
Verification of Current State Opacity using
Switching Output Automata

Tianyu Liu, Carla Seatzu and Alessandro Giua

July 2023

Abstract

We present a new discrete event model called switching output automaton where with each state is associated a set of
discrete output values. The evolution of such a system, as state and output change, produces as observation a piecewise
constant signal. The goal of this paper is that of designing a suitable observer for estimating the current discrete state of
this model as a function of the observed output signal. In addition, we show how the observer can be used to verify if the
system is current-state opaque.

Published as:
T. Liu, C. Seatzu and A. Giua, ”Verification of Current State Opacity using Switching Output Automata,” 2023 9th
International Conference on Control, Decision and Information Technologies (CoDIT), pp. 2665-2670, 2023.
DOI:10.1109/CoDIT58514.2023.10284385

This work was partially supported by the China Scholarship Council.
Tianyu Liu, Carla Seatzu and Alessandro Giua are with DIEE, University of Cagliari, Italy. Emails: t.liu@studenti.unica.it, carla.seatzu@unica.it,

giua@unica.it.

1

1 Introduction
In the research on security and privacy of Cyber Physical Systems, opacity is a property that has received significant
attention. The purpose of opacity is to ensure that external intruders cannot detect the system’s secret information (current
or initial state, generated words). Several discrete event models have been considered in the literature, such as Moore or
Mealy machines, automata, Petri nets, etc. [1]. In this paper, we study current state opacity considering a new model,
named switching output automaton.

In much of the DES literature on partially observed systems, the measurable outputs, i.e., the observations generated
by the plant, are associated to event occurrence. This is the typical setting of Mealy machines. A Moore machine is a
finite state machine whose current output values are determined only by its current state [2, 3]. This setting is common in
stochastic models such as hidden Markov models [4] and has also been used for state reconstruction in logical models [5].

Unlike previous works, we consider a different model where outputs are piecewise constant boolean signals, as op-
posed to impulsive signals (namely observations produced each time a state transition occurs). This seems more natural
when studying physical systems where the output is a continuous-time signal: as an example, the power consumption of
an electrical user, which depends on the devices currently active, is a signal of this type. Furthermore, the output produced
at a given state may not be unique due to several reasons: as an example, the state of an electrical user may correspond to
the fact that a device is active but its observed power consumption may depend on different operating modes.

There exists a rich literature on current state opacity in DESs [6, 7, 8, 9, 10, 11]. Saboori and Hadjicostis [7] verify
current state opacity by converting a nondeterministic finite automaton (NFA) into an equivalent deterministic finite au-
tomaton (DFA) and the complexity is O (2n) with n being the number of states in the NFA. Tong et al. [11] use notions
of basis markings and explanations to construct the basis reachability graph and further verify the opacity of labeled Petri
nets. Zhang et al. [12] propose a multi-linear algebraic expression to characterize the intrusion estimator, and verify
current state opacity with event-state observation and state observation by some matrix manipulations. They first build
the structure matrix of state machine and use Boolean Semi-tensor product of matrices algorithm for opacity analysis on
this basis. The complexity of the whole algorithm is based on the dimensionality of the matrix. The model in [12] is
a Moore finite state machine, then each state of the machine only has one output. The observation of the machine is a
time-independent sequence of state outputs, where two adjacent symbols in the sequence can take the same value.

In this paper, we provide the following contributions.
First, we define a new model that we call switching output automaton (SOA) and describe its evolution and the

produced observations. SOA are a quite natural model to describe man-made systems where the output can take discrete
values, or even piecewise-continuous values which can be quantized.

An SOA can be seen as a Moore automaton with a multivalued output function that associates multiple output values
with each state. There are, however, two main differences with respect to Moore automata.

• The evolution of an SOA can be characterized in terms of both state and output changes.

• A Moore automaton produces as observation a logical sequence of output values which may contain repeated values,
say, aab. An SOA produces as observation a piecewise-constant signal, say, a for t ∈ [0, t1] and b for t ∈ [t1, tf].

Next, we construct an observer which provides the set of states consistent with a given output observation for state.
Then, we extend the notion of current state opacity defined in [7] for automata to the proposed model. Finally, we show
how to verify it using the proposed observer.

