China; DIEE, University of Cagliari,

Cagliari 09124, Italy, E-mail: gaochao@stu.xidian.edu.cn.
2 Dimitri Lefebvre is with GREAH Laboratory, Normandy University, 75 rue Bellot, Le Havre 76600, France, E-mail:

dimitri.lefebvre@univ-lehavre.fr.
3 Carla Seatzu is with DIEE, University of Cagliari, Cagliari 09124, Italy, E-mail: carla.seatzu@unica.it.
4 Zhiwu Li is with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China; the Institute of Systems

Engineering, Macau University of Science and Technology, Macau, E-mail: zhwli@xidian.edu.cn.
5 Alessandro Giua is with DIEE, University of Cagliari, Cagliari 09124, Italy, E-mail: giua@unica.it.

1. INTRODUCTION

The notion of time is fundamental in systems modeling and control. Within the domain of automatic control, a major

focus is on time-driven systems described by difference or differential equations, where time plays the role of an

independent variable. In the context of discrete event systems (DESs), associating a timing structure to a purely

logical model allows one to characterize its performance and solve related optimization problems (Cassandras et al.

(2009)). In this paper, timed DESs are considered, where a timing structure is treated as a set of additional constraints

that the system’s evolution needs to satisfy. We also assume that only a subset of the events is observable, namely

a sensor is associated with such events, while the other events are unobservable since no sensors are deployed in the

system to reveal their occurrences. Our main interest is to show how the knowledge of the timing structure and the

knowledge of the time instants in which observable events occur, can be exploited for the purpose of fault diagnosis,

i.e., determining if certain events (faults) could have occurred or must have occurred given an observation executed by

a timed DES.

Timed automata, introduced by Alur et al. (1994), are a basic event-based model endowed with a finite set of clock

variables that can be updated by the occurrence of events; the occurrence of events, in turn, depends on the current

values of the clocks. This model provides a convenient framework for appropriately representing and efficiently reasoning

about cyber-physical systems subject to real-time constraints, and has become a standard model for real-time systems

(Alur et al. (1995); Alur et al. (1992); Henzinger (2000)). In the literature on diagnosis of timed automata, it is shown

that the problem of synthesizing diagnosers in both deterministic timed automata and event-recording timed automata

is decidable (Bouyer et al. (2005)). In addition, online approaches for diagnosis of timed automata can be proposed by

checking the consistency of fault system and faultless system (Lunze et al. (2002); Supavatanakul et al. (2006)). The

diagnosis problem of timed automata is explored by Tripakis (2002), Bouyer et al. (2018) and Bouyer et al. (2021), where

online diagnosers are proposed. To the best of our knowledge, no general offline approach concerning the construction

of an observer/diagnoser for timed automata has been proposed.

In the area of DES, plenty of works address the problem of inferring the evolution of a plant monitored through different

observation structures, e.g., assuming only a subset of the event occurrences or, possibly, a function of the state, can be

measured (Hadjicostis (2020); Tong et al. (2015)). In this general framework many problems have been proposed and

solved, including state estimation and detectability (Giua et al. (2007); Shu et al. (2007)), diagnosis and diagnosability

(Sampath et al. (1996); Sampath et al. (1995)). Some of these approaches have been extended to a probabilistic setting

(Bertrand et al. (2014); Lefebvre et al. (2020)). In addition, a variety of timed DES model are available (Brave et al.

(1988); Ostroff (1990); Brandin et al. (1994)). Concerning fault diagnosis of timed DES, verifiers can be used to check

the occurrence of a large variety of timed patterns for DESs (Lefebvre et. al. (2022)). To the best of our knowledge, a

general approach for the inference of timed DESs is still missing.

This motivates us to explore the issue of state estimation/diagnosis of timed automata under partial observation. We

consider a class of timed automata characterized by a single clock that is reset to zero after each event occurrence. A

time interval is associated with each transition to specify when it may occur. In a preliminary work (Gao et al. (2020)),

we addressed a very restrictive scenario where no observation was received by the plant, and we showed how in this

particular case the state estimate could be updated as time elapses. In this work, we extend the approach in Gao et al.

(2020) by considering the more general scenario in which some of the event occurrences are observable. In more detail,

this work takes into account the information coming from the observation of new events at certain time instants, and

aims at determining if a fault behaviour has occurred.

The solution proposed in this paper is based on a purely discrete event description of the behaviour of the timed DES,

associating a finite state automaton called a zone automaton. Each state of the zone automaton is associated with a

state of the timed automaton and a time interval, called a zone, which specifies how long the timed automaton may

sojourn in that state. When time elapses the state of the zone automaton may change either because of the occurrence

of an event (event-driven evolution) or because a certain amount of time has elapsed with no observation (time-driven

evolution). The fault recognizer can be constructed making the parallel composition of the zone automaton and a fault

monitor that always marks the fault behaviour after it occurs. The fault diagnosis approach is based on analysing the

reachability of the fault recognizer.

The rest of the paper is organized as follows. Section 2 introduces the background of discrete event systems, timed

finite automata and time semantics used throughout the paper. Section 3 formally sets the problem of diagnosis of

a partially observed timed automaton. Section 4 introduces the notion of zone automaton and provides an algorithm

for its computation. Section 5 constructs a fault recognizer and investigates the dynamics of a timed DES with faults.

Section 6 deals with diagnosis problem of timed DES in function of analysing the reachability of the fault recognizer.

Finally, Section 7 concludes the paper.

2. PRELIMINARIES

A nondeterministic finite automaton (NFA) is a four-tuple G = (X,E,∆, X0), where X is a finite set of states, E is

the alphabet, ∆ ⊆ X ×E ×X is a transition relation and X0 ⊆ X is a set of initial states. The set of events E can be

partitioned as E = Eo ∪Euo, where Eo is the set of observable events, and Euo is the set of unobservable events. Note

that Euo and Eo are two disjoint subsets. We denote by E∗ the set of all finite strings on E, including the empty word

ε. The concatenation s1 · s2 of two strings s1 ∈ E∗ and s2 ∈ E∗ is a string consisting of s1 immediately followed by s2.

