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Abstract

In this paper, we study the problem of fault diagnosis under cyber attacks in
the context of partially-observed discrete event systems. An operator monitors
the evolution of a system through the received observations and computes its
current diagnosis state. The observation is corrupted by an attacker which has
the ability to edit a subset of sensor readings by inserting or erasing some events.
In this sense, the attacker may induce the operator to draw incorrect diagnostic
conclusions based on the corrupted observation regarding the fault occurrence.
In particular, the attack is harmful if a fault can be detected by the operator
when looking at an uncorrupted observation, while it is not detected when
looking at the corresponding corrupted observation. In addition, the attacker
must remain stealthy, i.e., its presence should not be discovered by the operator.
To this end, we propose a special structure, called a stealthy joint diagnoser,
which describes the set of all possible stealthy attacks. We show how to use
the stealthy joint diagnoser to perform fault diagnosis under attack. Finally,
such a structure also allows one to establish if a stealthy harmful attack may be
implemented.
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1 Introduction

Cyber-physical systems (CPS), such as intelligent transportation systems,
process control systems and advanced communication networks, are character-
ized by the interaction of computational and physical components [1]. In this
work, we use the formalism of discrete event systems to model the behavior
of CPS. Discrete event systems are dynamic systems equipped with a discrete
state space and an event-driven transition structure [2]. The undesired behavior
of CPS arises from two possible phenomena, i.e., component faults and cyber
attacks.

A component fault is an endogenous phenomenon that causes a deviation in
the behavior of a system such that its performance or throughput is degraded.
For this reason, fault diagnosis is a crucial task for an operator monitoring a
CPS. In the context of discrete event systems, the problem of fault diagnosis
is originally formalized by [3], where the fault is an unobservable event whose
occurrence is usually necessary to be detected based on the observation. In the
past years, robust fault diagnosis of discrete event systems has been a topic of
great interest due to its importance; see, e.g., [4] and [5]. These works focus on
the issue of the robust diagnosis subject to sensor failures, i.e., permanent and
intermittent loss of communication between sensors and the diagnoser, but they
do not consider the impact of an attacker on the physical parts of the system.

A cyber attack on the other hand is an exogenous phenomenon that causes
damage to the cyber-security of CPS [6]. In the context of discrete event sys-
tems, cyber-security has become a topical subject of increasing attention in the
last few years. Several aspects of cyber-security have been explored in the lit-
erature of discrete event systems. The problem of attack detection is focused
on modeling the attacker as a fault behavior [7] and [8]. Some discrete frame-
works have been developed to handle adversarial attacks for resilient supervisory
control [9, 10, 11] and intelligent attack synthesis [12, 13, 14].

Rather than passively detecting the existence of attacks or deriving a su-
pervisory control law that is robust to attacks, relatively few works focus on
synthesizing a successful attack strategy satisfying the desired objective. Meira-
Góes et al. [13] address the problem of synthesizing stealthy attacks that can
induce the plant into a forbidden state without being detected by an existing su-
pervisor. A bipartite discrete transition structure, called an Insertion-Deletion
Attack structure (IDA) is proposed to capture a game-like relationship between
the supervisor and the environment (the plant and the attacker). Based on the
IDA, three different types of successful stealthy attack strategies can be derived.
Zhang et al. [14] investigate the problem of state estimation in the presence of
an attack. A novel discrete transition structure, called a joint estimator, is pro-
posed to capture all possible attacks and the corresponding state estimation.
The joint estimator is applied to show how the possible suitable choices of the
attacker may affect the state estimate of the operator. In [13] and [14], they
study the effect of an attacker on the state estimation of the supervisor and the
operator, respectively, without considering the impact on the fault diagnosis
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process.

The study of component faults and cyber attacks in isolation has been exten-
sively researched in various fields. However, there is a crucial need to consider
both phenomena together since they are not always independent of each other
and can even interact to amplify their effects. In this context, we study the prob-
lem of fault diagnosis under attack in partially-observed discrete event systems.
We utilize a similar attack model that has been used in [13] and [14]. We assume
that an attacker with full knowledge of the plant may corrupt sensor readings
available to an operator, by inserting certain fake events that do not occur or
erasing some observations that have occurred. The goal of the attacker is to
prevent the operator from making the correct diagnostic conclusions regarding
the fault occurrence. The methodology developed to derive a suitable attack
policy from the attacker’s viewpoint is inspired by the work in [13] and [14].
As in these works, we propose a discrete structure to describe how an attacker
may affect the operator’s ability to perform the correct fault diagnosis. We
call this structure a stealthy joint diagnoser. By construction, a stealthy joint
diagnoser embeds all and only stealthy attacks. Once constructed, a stealthy
joint diagnoser serves as the basis for solving the fault diagnosis problem under
attack. The states of the stealthy joint diagnoser can be classified according to
the corresponding diagnosis pairs. In particular, we define as harmful states of
the stealthy joint diagnoser those states corresponding to the harmful attacks
that can hide the occurrence of a fault during the system evolution. Finally, we
notice that such a structure may also be used by the operator to establish if the
diagnoser is robust to certain possible attacks.