2 Switching Output Automaton
Definition 1. A switching output automaton is defined as G = (X,Y,B, h, x0, y0), where

• X is a finite set of states;

• Y is an output alphabet;

• B ⊆ X ×X is a set of arcs (or edges) ;

• h : X → 2Y is the output function;

• x0 ∈ X is the initial state;

• y0 ∈ h(x0) is the initial output symbol.

2

We denote by h(x) ⊆ Y the set of possible output symbols which may be produced when the current state is x. An
arc b = (x, x′) ∈ B is considered to be directed from state x to state x′; in such a case x′ is said to be a direct successor
of state x and state x is said to be a direct predecessor of state x′. We denote by σ(x) = {x′ ∈ X|∃b = (x, x′) ∈ B} the
set of direct successors of x.

An alphabet Y is a finite set of symbols and Y ∗ denotes the set of all (finite length) strings of symbols in Y , while
Y + = Y Y ∗.

The evolution of the state can be described by means of a state run

t0−→x(0) t1−→x(1) t2−→ · · · tk−→x(k)

where for all i = 0, . . . , k it holds that x(i) ∈ X and for all i = 0, . . . , k − 1 it holds that (x(i), x(i+1)) ∈ B. Such a run
has length k ≥ 0. It describes the evolution process of an automaton, which initially is in state x(0) at time t0, and then at
time ti transitions from state x(i−1) to state x(i). While the automaton is in a given state its output may change. This is
described by an output run associated to a state x(i).

ti−→
τ
(i)
0

y
(i)
0 −→

τ
(i)
1

y
(i)
1 −→

τ
(i)
2

· · · −→
τ
(i)
hi

y
(i)
hi

where ∀j = 0, . . . , hi, y
(i)
j ∈ h(x(i)) and for all j = 1, . . . , hi, y

(i)
(j−1) ̸= y

(i)
(j). Such an output run has length hi ≥ 0.

When state x(i) is reached at time τ
(i)
0 = ti the output takes value y

(i)
0 and changes from y

(i)
j−1 to y

(i)
j at time τ

(i)
j .

A state-output run can thus be represented as follow:

t0=0−→
τ
(0)
0 =0

(
x(0)

y
(0)
0

)
−→
τ
(0)
1

(
x(0)

y
(0)
1

)
−→
τ
(0)
2

· · · −→
τ
(0)
hi

(
x(0)

y
(0)
hi

)
t1−→
τ
(1)
0(

x(1)

y
(1)
0

)
−→
τ
(1)
1

· · · ti−→
τ
(i)
0

(
x(i)

y
(i)
0

)
−→
τ
(i)
1

· · · −→
τ
(i)
hi

(
x(i)

y
(i)
hi

)
ti+1−→
τ
(i+1)
0

(
x(i+1)

y
(i+1)
0

)
−→
τ
(i+1)
1

· · · −→
τ
(k)
hi

(
x(k)

y
(k)
hi

)

where each state of the run q = (x, y) ∈ X × Y is a global state of the system: it consists of a pair whose first element is
a discrete state x ∈ X and whose second element is an output value y ∈ h(x) ⊆ Y .

An SOA has multiple state-output runs, which consists of three types of transitions.
Type 1 refers to a state change with no output change. It can be explained as follows. During the time interval

[τ
(i)
hi

, ti+1), the system is in state x(i) and produces output y(i)hi
. At time instant ti+1, the system transitions to state x(i+1),

while maintaining the same output value, i.e., y(i)hi
= y

(i+1)
0 .

Type 2 indicates a simultaneous state and output change. During the time interval [τ (i)hi
, ti+1), the system is in state

x(i) and produces output y(i)hi
. At moment ti+1, the system transitions to state x(i+1) and generates a new output, which

means that y(i)hi
̸= y

(i+1)
0 .

Type 3 indicates an output change with no state change. In a run as described above, the system undergoes hi changes
in the output while the current state remains x(i) and the output changes are represented as y(i)0 → y

(i)
1 → · · · → y

(i)
hi

.
We assume that the time distance between the occurrence of any two such transitions must be greater than or equal to

the dwell time δ, i.e., ∀i = 0, . . . , k, ∀j = 0, . . . , hi − 1: τ (i)j+1 − τ
(i)
j ≥ δ and ∀i = 0, . . . , k − 1: τ (i+1)

0 − τ
(i)
hi

≥ δ. The
dwell time has been introduced to avoid Zeno phenomena, namely to avoid an infinite number of switches in the ouput
and the discrete state in a time interval of finite length.