The empty string ε is an identity element of concatenation, i.e., for any string s ∈ E∗, it holds that ε · s = s = s · ε.
The number of occurrences e ∈ E in s is denoted by |s|e.

We denote the sets of non-negative real numbers and natural numbers as R≥0 and N, respectively. The set of real

numbers lying between a lower bound Il ∈ N and an upper bound Iu ∈ N∪{+∞} is said to be a time interval. A closed

time interval is denoted by [Il, Iu]. In addition, an open segment (Il, Iu) and semi-open segments [Il, Iu) and (Il, Iu]

can also be time intervals. We denote the set of all time intervals and the set of all closed time intervals as I and Ic,
respectively, where Ic ⊆ I.

We define the addition operation on two time intervals I1, I2 ∈ I as I1
⊕

I2 = {t1 + t2 ∈ R≥0 | t1 ∈ I1, t2 ∈ I2}. That is
to say, given Ii = [Il,i, Iu,i], i = 1, 2, we have I1

⊕
I2 = [Il,1 + Il,2, Iu,1 + Iu,2]. The addition operation can be extended

to n (n > 1) time intervals in a set {I1, · · · , In}, i.e., I1
⊕

· · ·
⊕

In = ((I1
⊕

I2)
⊕

· · ·)
⊕

In, denoted as
n⊕

i=1

Ii. A timed

finite automaton (TFA)(Gao et al. (2020) is a five-tuple G = (X,E,∆,Γ, X0), where X is a finite set of states, E is

an alphabet, ∆ ⊆ X × E ×X is a transition relation, Γ : ∆ → Ic is a timing function and X0 ⊆ X is a set of initial

states. In simple words, a TFA G = (X,E,∆,Γ, X0) is a NFA G = (X,E,∆, X0) endowed with a timing structure that

associates with each transition in ∆ a time interval in Ic.

We assume that a TFA operates under a single clock, which is reset upon the occurrence of any event in E. The

transition relation and the timing function specify the dynamics of the TFA. In more detail, given two states x, x′ ∈ X

and an event e ∈ E, (x, e, x′) ∈ ∆ denotes that the occurrence of event e leads to state x′ when the TFA is in state x.

The timing function Γ maps the transition (x, e, x′) to a time interval, which specifies a range of clock values at which

the event e may occur. We further define Γl : ∆ → N (resp., Γu : ∆ → N ∪ {+∞}) as the lower (resp., upper) timing

function associating a transition in ∆ to the left (resp., right) bound of the time interval associated with it. Therefore

Γ((x, e, x′)) = [Γl((x, e, x
′)),Γu((x, e, x

′))].

A TFA G = (X,E,∆,Γ, X0) can be represented by a graph, where a state x ∈ X corresponds to a node, and each

initial state in X0 is marked by an input arrow. For each transition (x, e, x′) ∈ ∆ with Γ((x, e, x′)) = I, there exists a

directed edge from x to x′ labeled with the symbol e and the time interval I.

Example 1. Consider the TFA G = (X,E,∆,Γ, X0) with X = {x0, x1, x2, x3}, E = {a, b, c} and X0 = {x0}. Let the
transition relation ∆ and the timing function Γ be defined as in Table 1. The graphical representation of G is visualized

in Fig. 1. □

Table 1. The timing function of the TFA G in Fig. 1.

δ ∈ ∆ Γ(δ)

(x0, c, x1) [0, 1]

(x0, c, x2) [1, 2]

(x1, b, x0) [1, 2]

(x1, d, x3) [0, 0]

(x2, a, x2) [0, 1]

(x2, b, x1) [1, 2]

(x3, b, x3) [1, 2]

Fig. 1. A TFA G, where fault transitions are shown in red.

The behaviour of a TFA is described via its timed runs. Given G = (X,E,∆,Γ, X0), a timed run ρ of length k ≥ 0 from

0 to tk ∈ R≥0 is a sequence of k + 1 states x(i) ∈ X (i ∈ {0, · · · , k}), and k pairs (ei, ti) ∈ E × R≥0 (i ∈ {1, · · · , k}),
represented as

ρ : x(0)
(e1,t1)−−−−→x(1) · · ·

(ek−1,tk−1)−−−−−−−→x(k−1)
(ek,tk)−−−−→x(k)

such that the following two conditions are satisfied for all i ∈ {1, · · · , k} by letting t0 = 0:

(x(i−1), ei, x(i)) ∈ ∆, (1)

ti − ti−1 ∈ Γ((x(i−1), ei, x(i))). (2)

We define the timed word generated by ρ as σ(ρ) = (e1, t1)(e2, t2) · · · (ek, tk) ∈ (E × R≥0)
∗. We also define the logical

word generated by ρ as S(σ(ρ)) = e1e2 · · · ek via a function defined as S : (E × R≥0)
∗ → E∗. Given a timed run ρ of

length 0 that only contains the starting state x(0) and no transition, we denote λ as the empty timed word in E ×R≥0.

The timed word and the logical word generated by ρ are denoted respectively as σ(ρ) = λ and S(σ(ρ)) = S(λ) = ε. For

the timed word σ(ρ) generated from an arbitrary timed run ρ, it is λ · σ(ρ) = σ(ρ) = σ(ρ) · λ. The starting state and

the ending state of a timed run ρ are denoted by xst(ρ) = x(0) and xen(ρ) = x(k), respectively. The starting time and

the ending time of ρ are denoted by tst(ρ) = 0 and ten(ρ) = tk, respectively. In addition, the duration of ρ is denoted

as T (ρ) = tk. Note that Eq. (2) clearly implies T (ρ) ∈
k−1⊕
i=0

Γ(x(i), ei+1, x(i+1)). The set of timed runs generated by G is

denoted as R(G).