2 Preliminaries

Let E be an alphabet. The set of all words over E is denoted by E∗. Given a
word σ ∈ E∗, (i) the length of σ is denoted by |σ|; (ii) the number of occurrence
of event e ∈ E in σ is denoted by |σ|e; (iii) the support of σ, denoted by
∥σ∥ = {e ∈ E||σ|e > 0}, is the set of events that appear at least once in the
word.

Let G = (X,E, δ, x0) denote a deterministic finite state automaton, where
X is the finite set of states, E is the finite set of events, δ : X × E → X
is the partial transition function, and x0 is the initial state. The transition
function can be extended to the domain X × E∗, denoted by δ∗ : X × E∗ →
X, such that δ∗(x, ε) = x, where ε denotes the empty word, and δ∗(x, σe) =
δ (δ∗(x, σ), e). The generated language of G is defined as L(G) = {σ ∈ E∗ |
δ∗ (x0, σ) is defined}.

Assume that E is partitioned into E = Eo∪̇Euo, where Eo and Euo de-
note, respectively, the sets of observable and unobservable events. Based on the
partition, the natural projection function P : E∗ → E∗

o is defined as [2]:

P (ε) = ε andP (σe) =

{
P (σ)e if e ∈ Eo,
P (σ) if e ∈ Euo.

(1)
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The inverse projection P−1 : E∗
o → 2E

∗
is defined as P−1(s) = {σ ∈ E∗ : P (σ) = s}.

The evolution of the plant G is observed by an operator. Assume that a
plant G produces a word σ ∈ E∗. Due to the natural projection, the operator
observes an observation s = P (σ) ∈ E∗

o . When no attack occurs, s is called an
uncorrupted observation. We also define S(s) = P−1(s)∩L(G) the set of words
consistent with observation s, i.e., the set of words in the language of G that
produce the observation s.

The unobservable reach of state x is defined by a set of states x′ ∈ X
reached from state x ∈ X by executing an unobservable word σ ∈ E∗

uo, namely,
UR(x) = {x′ ∈ X | (∃σ ∈ E∗

uo) δ
∗(x, σ) = x′}.

Given a plant G = (X,E, δ, x0) with the set of observable events Eo, the
observer of G is Obs(G) = (B,Eo, δobs, b0), where B ⊆ 2X is the set of states,
Eo is the set of observable events of G, δobs : B × Eo → B is the transition
function defined as δobs (b, eo) :=

⋃
x∈b UR ({x′ | δ (x, eo) = x′}), and the initial

state is b0 := UR (x0) (see [2] for details).

Given two automata G1 = (X1, E1, δ1, x01) and G2 = (X2, E2, δ2, x02), their
parallel composition is denoted as G = G1 ∥ G2 = (X1 ×X2, E1 ∪ E2, δ, (x01 ×
x02)), where the transition function δ is defined as follows:

δ[(x1, x2), e]=(x
′
1, x

′
2) if δ1(x1, e)=x′

1∧δ2(x2, e)=x′
2,

δ[(x1, x2), e] = (x′
1, x2) if δ1(x1, e) = x′

1 ∧ e /∈ E2,
δ[(x1, x2), e] = (x1, x

′
2) if δ2(x2, e) = x′

2 ∧ e /∈ E1,
undefined otherwise.

(2)

We notice that in the parallel composition, if there exist unreachable states from
the initial state, then such states should be removed and only reachable states
should be considered.

Let Ef ⊆ Euo denote the set of fault events. For the sake of simplicity, we
do not distinguish among different fault types. In the remainder of this paper,
we will consider a single fault class. The basic fault diagnosis problem is to
determine at run-time, based on the observation s ∈ E∗

o , if a fault has occurred
or not in the past. Solving a diagnosis problem requires constructing a diagnosis
function.

Definition 1: Given a plant G with respect to set of fault events Ef ⊆ Euo, a
diagnosis function

γ : E∗
o → {N,F,U}

associates any observation s ∈ E∗
o to a diagnosis state γ(s) ∈ {N,F,U} as

follows:

1) γ(s) = N , if for all σ ∈ S(s), it holds ∥σ∥ ∩ Ef = ∅;

2) γ(s) = F , if for all σ ∈ S(s), it holds ∥σ∥ ∩ Ef ̸= ∅;

3) γ(s) = U , if there exist σ, σ′ ∈ S(s) such that ∥σ∥∩Ef = ∅ and ∥σ′∥∩Ef ̸=
∅. ⋄
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A more efficient way of computing a diagnosis function is by means of diag-
nosers [3]. Diagnosers are deterministic automata whose alphabet is the set of
observable events of G, and their states have labels F and N attached to the
states of G. Formally, the diagnoser Diag(G) = (Xd, Eo, δd, xd,0) is defined as

Diag(G) = Obs(Rec(G)) = Obs(G ∥ Aℓ) (3)

where Rec(G) is the fault recognizer obtained by the parallel composition of G
and Aℓ, in which Aℓ is the fault monitor on alphabet Ef shown in Fig. 1.