The observation of the system is a mapping T → Y , where T = R≥0 represents the time that can be divided into a
countably finite number of time intervals as detailed above, in accordance with the state-output run. We define y(t) as
the output symbol produced by the system at time t. Function y(t) is piecewise continuous and each value it takes has a
duration at least equal to δ. Note that, by definition, the output of two adjacent time intervals is different. We use (y, τ)
to denote that the output takes value y for a time interval of duration τ where y ∈ Y and τ ∈ R≥0. The behavior of G is
defined as L(G) = {ω ∈ (Y,R≥δ)

+|∀i = 1, 2, . . . , n : ω = (y[0,τ1), τ1)(y[τ1,τ2), τ2 − τ1) · · · (y[τi−1,τi), τi − τi−1) and
y[τk−1,τk) ̸= y[τk,τk+1), k = 1, . . . , i− 1 and τi − τi−1 ≥ δ}.

The state of the system is also a piecewise continuous function x : T → X . The state x(t) cannot be directly measured
but an estimation of it can be computed based on the knowledge of the system model and the output y(t). Clearly, since
the same observation can in general be produced by different states, x(t) cannot always be uniquely reconstructed.

3

Figure 1: The switching output automaton

Figure 2: One possible evolution of the switching output automaton

Example 1. Let us consider the SOA G = (X,Y,B, h, x0, y0) in Fig. 1, with states set X = {x0, x1, x2}, the output al-
phabet Y = {1, 2, 3}, the arcs set B = {(x0, x1), (x1, x2), (x2, x1)}, output function defined by h(x0) = {1, 2}, h(x1) =
{1, 3}, h(x2) = {2, 3}, initial state is x0 and initial output symbol y0 is 1. The set of direct successors of x0, x1, and x2

are σ(x0) = {x1}, σ(x1) = {x2}, and σ(x2) = {x1}.
Fig. 2 shows the evolution of the state x(t) and the output y(t) corresponding to the following run:

t0=0−→
τ
(0)
0 =0

(
x0

1

)
−→
τ
(0)
1

(
x0

2

)
t1−→
τ
(1)
0

(
x1

1

)
t2−→
τ
(2)
0

(
x2

3

)
t3−→
τ
(3)
0

(
x1

3

)
t4−→
τ
(4)
0

(
x2

3

)
−→
τ
(4)
1

(
x2

2

)

We can find three types of transitions in the above run. At time τ
(0)
1 , the system transitions from state (x0, 1) to

state (x0, 2), which corresponds to Type 2 transitions. The system moves from state (x0, 2) to state (x1, 1) at time t1,
a situation that is consistent with Type 3 transitions. The system moves from state (x2, 3) to state (x1, 3) at time t3, a
situation consistent with Type 1 transitions.

3 The Observer
Given a sequence of observations ω ∈ (Y,R≥δ)

+ we denote as C(ω) the set of states in which the system can be.
In this section we explain in detail the procedure for constructing the observer of an SOA, i.e., a structure that allows

one to compute the set C(ω) for any observed sequence ω ∈ (Y,R≥δ)
+ without online computation. In this way C(ω)

can be computed simply following a path in a deterministic automaton.
To describe the evolution of an SOA G, we construct a nondeterministic evolution automaton Ge whose global state

describes the current discrete state and the current output value. In addition, the evolution of the SOA is constrained by the
notion of dwell time, since unless the dwell time has expired, no change of state or output is possible. Thus each global
state q = (x, y) ∈ X × Y needs to be further refined to specify if the dwell time constraint has already been satisfied.

To keep track of this, we associate with each discrete state x ∈ X two new states x′ and x′′: the first one denotes that
the current state is x but the dwell time constraint has not yet been satisfied, while the second one denotes the current state
is x and the dwell time constraint has been satisfied. We define X ′ = {x′|x ∈ X} the set of waiting discrete states and

4

X ′′ = {x′′|x ∈ X} the set of ready discrete states. The set of states of the evolution automaton is a set Q ⊆ Xe × Y
where Xe = X ′ ∪X ′′.