Example 2. Given the TFA in Fig. 1, a timed run of length 3 from time 0 to 2 is ρ : x0
(c,1)−→ x2

(b,2)−→ x1
(d,2)−→ x3. The

timed word σ(ρ) = (c, 1)(b, 2)(d, 2) corresponds to events c, b, and d occurring at time instants t1 = 1, t2 = 2, and t3 = 2,

respectively. It starts from xst(ρ) = x0 at the starting time tst(ρ) = 0 and terminates in xen(ρ) = x3 at the ending time

ten(ρ) = 2. The logical word generated by ρ is S(σ(ρ)) = cbd. It involves three transitions, namely (x0, c, x2), (x2, b, x1),

and (x1, d, x3). In addition, we have t1 ∈ Γ(x0, c, x2), t2 − t1 ∈ Γ(x2, b, x1) and t3 − t2 ∈ Γ(x1, d, x3). □

Different types of semantics pose additional constraints on how long a TFA dwells at each state while generating a timed

run. In this paper we consider a type of time semantics that specifies the maximal dwell time at a state. Given a TFA

G = (X,E,∆,Γ, X0), the maximal dwell time at state x ∈ X is defined as dmax(x) = max{Γu((x, e, x
′))|(x, e, x′) ∈ ∆}

if there exist x′ ∈ X and e ∈ E such that (x, e, x′) ∈ ∆; otherwise dmax(x) = ∞. The TFA cannot stay in x ∈ X if

the clock takes a value larger than the maximal dwell time at x, i.e., dmax(x). If there exists no enabled transition at

x ∈ X, then dmax(x) = ∞, implying that G can stay at x indefinitely. Meanwhile, if there exists one or more enabled

transitions at x, the maximal dwell time at x is equal to the maximum upper bound of the intervals of such transitions.

It implies that all such transitions are candidates to occur. However, a transition has to be fired once the clock at x

reaches the maximal dwell time at x.

Given a TFA G = (X,E,∆,Γ, X0), a timed run ρ of length k ≥ 0 and a time instant t ∈ R≥0, a timed evolution of G

from 0 to t is defined by a pair (σ(ρ), t) ∈ (E × R≥0)
∗ × R≥0, where 0 ≤ t − ten(ρ) ≤ dmax(xen(ρ)). Furthermore, we

denote as

E(G, t) = {(σ(ρ), t) | (∃ρ ∈ R(G)) xst(ρ) ∈ X0,

0 ≤ t− ten(ρ) ≤ dmax(xen(ρ))}

the timed language of G from 0 to t.

In other words, a timed evolution of G from 0 to t is defined as a pair whose first entry is a timed word σ(ρ), where ρ

starts at 0 from an initial state in X0, and whose second entry is the time instant t, where the time semantics constrains

the time that the system may stay in the ending state xen(ρ), namely t− ten(ρ), to be less than or equal to the maximal

dwell time of xen(ρ). The timed language of G from 0 to t contains all possible timed evolutions of G from 0 to t.

3. PROBLEM STATEMENT

In this work we model a partially observed timed DES as a TFA G = (X,E,∆,Γ, X0) with a partition of the alphabet

E into a set of observable events Eo and a set of unobservable events Euo, namely E = Eo ∪ Euo. We assume that the

timed system may be affected by a set of faults described by timed transitions whose occurrence changes the state of

the plant and resets the clock. Two types of fault transitions are considered in this paper: observable fault transitions

labeled with a symbol in Eo; unobservable fault transitions labeled with a symbol in Euo. The set of transitions modeling

a regular behaviour is denoted as ∆reg, while the set of transitions modeling a fault behaviour is denoted as ∆fault.

Clearly, it is ∆ = ∆reg ∪∆fault.

Next we preliminarily define a projection function on timed words.

Definition 1. Given a TFA G with E = Eo ∪ Euo, a projection function P : (E × R≥0)
∗ −→ (Eo × R≥0)

∗ is defined as

P (λ) = λ, and

P (σ(ρ) · (e, t)) =

{
P (σ(ρ)) if e ∈ Euo

P (σ(ρ)) · (e, t) if e ∈ Eo

for the timed word σ(ρ) ∈ (E × R≥0)
∗ generated from any timed run ρ ∈ R(G) and for all (e, t) ∈ E × R≥0. □

In other words, the projection operator P simply erases the pairs in a timed word, whose first entry is an unobservable

event in Euo and whose second entry is the time of its occurrence. Given a TFA G and a timed run ρ ∈ R(G),

the projection function P always maps the timed word σ(ρ) to an observed word σo ∈ (Eo × R≥0)
∗. The pair

(σo, t) = (P (σ(ρ)), t) is the timed observation related to (σ(ρ), t).

We define a diagnosis function for a set of fault transitions ∆fault as ϕ : (Eo × R≥0)
∗ × R≥0 → {F,N,U} associated

to each timed observation (σo, t) a diagnosis state ϕ((σo, t)), where ϕ((σo, t)) = F (resp., ϕ((σo, t)) = N) denotes that

a fault transition in ∆fault has (resp., not) been executed while producing (σo, t), and ϕ((σo, t)) = U denotes that a

fault transition may or may not have been executed. This paper aims at diagnosing a fault behaviour based on a timed

observation (σo, t), namely computing ϕ((σo, t)). Note that this implies that we are not distinguishing among different

fault transitions. According to the notation used in the most of the literature on fault diagnosis of discrete event systems

(Sampath et al. (1996); Sampath et al. (1995)), this means that we assume that all faults belong to the same class.

4. ZONE AUTOMATON

In this section, we introduce the notion of zone automaton that is a finite state automaton providing a purely discrete

event description of the behaviour of a TFA of interest. We first propose several preliminary definitions as follows.

Definition 2. Given a TFA G, an extended state is defined as a pair (x, θ), where x is a state of G and θ ∈ [0, dmax(x)]

is the current value of the clock. □

In other words 6 , an extended state (x, θ) keeps track of the current clock assignment θ while G dwells at state x.

Definition 3. Given a TFA G = (X,E,∆,Γ, X0), the set of active transitions at an extended state (x, θ) ∈ X × R≥0 is

defined as A(x, θ) = {(x, e, x′) ∈ ∆ | (∃e ∈ E)(∃x′ ∈ X) θ ∈ Γ((x, e, x′))}. □

In simple words, the set of active transitions at an extended state (x, θ) includes all the transitions that may fire from x

with a clock value θ. The set of active transitions at (x, θ) may vary for different values of θ in [0, dmax(x)]. This leads

to the definition of clock zones associated with a given state x ∈ X.

Definition 4. Given a TFA G = (X,E,∆,Γ, X0), the set of zones of x ∈ X is defined as Z(x) = {[0,+∞)} if

dmax(x) = ∞; otherwise it is defined as a set of time intervals Z(x) = {z0, · · · zn} ⊆ I, n ≥ 0, where the following

conditions hold:

• z0 = [0, 0];

•
n⋃

i=0

zi = [0, dmax(x)];

• θ < θ′ holds for all θ ∈ zi−1, θ
′ ∈ zi, i ∈ {1, · · · , n};

• A(x, θ) = A(x, θ′) holds for all θ, θ′ ∈ zi, i ∈ {0, · · · , n};
• A(x, θ) ̸= A(x, θ′) holds for all θ ∈ zi−1, θ

′ ∈ zi, i ∈ {2, · · · , n}.

In addition, prec(zi) = zi−1 (resp., succ(zi) = zi+1) is said to be the preceding zone (resp., succeeding zone) of zi ∈ Z(x),

where i ∈ {1, · · · , n} (resp., i ∈ {0, · · · , n− 1}). □

If there exists no transition originating from x, G stays at x indefinitely: in such a case the set of zones of x is a singleton

{[0,+∞)}. Otherwise, the set of zones of a state x follows from the partitioning of the dwell time at x into several time

intervals to which the clock may belong. The union of all zones in Z(x) covers the interval [0, dmax(x)]. Any two zones

of x are disjoint. If θ, θ′ ∈ zi, where i ∈ {1, · · · , n}, the sets of active transitions at two extended states (x, θ) and (x, θ′)

are identical. In addition, the firability of transitions differs between (x, θ) and (x, θ′) if θ ∈ zi−1, θ
′ ∈ zi, i ∈ {2, · · · , n}.

Particularly, z0 = [0, 0] is defined to be a zone associated with each state of G, apart from the case of dmax(x) = +∞.

This originates from the considered time semantics, according to whom the clock is reset whenever G arrives at a state

in X. Then the clock evolves discretely from a time instant θ ∈ zi−1 to another time instant θ′ ∈ zi, i ∈ {1, · · · , n}.

Given a state x and two zones z, succ(z) ∈ Z(x), a new event τ denotes that in a state x the clock value may evolve

from any θ ∈ z to any θ′ ∈ succ(z) as time elapses. We now formalize the definition of zone automaton.

Definition 5. Given a TFA G = (X,E,∆,Γ, X0), the zone automaton of G is an NFA ZA(G) = (V,Eτ ,∆z, V0), where

• V ⊆ X ×
⋃

x∈X

Z(x) is the finite set of states,

• Eτ ⊆ E ∪ {τ} is the alphabet,

• ∆z ⊆ V × Eτ × V is the transition relation, where the transitions in ∆z are defined by the following rules:

· ((x, z), τ, (x, succ(z))) ∈ ∆z if z, succ(z) ∈ Z(x);

· ((x, z), e, (x′, z0)) ∈ ∆z if z ∈ Z(x), z0 ∈ Z(x′), (x, e, x′) ∈ A(x, θ) for all θ ∈ z,

• V0 = {(x, z0) | x ∈ X0} ⊆ V is the set of initial states. □

6 According to the usual terminology in hybrid systems community, the extended state (x, θ) is the hybrid state of the timed automaton,

while x and θ are the discrete and the continuous states of the timed automaton, respectively.

We use the zone automaton to describe the time-driven and event-driven evolution of a TFA G = (X,E,∆,Γ, X0).

Each state in a zone automaton is a pair (x, z) with x ∈ X and z ∈ Z(x). The alphabet is composed of the events in E

and event τ . The transition relation specifies the dynamics of the automaton: starting from a state (x, z), a transition

((x, z), τ, (x, succ(z))) ∈ ∆z corresponds to a time-driven evolution of G from a clock value in z to another clock value

in succ(z) while G is at x; a transition ((x, z), e, (x′, z0)) ∈ ∆z goes from state (x, z) to state (x′, z0), indicating that

the occurrence of event e yields state x′ when the current state of the system is x and the current clock is in z. The set

of initial states is the set of pairs of a state x ∈ X0 and z0 ∈ Z(x).

Given a TFA G = (X,E,∆,Γ, X0), the zone automaton ZA(G) = (V,Eτ ,∆z, V0) can be constructed by Algorithm 1.

A temporary set of states Vnew is introduced, containing all states that still need to be explored in order to compute

their output transitions. A while loop is repeated until Vnew = ∅. A transition ((x, z), τ, (x, succ(z))) is set in ∆z if

succ(z) is a zone at x. For each transition (x, e, x′) ∈ ∆ satisfying z ⊆ Γ((x, e, x′)), a transition labeled with e is set

from v = (x, z). Note that if the maximal dwell time of x′ is +∞ (resp., if it is not), the transition labeled with e

would lead to state (x′, [0,+∞)) (resp., state (x′, z0)). To avoid redundant repetitions of the while loop, the state v′ is

included in Vnew if v′ is neither in V nor in Vnew. The while loop stops once all states in Vnew have been explored. A

numerical example to illustrate the zone automaton will be given in Section 5.