Definition 2. Given an SOA G = (X,Y,B, h, x0, y0), its evolution automaton is a nondeterministic finite automaton
Ge = (Q,Ye,∆, q0) where

• Q is a finite state set, q = (xe, y) ∈ Q where xe ∈ Xe = X ′ ∪X ′′ = {x′|x ∈ X} ∪ {x′′|x ∈ X} and y ∈ Y ;

• Ye = Y ∪ {δ} is the alphabet;

• ∆ ⊆ Q× Ye ∪ {ε} ×Q is the transition relation;

• q0 = (x′
0, y0) is the initial state.

From a discrete state no change of state or output is possible until the dwell time expires and the waiting state becomes
ready. In the evolution automaton we denote this by a transition labeled δ from a state (x′, y) to a state (x′′, y).

From a ready discrete state x three types of transitions may occur: type 1 (state change with no output change), type
2 (simultaneous state and output change), type 3 (output change with no state change).

When in G a transition of type 1 occurs from a discrete state x to a discrete state x̄, the output does not change and an
external observer cannot detect its occurrence. In the evolution automaton we denote this by a transition labeled with the
empty string ε from a state (x′′, y) to state (x̄′, y) where x ̸= x̄.

When a transition of type 2 or 3 occurs, the output changes from y to ȳ and thus an external agent detects that a
transition has occurred. However, since the output sets of different states may have a non-null intersection the output
agent may not be able to detect if the state has also changed or, if it has changed, which is the new state. We denote this
with a transition from (x′′, y) to (x̄′, ȳ) labeled with ȳ ∈ Y .

Algorithm 1 describes how an evolution automaton can be constructed. Starting from an initial state, new states are
added considering, in the following order, the different situations.

Algorithm 1: Constructing the evolution automaton
Input: G = (X,Y,B, h, x0, y0), a switching output automaton
Output: Ge = (Q,Ye,∆, q0), the evolution automaton

1 Set Xe = X ′ ∪X ′′ = {x′|x ∈ X} ∪ {x′′|x ∈ X};
2 Set Ye = Y ∪ {δ};
3 Set q0 = (x′

0, y0), Qnew = {q0}, Q = ∅;
4 Set ∆ = ∅;
5 while Qnew ̸= ∅ do
6 select a state q = (xe, y) ∈ Qnew;
7 if xe = x′ ∈ X ′ then
8 q̄ = (x′′, y), ∆ = ∆ ∪ {(q, δ, q̄)};
9 if q̄ /∈ Qnew ∪Q then

10 Qnew = Qnew ∪ {q̄};

11 else if xe = x′′ ∈ X ′′ then
12 forall x̄ ∈ σ(x) do
13 if y ∈ h(x̄) then
14 q̄ = (x̄′, y), ∆ = ∆ ∪ {(q, ϵ, q̄)};
15 if q̄ /∈ Qnew ∪Q then
16 Qnew = Qnew ∪ {q̄};

17 forall ȳ ∈ h(x̄) \ {y} do
18 q̄ = (x̄′, ȳ), ∆ = ∆ ∪ {(q, ȳ, q̄)};
19 if q̄ /∈ Qnew ∪Q then
20 Qnew = Qnew ∪ {q̄};

21 forall ȳ ∈ h(x) \ {y} do
22 q̄ = (x′, ȳ), ∆ = ∆ ∪ {(q, ȳ, q̄)};
23 if q̄ /∈ Qnew ∪Q then
24 Qnew = Qnew ∪ {q̄};

25 Qnew = Qnew \ {q}, Q = Q ∪ {q};

5

Figure 3: The evolution automaton of the switching output automaton shown in Fig. 1

Figure 4: The observer of the switching output automaton shown in Fig. 1

• New states could be created because a δ event occurs. This may only occur at states of the evolution automaton
having the first entry in X ′ and lead to new states having the first entry in X ′′ and the same second entry (line 6 to
line 11).

• New states could be created based on type 1 transitions (line 12 to line 19).

• New states could be created based on type 2 transitions (line 20 to line 26).

• New states could be created based on type 3 transitions (line 27 to line 33).

Example 2. Consider the SOA shown in Fig. 1. The evolution automaton is shown in Fig. 3.