Algorithm 1: Construction of a zone automaton of a TFA

Input: A TFA G = (X,E,∆,Γ, X0) with E = Eo ∪ Euo

Output: A zone automaton ZA(G) = (V,Eτ ,∆z, V0)

1 let V = ∅, Eτ = E ∪ {τ}, ∆z = ∅, V0 = {(x, z0) | x ∈ X0}, and Vnew = V0

2 while Vnew ̸= ∅ do

3 select a v = (x, z) ∈ Vnew

4 if succ(z) ∈ Z(x) then

5 let v̄ = (x, succ(z)), ∆z = ∆z ∪ {(v, τ, v̄)}, and Vnew = Vnew ∪ {v̄}

6 for each (x, e, x′) ∈ ∆ do

7 if z ⊆ Γ((x, e, x′)) then

8 if dmax(x
′) ̸= +∞ then

9 let v′ = (x′, z0)

10 else

11 let v′ = (x′, [0,+∞))

12 let ∆z = ∆z ∪ {(v, e, v′)}
13 if v′ /∈ V ∪ Vnew then

14 let Vnew = Vnew ∪ {v′}

15 let V = V ∪ {v} and Vnew = Vnew \ {v}

16 return ZA(G) = (V,Eτ ,∆z, V0)

5. FAULT RECOGNIZER

In this section, we construct a fault recognizer that recognizes the occurrence of faults. We first transform the model G

of the plant with faults into a canonical plant Gf with faults. For the canonical plant Gf , the zone automaton ZA(Gf)

is constructed. The particular structure of the canonical plant allows us to construct a fault recognizer by synchronizing

ZA(Gf) with a fault monitor that recognizes the occurrence of a fault denoted by a symbol f .

Definition 6. Consider a partially observed TFA G = (X,E,∆,Γ, X0) with E = Eo ∪ Euo. The canonical plant is

modeled as a TFA Gf = (X ∪Xf , E ∪ {f},∆f ,Γf , X0), where f is an additional unobservable event used to model the

occurrence of a fault transition. The set of additional states Xf , the transition relation ∆f , and the timing function Γf

are defined according to each δ = (x, e, x′′) ∈ ∆ as follows:

• if δ ∈ ∆fault and e ∈ Euo, we define δf = (x, f, x′′) ∈ ∆f and Γf (δf) = Γ(δ);

• if δ ∈ ∆fault and e ∈ Eo, we define {δ1, δ2} ⊆ ∆f , Γf (δ1) = Γ(δ), and Γf (δ2) = [0, 0], where δ1 = (x, f, x′),

δ2 = (x′, e, x′′), and x′ ∈ Xf ;

• if δ ∈ ∆reg, we define δ ∈ ∆f and Γf (δ) = Γ(δ). □

In the canonical plant Gf , the new fault event f is introduced: this will allow construct the fault recognizer by

synchronization with the fault monitor. Given a transition δ = (x, e, x′′) ∈ ∆, G can generate a timed run from initial

time 0 ending with x
(e,t)−−−→x′′, where t ∈ Γ(δ). If e is associated with an observable fault transition, Gf can generate

a timed run ending with x
(f,t)−−−→x′ (e,t)−−−→x′′, implying that δ is replaced by δ1 = (x, f, x′) satisfying Γf (δ1) = Γ(δ) and

following by δ2 = (x′, e, x′′) that occurs immediately, i.e., Γf (δ2) = [0, 0]. In other words, considering an observable

fault transition, Gf keeps track of both the occurrence of the fault f and the observation of e.

On the contrary, it is not necessary to keep track of the occurrence of the unobservable event. If e is associated with an

unobservable fault transition, a new unobservable symbol f is labeled with the transition δ = (x, f, x′′) ∈ ∆f of Gf . If

δ ∈ ∆reg, we let δ ∈ ∆f and Γf (δ) = Γ(δ). Note that in Gf , the set of unobservable events is extended to Euo ∪ {f}.

Example 3. Consider the TFA G in Fig. 1 with Eo = {a, b, c} and ∆fault = {(x0, c, x2), (x1, d, x3)}. A canonical plant

Gf = (X ∪ {xf}, E ∪ {f},∆f ,Γf , X0) is depicted in Fig. 2, where fault transitions are shown in red. The transition

(x1, d, x3) ∈ ∆fault with an unobservable fault d is replaced by (x1, f, x3) ∈ ∆f in Gf , and (x0, c, x2) ∈ ∆fault with

an observable fault c is replaced by two consecutive transitions in Gf , namely (x0, f, xf) and (xf , c, x2) satisfying that

Γ((x0, f, xf)) = [1, 2] and Γ((xf , c, x2)) = [0, 0].

Fig. 2. The canonical plant Gf associated with the TFA G in Fig. 1 as described in Example 3.

Next we consider the zones of each discrete state of Gf . For x0, from which there exist two transitions originating,

namely (x0, c, x2) ∈ ∆ with Γ((x0, c, x2)) = [1, 2] and (x0, c, x1) ∈ ∆ with Γ((x0, c, x1)) = [1, 2], the maximal dwell

time at x0 is dmax(x0) = 2. Consequently, the set of zones of x0 is Z(x0) = {[0, 0], (0, 1), [1, 1], (1, 2]}. The set of active

transitions at (x0, θ), where θ is a time instant in z ∈ Z(x0), are reported in Table 2. As for the set of zones of other

states of Gf , we have Z(x1) = {[0, 0], (0, 1), [1, 2]}, Z(x2) = {[0, 0], (0, 1), [1, 1], (1, 2]}, Z(x3) = {[0, 0], (0, 1), [1, 2]} and

Z(xf) = {[0, 0]}.

Table 2. Sets of active transitions at (x0, θ) for the TFA G in Fig. 1, where θ ∈ zi, i ∈ {0, 1, 2, 3}.

i zi A(x0, θ), θ ∈ zi

0 [0, 0] {(x0, c, x1)}
1 (0, 1) {(x0, c, x1)}
2 [1, 1] {(x0, c, x1), (x0, b, x2)}
3 (1, 2] {(x0, b, x2)}

The zone automaton ZA(Gf) = (V,Eτ ,∆z, V0) is shown in Fig. 3. The initial state is (x0, [0, 0]), implying that G starts

from x0 at clock value 0. A transition labeled with an event τ implies a time-driven evolution of G. For instance, a

transition ((x0, [0, 0]), τ, (x0, (0, 1))) represents that the clock may evolve from the value in [0, 0] to any value in (0, 1)

if G is at x0. Meanwhile, a transition labeled with an event in E ∪ {f} implies an event-driven evolution of G. For

instance, a transition labeled with c goes from (x0, [1, 1]) to (x2, [0, 0]). It represents a state evolution from x0 to x2

under the occurrence of an event c, upon which the clock is reset. □

Fig. 3. Zone automaton ZA(Gf) of Gf in Fig. 2.

We now introduce a deterministic untimed automaton called fault monitor and denote it as M = ({N ,F},{f},
{(N ,f ,F),(F ,f ,F)},N) shown in Fig. 4, where state N (resp., F) denotes that no fault (resp., a fault) has occurred, and

the state always evolves from N and F to F upon each occurrence of f . To deal with fault diagnosis, we construct a

fault recognizer Rec(Gf) by composing ZA(Gf) with M by parallel composition such that labels N and F are attached

to states of Rec(Gf) to recognize the occurrence of faults.

Fig. 4. Fault monitor M for diagnosing event f .

Definition 7. Consider a timed DES with faults modeled by a TFA Gf = (X ∪ Xf , E ∪ {f},∆f ,Γf , X0). Given zone

automaton ZA(Gf) = (V,E ∪ {f, τ},∆z, v0) and a fault monitor M = ({N,F}, {f}, {(N, f, F), (F, f, F)}, N), the

fault recognizer is the automaton Rec(Gf) = (Xrec,Erec, ∆rec,Xrec0), where Xrec ⊆ V × {N,F}, Erec = E ∪ {f, τ},
Xrec0 = V0 × {N}, and a transition δrec ∈ ∆rec satisfies the following conditions:

• if e = f , then {((v,N), f, (v′, F)), ((v, F), f, (v′, F))} ⊆ ∆rec holds for each (v, f, v′) ∈ ∆z;

• if e ∈ E ∪ {τ}, then ((v,N), e, (v′, N)) ∈ ∆rec holds for each (v, e, v′) ∈ ∆z. □

For instance, the fault recognizer Rec(Gf) is depicted in Fig. 5, where Gf is shown in Fig. 2.

Fig. 5. Fault recognizer Rec(Gf) of Gf in Fig. 2.

6. FAULT DIAGNOSIS OF TIMED DES

In this section, we deal with fault diagnosis of timed DES with faults modeled by a TFA Gf = (X ∪ Xf , E ∪
{f},∆f ,Γf , X0). We first study the dynamics of its fault recognizer Rec(Gf) = (Xrec,Erec,∆rec,Xrec0) via the following

definitions.

Definition 8. A τ -run at x ∈ X is defined as a sequence of k+1 states in (x, zi, sfault) ∈ Xrec (0 ≤ i ≤ k) and the event

τ , represented as ρτ (x) : (x, z0, sfault)
τ−→ · · · τ−→ (x, zk, sfault), such that ((x, zi−1, sfault), τ, (x, zi, sfault)) ∈ ∆rec

holds for i ∈ {1, · · · , k}. We denote the starting state (resp., the ending state) of ρτ (x) as qst(ρτ (x)) = (x, z0, sfault)

(resp., qen(ρτ (x)) = (x, zk, sfault)). The duration range of ρτ (x) is denoted as d(ρτ (x)) = zk. The fault label of ρτ (x) is

denoted as flabel(ρτ (x)) = sfault. □

In other words, a τ -run at x essentially represents the time elapsing discretely while Gf is at x ∈ X. The zone zi ∈ Z(x)

(0 ≤ i ≤ k) (resp., sfault ∈ {N,F}) provides the range of the possible clock values (resp., the fault label) associated

with x.

Definition 9. A run in Rec(Gf) = (Xrec,Erec,∆rec,Xrec0) of length k is defined as a sequence of τ -runs ρτ (x(i)) (i ∈
{0, · · · , k}) at x(i) ∈ X, and k events ei ∈ E (i ∈ {1, · · · , k}), represented as

ρ̄ : ρτ (x(0))
e1−→ ρτ (x(1)) · · ·

ek−→ ρτ (x(k)),

such that (qen(ρτ (x(i−1))), ei, qst(ρτ (x(i)))) ∈ ∆rec holds for i ∈ {1, · · · , k}. In addition, it is flabel(ρτ (x(j))) = F if

ei = f for i ≤ j ≤ k.

We denote the starting state (resp., the ending state) of ρ̄ as qst(ρ̄) = qst(ρτ (x(0))) (resp., qen(ρ̄) = qen(ρτ (x(k)))). The

fault label of ρ̄ is denoted as flabel(ρ̄) = flabel(ρτ (xk)). The duration range of ρ̄ is denoted as d(ρ̄) =
k⊕

i=0

d(ρτ (x(i))).

The logical word generated by ρ̄ is denoted as s(ρ̄) = e1 · · · ek via a function defined as s : E∗
τ → E∗. The set of runs

generated by Gz is defined as R(Rec(Gf)). □

The τ -runs involving an elapsed time τ with no executed events essentially represent the time elapsing discretely. A

run in Rec(Gf) represents the evolutions of Gf that involve both time elapsing and events occurrence. After an event

ei, i ∈ {1, · · · , k} is executed, the state of Gf evolves from x(i−1) to x(i). The fault label is ρ̄ = F once a fault has

occurred. The logical word of ρ̄ is the sequence of events in E ∪ {f} that have been involved in ρ̄. The duration range

of ρ̄ is evaluated by summing up the duration of each τ -run at x(i), i ∈ {0, · · · , k}.

Next we focus on the fault diagnosis problem when a timed observation is received as a pair of a non-empty timed word

and a time instant. We propose and prove the following theorem as follows.