The evolution automaton Ge is a nondeterministic structure which describes all possible runs of an SOA G. An
equivalent deterministic automaton, that we call observer, can be used to estimate the set of states consistent with any
observation. In the following we denote the observer of G as Gobs = (Z, Ye,∆o, z0) where

• Z ⊆ 2Xe × Y is a finite state set (Xe = X ′ ∪X ′′);

• Ye is the alphabet;

• ∆o : Z × Ye → Z is a partial transition function;

• z0 = ({x′
0}, y0) is the initial state.

Based on the above definition, each state of the observer is defined as a pair whose first entry is a subset of Xe and
whose second entry is the current output. If the first entry of a state contains both the waiting and ready states x′ and x′′

associated with a discrete state x ∈ X , we simply cut it keeping only x′′. In fact, such an observer state can be reached
by different runs where state x could be either waiting or ready. However, since anything that could happen in x′ could
also happen in x′′ and since we need to keep track of the waiting/ready state we can simply ignore x′. Algorithm 2 is
presented as a way to remove state x′ when also state x′′ is present. However, this is also changing the observer state from

6

z′ ⊆ Q ⊆ (Xe, y)×Y to z ∈ 2Xe ×Y . We define ζ as function: ζ : 2Q → Z where Q is the set of states of the evolution
automaton Ge and Z is the set of states of the observer Gobs. We define Qsub ⊂ Q as the set of global states with the
same label and ζ is only defined for Qsub.

Example 3. Consider the evolution automaton Ge in Fig. 3. We set Qsub = {(x′′
0 , 1), (x

′
1, 1), (x

′′
1 , 1)}. We can obtain

Xs(Qsub) = {x′′
0 , x

′
1, x

′′
1}. Since x′′

1 and x′
1 correspond to the same state x1, we can update Xs(Qsub) = {x′′

0 , x
′′
1}. And

ζ(Qsub) = ({x′′
0 , x

′′
1}, 1).

Algorithm 2: Computing ζ(Qsub)

Input: Qsub, set of global states with same label y of Ge

Output: ζ(Qsub), simplified state
1 Xs(Qsub) = {xe|q = (xe, y) ∈ Qsub};
2 foreach xe, x̄e ∈ Xs(Qsub) do
3 if xe = x′ ∈ X ′, x̄e = x̄′′ ∈ X ′′ and x = x̄ then
4 Xs(Qsub) = Xs(Qsub) \ {xe};

5 return ζ(Qsub) = (Xs(Qsub), y);

Algorithm 3 describes the construction of the observer and makes use of the following notation.

• For all states q ∈ Q of Ge we define Dϵ(q) = {q̄ ∈ Q | (q, ϵ, q̄) ∈ ∆∗} as the set containing all states reachable
from q executing zero or more ϵ-transitions. Note that by definition q ∈ D∗

ϵ (q).

• For all states q ∈ Q of Ge and for all symbols y ∈ Ye we define Dy(q) = {q̄ ∈ Q | (q, y, q̄) ∈ ∆} as the set
containing all states reachable from q executing exactly one observable y-transition.

• For all sets of states Qsub ⊆ Q and for all symbols y ∈ Ye, we define

α(Qsub, y) =
⋃

q∈Qsub

Dy(q)

as the set of states containing the states reachable in Ge from a state q ∈ Qsub executing exactly one observable
y-transition. We define

β(Qsub, y) =
⋃

q∈α(Qsub,y)

Dϵ(q)

as the set containing all states reachable in Ge from a state q ∈ α(Qsub, y) executing zero or more ϵ-transitions.

For each iteration we compute two sets. The first, denoted z̄′, is the set of states consistent with the sequence s ∈ Y ∗
e .

The second, denoted z̄, is a simplification of the previous set and will be the new state of the observer. The state z̄′ is
calculated in two steps. First to compute α(z′, y) where z′ ⊆ Q and y ∈ Ye; then, compute β(z′, y), and z̄′ = β(z′, y).

It is worth noting that since the global state qe = (x′′, y) of the evolution automaton Ge does not generate a new state
after activating the event δ, we omit the selfloop of the event δ at qe. However the physical meaning is that the system
remains in the same state after a time equal to the dwell time has elapsed. Therefore, in the string s whenever an event δ
occurs, the new state z̄′ contains all states qe = (x′′, y) of the old state z′ that has elapsed dwell time δ.