Theorem 1. Consider a TFA G = (X,E,∆,Γ, X0) with a set of fault transitions, its canonical plant Gf = (X ∪
Xf , E ∪ {f},∆f ,Γf , X0), and its fault recognizer Rec(Gf) = (Xrec,Erec,∆rec,Xrec0). Given a timed observation

(σo, t) ∈ (Eo × R≥0)
∗ × R≥0, where σo = (eo1, t1) · · · (eon, tn), n ≥ 1, and 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ t, then there

exists a timed run ρ̄ ∈ R(Rec(Gf)), defined as ρ̄ : ρ̄(0)
eo1−→ ρ̄(1) · · ·

eon−→ ρ̄(n), such that the following conditions are

satisfied:

(a) t ∈ d(ρ̄), t− tn ∈ d(ρ̄(n)) and ti − ti−1 ∈ d(ρ̄(i−1)) for i ∈ {1, · · · , n};
(b) Pl(s(ρ̄)) = eo1 · · · eon, Pl(s(ρ̄(i))) = ε for i ∈ {1, · · · , n}, where Pl : (E ∪ {f})∗ → E∗

o ;

(c) flabel(ρ̄) = N if |s(ρ̄)|f = 0; else, flabel(ρ̄) = F . □

Proof. Given a timed observation (σo, t) ∈ (Eo × R≥0)
∗ × R≥0, there exists a timed run of G defined as ρ : ρ0

(eo1,t1)−→
· · · (eon,tn)−→ ρn, such that S(σ(ρi)) = ε for i ∈ {0, · · · , n}, (xen(ρi−1), ei, xst(ρi)) ∈ ∆, T (ρi−1) = ti − ti−1 for

i ∈ {1, · · · , n}, and T (ρn) = t− tn.

If a fault transition labeled with an observable event has been executed, there exists an associated timed run of Gf

defined as ρf : ρ0
(eo1,t1)−→ · · · (eoi−1,ti−1)−→ ρi−1

(f,ti)−→ xf
(eoi,ti)−→ · · · (eon,tn)−→ ρn. Based on that, there exists a run of Rec(Gf)

defined as ρ̄ : ρ̄0
eo1−→ · · · eoi−1−→ ρ̄i−1

f−→ (xf , [0, 0], F)
eoi−→ ρ̄i · · ·

eon−→ ρ̄n such that (qen(ρ̄p−1), eop, qst(ρ̄p)) ∈ ∆rec and

tp − tp−1 ∈ d(ρ̄p−1) hold for 1 ≤ p ≤ n. Conditions (a), (b), and (c) can be inferred accordingly.

If a fault transition labeled with an unobservable event has been executed, we have a timed run of Gf defined as

ρf : ρ0
(eo1,t1)−→ · · · (eoi,ti)−→ ρi · · ·

(eon,tn)−→ ρn, where ρi : x(i0)
(ei1,ti1)−→ · · · (f,tij)−→ x(ij)

(eij+1,tij+1)−→ x(ij+1) · · ·
(eim,tim)−→

x(im)(m ≥ 1, 0 ≤ i ≤ n) and eij = f(1 ≤ j ≤ m). Accordingly, there exists an associated run of Rec(Gf) defined

as ρ̄ : ρ̄0
eo1−→ · · · eoi−→ ρ̄i · · ·

eon−→ ρ̄n, where ρ̄i : ρτ (x(i0))
ei1−→ · · · f−→ ρτ (x(ij)) · · ·

eim−→ ρτ (x(im)). Thus, conditions (a), (b),

and (c) can be inferred. ■

In other words, taking into account the information coming from the observation of new events at certain time instants,

the occurrence of faults can be analysed by exploring all the runs in Rec(Gf) consistent with the given observation. The

fault label flabel(ρ̄) associated with ρ̄ denoted whether the run contains a fault (flabel(ρ̄) = F) or not (flabel(ρ̄) = N). By

denoting the set of runs consistent with (σo, t) as R(Rec(Gf), (σo, t)), an approach for fault diagnosis can be generated

by the following rules:

• ϕ((σo, t)) = N (resp., ϕ((σo, t)) = F) if flabel(ρ̄) = N (resp., flabel(ρ̄) = F) holds for each ρ̄ ∈ R(Rec(Gf), (σo, t));

• otherwise, it is ϕ((σo, t)) = U .

In simple words, the fault diagnosis of the faulty behaviour f can be done via exploring all the runs in Rec(Gf). If

the fault label of each run ρ̄ ∈ R(Rec(Gf), (σo, t)) is flabel(ρ̄) = F (resp., flabel(ρ̄) = N), we may conclude that f has

(resp., has not) been occurred for sure; otherwise, f may or may not have been occurred.

Example 4. Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 1 with Eo = {a, b, c} and ∆fault = {(x0, c, x2),(x1, d,

x3)}. Given a timed observation (σo, 4), where σo = (c, 1)(b, 2)(c, 3.5), the diagnosis procedures from t = 0 to t = 4 is

summarized in Table 3. We explain the process of diagnosis while the observation (σo, t) is progressively updated over

time as follows.

• The TFA G produces observation (σo, t) = (λ, t) for t ∈ [0, 1]. The union of ending states of all runs in R(Rec(λ, 1))

is {(x0, [1, 1], N), (xf , [0, 0], F)} at t ∈ [1, 1]. Thus it is ϕ(λ, 1) = U .

• The TFA G produces observation (σo, t) = ((c, 1), t) for t ∈ [1, 2]. The union of ending states of all runs in

R(Rec((c, 1), 2)) is {(x1, [1, 2], N), (x2, [1, 1], F), (x3,

[1, 2], F)} at t ∈ (2, 3). Thus it is ϕ(((c, 1), 2)) = U .

• The TFA G produces observation (σo, t) = ((c, 1)(b, 2),

t) for t ∈ [2, 3.5]. The union of ending state of all runs in R(Rec((c, 1)(b, 2), 3.5)) is {(x0, (1, 2], N), (xf , [0, 0],

F), (x1, [1, 2], F), (x3, [1, 2], F)} at t ∈ (3, 4). Thus it is ϕ(((c, 1)(b, 2), 3.5)) = U .

• The TFA G produces observation (σo, t) = ((c, 1)(b, 2)

(c, 3.5), t) for t ∈ [3.5, 4]. The union of ending state of all runs in R(Rec(Gf), (σo, t)) is {(x2, (0, 1), F)} at t ∈ [4, 4].

Thus it is ϕ(((c, 1)(b, 2)(c, 3.5), 4)) = F . □

7. CONCLUSIONS

In this paper we consider timed automata endowed with a single clock that is reset upon an event occurrence. A time

interval is associated with each transition specifying at which clock values it may occur. We consider time semantics

that impose constraints to the dwell time spent at each state of a TFA. A timed word generated by a TFA is defined

as a sequence of pairs (event, time instant at which the event occurs). Assuming that faulty behaviours are described

by means of timed transitions, we deal with the problem of fault diagnosis in function of measured timed observations.

The proposed solution is based on a zone automaton that provides a purely discrete description of the behaviour of the

timed DES with faults. The problem of fault diagnosis is solved by constructing a fault recognizer that recognizes the

occurrence of faults. The fault diagnosis approach allows one to compute the diagnosis state for each timed observation,

which consists in a timed sequence of observed events. As a future work, we plan to explore the diagnosability of TFA.

Table 3. Diagnosis of the TFA G in Fig. 1 with Ef = {c, d} and (σo, t), t ∈ [0, 4].

σo Time instant t
⋃

ρ̄∈R(Rec(Gf),(σo,t))

qen(ρ̄) ϕ((σo, t))

λ

[0,0] {(x0, [0, 0], N)} N

(0,1) {(x0, (0, 1), N)} N

[1,1] {(x0, [1, 1], N), (xf , [0, 0], F)} U

(c, 1)

[1,1] {(x1, [0, 0], N), (x2, [0, 0], F), (x3, [0, 0], F)} U

(1,2) {(x1, (0, 1), N), (x2, (0, 1), F), (x3, (0, 1), F)} U

[2,2] {(x1, [1, 2], N), (x2, [1, 1], F), (x3, [1, 2], F)} U

(c, 1)(b, 2)

[2,2] {(x0, [0, 0], N), (x1, [0, 0], F), (x3, [0, 0], F)} U

(2,3) {(x0, (0, 1), N), (x1, (0, 1), F), (x3, (0, 1), F)} U

[3,3] {(x0, [1, 1], N), (xf , [0, 0], F), (x1, [1, 2], F), (x3, [1, 2], F)} U

(3,4) {(x0, (1, 2], N), (xf , [0, 0], F), (x1, [1, 2], F), (x3, [1, 2], F)} U

(c, 1)(b, 2)(c, 3.5)
(3,4) {(x2, [0, 0], F), (x2, (0, 1), F)} F

[4,4] {(x2, (0, 1), F)} F

In particular, it is worthy investigating if one can certainly detect a fault in a given time interval, which could be of

great interest for real time systems.

REFERENCES

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The

algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid automata: An algorithmic approach to the specification

and verification of hybrid systems. In Hybrid Systems, pages 209–229. Springer, 1992.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.

N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and predictability in probabilistic systems. In

Proceedings of IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science,

volume 29, pages 417–429, 2014.

C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Springer, 2009.

C. Gao, D. Lefebvre, C. Seatzu, Z. Li, and A. Giua. A region-based approach for state estimation of timed automata

under no event observation. In Proceedings of IEEE International Conference on Emerging Technologies and Factory

Automation, volume 1, pages 799–804. IEEE, 2020.

A. Giua, C. Seatzu, and D. Corona. Marking estimation of Petri nets with silent transitions. IEEE Transactions on

Automatic Control, 52(9):1695–1699, 2007.

C. Hadjicostis. Estimation and Inference in Discrete Event Systems. Springer, 2020.

T. Henzinger. The theory of hybrid automata. In Verification of Digital and Hybrid Systems, pages 265–292. Springer,

2000.

D. Lefebvre and C. Hadjicostis. Privacy and safety analysis of timed stochastic discrete event systems using markovian

trajectory-observers. Discrete Event Dynamic Systems, pages 1–28, 2020.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-event systems.

IEEE Transactions on Automatic Control, 40(9):1555–1575, 1995.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diagnosis using discrete-event

models. IEEE Transactions on Control Systems Technology, 4(2):105–124, 1996.

S. Shu, F. Lin, and H. Ying. Detectability of discrete event systems. IEEE Transactions on Automatic Control,

52(12):2356–2359, 2007.

Y. Tong, Z. Li, and A. Giua. On the equivalence of observation structures for Petri net generators. IEEE Transactions

on Automatic Control, 61(9):2448–2462, 2015.

S. Tripakis. Fault diagnosis for timed automata. In Proceedings of the 7th International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, pages 205–224, 2002.

P. Bouyer, S. Jaziri, and N. Markey. Efficient timed diagnosis using automata with timed domains. In Proceedings of

the 18th Workshop on Runtime Verification (RV’18), 11237: 205–221, 2018.

P. Bouyer, L. Henry, S. Jaziri, T. Jéron and N. Markey. Diagnosing timed automata using timed markings. International

Journal on Software Tools for Technology Transfer, 23: 229–253, 2021.

P. Bouyer, C. Fabrice and D. D’Souza. Fault diagnosis using timed automata. In Proceedings of International Conference

on Foundations of Software Science and Computation Structures, 219–233, 2005.

J. Lunze and P. Supavatanakul. Diagnosis of discrete-event system described by timed automata. In IFAC Proceedings

Volumes, 35(1): 77–82, 2002.

P. Supavatanakul and J. Lunze. Diagnosis of timed automata based on an observation principle. In IFAC Proceedings

Volumes, 39(13): 1270–1275, 2006.

Y. Brave and M. Heymann. Formulation and control of real time discrete event processes. In Proceedings of the 27th

IEEE Conference on Decision and Control, pages 1131–1132, 1988.

J. S. Ostroff. Deciding properties of timed transition models. IEEE Transactions on Parallel and Distributed Systems,

1(02): 170–183, 1990.

B. Brandin and W. M. Wonham. Supervisory control of timed discrete-event systems. IEEE Transactions on Automatic

control, 39(2): 329–342, 1994.

D. Lefebvre, Z. Li, and Y. Liang. Verifiers for the detection of timed patterns in discrete event systems. In Proceedings

of IFAC-PapersOnLine, 55(28): 264-269, 2022.