Note that each state of the observer z = (Xz, y) ∈ Z is such that Xz ⊆ Xe = X ′ ∪X ′′, i.e, it contains only states of
the evolution automaton. We define g(Xz) = {x ∈ X | {x′, x′′}∩Xz ̸= ∅}, i.e., the set of states of G which correspond
to the states of Xz .

When a sequence ω is observed, we can follow the corresponding path in the observer taking into account that events
δ correspond to the elapsing of an interval of time equal to δ while the current output does not change. Let z = (Xz, y)
be the state of the observer reached following the observation ω, the set of states consistent with ω is C(ω) = g(Xz).

Example 4. Consider the SOA depicted in Fig. 1, whose evolution automaton is shown in Fig. 3. The observer is shown
in Fig. 4. Assume δ = 0.1 and let the observation be ω = (1, 0.15)(3, 1). The state of the observer reached following ω
is z = ({x′′

1 , x
′′
2}, 3), which corresponds to a set of consistent states C(ω) = g({x′′

1 , x
′′
2}) = {x1, x2}. The state of the

observer z is reached visiting the intermediates states ({x′
0}, 1), ({x′′

0 , x
′
1}, 1), ({x′

1}, 3), ({x′′
1 , x

′
2}, 3).

Due to Algorithm 2, the number of states of the observer is |Z| < 2(|Xe|×|Y |). Therefore, the space complexity of the
proposed approach is O < 2(2|X|×|Y |).

7

Algorithm 3: Constructing the observer
Input: Ge = (Q,Ye,∆, q0), the evolution automaton
Output: Gobs = (Z, Ye,∆o, z0), the observer

1 Set z′0 = Dϵ(q0), Z ′ = {z′0}, assign no tag to z′0;
2 Set z0 = z′0, Z = {z0};
3 while states with no tag exists in Z ′ do
4 select a state z′ ∈ Z ′ with no tag;
5 foreach y ∈ Ye do
6 if y=δ then
7 α(z′, y) =

⋃
q∈z′ Dy(q) ∪ (z′ ∩X ′′);

8 else
9 α(z′, y) =

⋃
q∈z′ Dy(q)

10 β(z′, y) =
⋃

q∈α(z′,y) Dϵ(q);
11 z̄′ = β(z′, y);
12 if z̄′ /∈ Z ′ then
13 Z ′ = Z ′ ∪ {z̄′}, assign no tag to z̄′;

14 z = ζ(z′);
15 z̄ = ζ(z̄′), Z = Z ∪ {z̄};
16 if z ̸= z̄ then
17 ∆o(z, y) = z̄;

18 tag node z′ ’old’;

19 Remove all tags;

4 Verifying Current State Opacity
In this section, we propose a definition of current state opacity which applies to SOA and propose an approach to verify
such a property using the observer.

We consider a secret set S ⊆ X . According to the usual notion of current state opacity, a system is opaque if for all
generated observations ω, the set of consistent states C(ω) computed by an intruder, which observes the system, the set
C(ω) is not a subset of the secret S.

In our setting, where observation ω is a continuous time signal and the system’s evolution is constrained by a dwell
time, we give a different definition. Let us first denote by Ωs the set of stable observations, i.e., those observations ω,
whose set of consistent states C(ω) cannot change unless a new system output is generated.

Definition 3. A switching output automaton G = (X,Y,B, h, x0, y0) is called current state opaque (CSO) with respect
to a secret S ⊆ X , if for all stable observations ω ∈ Ωs, C(ω) ⊈ S holds.

This definition is motivated by the following consideration. If an observation is not stable, as time elapses without a
change of the output, the set of consistent states will keep changing (every δ units of time) until after a time T ≤ n · δ a
stable estimation is reached. We assume the intruder has no way of exploiting the information obtained from a non-stable
observation because in a very short time it becomes outdated. Thus only stable observations should be considered for
current state opacity verification.

One can readily verify that any sequence ω ∈ Ωs reaches in the observer a state that does not enable the event δ. We
call such states stable and denote them by Zs = {z ∈ Z | ∆o(z, δ) is not defined} ⊂ Z . Note that each stable state of
the observer z = (Xz, y) ∈ Zs is such that Xz ⊆ X ′′, i.e, it contains only ready states of the evolution automaton.

Based on this, we can provide a necessary and suffient condition to verify current state opacity for an SOA.

Proposition 1. Consider a switching output automaton G and a secret set S. Let Zs be the set of stable states of its
observer. The SOA G is current state opaque wrt S iff for all z = (Xz, y) ∈ Zs, it holds that g(Xz) ⊈ S.

Proof. (⇒) Assume that G is CSO with respect to S. By definition of CSO, for all stable observations ω ∈ Ωs, it is
C(ω) ⊈ S. Sequences ω ∈ Ωs lead to stable states in the observer, namely to states z = (Xz, y) ∈ Zs. Therefore for all
such states, it is g(Xz) ⊈ S.

(⇐) Assume that ∃z = (Xz, y) ∈ Zs such that Xz ⊆ S. This implies that there exists a stable observation ω ∈ Ωs

such that C(ω) ⊆ S. Therefore, the system is not CSO.

8

As a result, if we want to determine whether an SOA is CSO, we need to focus on the stable states of the observer. We
have to verify whether for at least one of them, the set of states of the system associated with it is a subset of the secret S.
If such is the case, the SOA is not opaque with respect to S.

Example 5. Consider the system in Fig.1. Let S = {x2}. Since there exists a stable state ({x′′
2}, 2) of the observer such

that g({x′′
2}) = {x2} = S, the system is not CSO.

5 Conclusions and Future Work
In this paper, we propose a new discrete event model called switching output automaton. Each state of the automaton can
produce multiple discrete outputs. We design an observer to estimate the current state of such a model based on output
observations consisting of piecewise-constant signals. We use the state observer to verify current state opacity of the
system. In the future, we will further investigate state-based opacity for switching output automata with continuous state
output values.

References
[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Cham: Springer International Publish-

ing, 2021.

[2] C. Seatzu, M. Silva, and J. H. van Schuppen, Eds., Control of Discrete-Event Systems, vol. 433. London: Springer
London, 2013.

[3] E. F. Moore, Experiments on Sequential Machines, in Automata Studies. (AM-34), C. E. Shannon and J. McCarthy,
Eds. Princeton University Press, pp. 129-154, 1956.

[4] D. Thorsley, A necessary and sufficient condition for diagnosability of stochastic discrete event systems, Discrete
Event Dynamic Systems, vol. 27, no. 3, pp 481–500, 2017.

[5] C. Kai, A. Giua and C. Seatzu, Consistent reduction in discrete-event systems, Automatica, vol. 142, 2022.

[6] J. W. Bryans, M. Koutny, and P. Y. Ryan, Opacity using Petri nets, Electronic Notes in Theoretical Computer Science,
vol. 121, pp. 101-115, 2005.

[7] A. Saboori and C. N. Hadjicostis, Security and opacity in discrete event systems, in Proceedings of the 46th IEEE
Conference on Decision and Control. IEEE, pp. 5056-5061, 2007.

[8] A. Saboori and C. N. Hadjicostis, Verification of initial-state opacity in security applications of discrete event sys-
tems, Information Sciences, vol. 246, pp. 115-132, 2013.

[9] Y. Wu and S. Lafortune, Comparative analysis of related notions of opacity in centralized and coordinated architec-
tures, Discrete Event Dynamic Systems, vol. 23, no. 3, pp. 307-339, 2013.

[10] Y. Falcone and H. Marchand, Enforcement and validation (at runtime) of various notions of opacity, Discrete Event
Dynamic Systems, vol. 25, no. 4, pp. 531-570, 2015.

[11] Y. Tong, Z. Li, C. Seatzu, and A. Giua, Verification of State-Based Opacity Using Petri Nets, IEEE Trans. Automat.
Contr., vol. 62, no. 6, pp. 2823-2837, Jun. 2017.

[12] Z. Zhang, C. Xia, and S. Chen, Security and privacy with opacity based state observation for finite state machine,
Asian Journal of Control, vol. 24, no. 2, pp. 614-625, Mar. 2022.

9

	coverpage-iris-unica_IEEE.pdf
	Paper__Verification_of_Current_State_Opacity_using_Switching_Output_Automata__Copy_ (1).pdf
	Introduction
	Switching Output Automaton
	The Observer
	Verifying Current State Opacity
	Conclusions and Future Work