Figure 1: Fault monitor Aℓ on alphabet Ef .

To each state xd of Diag(G) we associate a diagnosis value γ(xd) in the
following manner: (i) γ(xd) = F (certain state), if ℓ = F for all (x, ℓ) ∈ xd,
(ii) γ(xd) = N (normal state), if ℓ = N for all (x, ℓ) ∈ xd, and (iii) γ(xd) = U
(uncertain state), if there exist (x, ℓ), (x̃, ℓ̃) ∈ xd, x not necessarily distinct from
x̃, such that ℓ = F and ℓ̃ = N . Thus a diagnoser allows one to associate each
observation s ∈ E∗

o to a diagnosis state γ(s) = γ(xd), where xd = δ∗d(xd,0, s) is
the state reached in Diag(G) by executing s. In this context, fault diagnosis
can be performed online by examining the diagnoser states. Figs. 2(a) and 2(b)
show, respectively, a plant G, for which E = {a, b, c, d, e, ef}, Eo = {a, b, c, d, e}
and Ef = {ef}, and the corresponding diagnoser Diag(G).

(a) G (b) Diag(G)

Figure 2: (a) A plant G and (b) its diagnoser Diag(G).

3 Attack Model

First, we define the fault diagnosis system model under attack, as depicted
in Fig. 3. A plant G produces a word σ and the observation is s = P (σ). The
attacker intervenes in the communication channels between the system’s sensor
and the operator. In particular, the attacker may corrupt the observation s
by inserting some events that do not occur or erasing some events that have
occurred. Such a corrupted observation is denoted as s′. The operator is used
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to recognize the corrupted observation s′ and compute its diagnosis state γ(s′),
where γ is the diagnosis function.

Figure 3: A fault diagnosis system model under attack.

Then, let us recall some preliminary notations from [14]. The subset of
events that can be corrupted by the attacker is defined as the compromised
event set and denoted by Ecom. Without loss of generality, we assume that
Ecom ⊆ Eo. More specifically, the sets of events that can be inserted and
erased are denoted as Eins and Eera, respectively. Note that Eins and Eera are
not necessarily disjoint. Correspondingly, we define two new sets of events to
describe the permitted actions of the attacker. The sets E+ = {e+ | e ∈ Eins}
and E− = {e− | e ∈ Eera} are defined as the sets of inserted and erased events,
respectively. We also define Ea = Eo ∪ E+ ∪ E− as the attack alphabet. Note
that Eo, E+, and E− are disjoint.

Definition 2: Given a plant G with the set of compromised events Ecom =
Eins ∪ Eera, an attack function is f : P (L(G)) → E∗

a satisfying the following
constraints:
a) f(ε) ∈ E∗

+,
b) ∀se ∈ P (L(G)) with s ∈ E∗

o :{
f(se) ∈ f(s){e}E∗

+ if e ∈ Eo\Eera,

f(se) ∈ f(s) {e−, e}E∗
+ if e ∈ Eera.

(4)

⋄

Condition a) in Definition 2 indicates that the attacker may insert an ar-
bitrary word t ∈ E∗

+ at the initial state before any generated word of G is
observed. Condition b) means that the attacker cannot erase e when e does not
belong to Eera. However, the attacker may insert an arbitrary word t ∈ E∗

+

after e. If an event e ∈ Eera occurs, the attacker may either erase e or leave it
intact, and then insert any arbitrary word t ∈ E∗

+.

The existence of an attack function induces a new language, called an attack
language. The attack language is defined as L(f,G) = f(P (L(G))). A word

ω ∈ L (f,G) is called an attack word. Then, we define the operator mask P̂ :

E∗
a → E∗

o that treats the attack word ω as follows: (i) P̂ (ϵ) = ϵ; (ii) P̂ (ωe+) =

P̂ (ω)e, if e+ ∈ E+; (iii) P̂ (ωe−) = P̂ (ω), if e− ∈ E−; (iv) P̂ (ωe) = P̂ (ω)e, if
e ∈ E. Given an attack word ω, an observation s is said to be consistent with
the attack word ω if ω = f(s) or s = P̂ (ω) holds. In addition, the corrupting
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function ϕ : E∗
o → E∗

o is defined as ϕ(s) = P̂ (f(s)) taking an uncorrupted
observation s as input and producing a corrupted observation s′ as output, as
in Fig. 3. Similarly, the corrupted language induced by the corrupting function
is defined as L(ϕ,G) = ϕ(P (L(G))). Finally, we point out that in this paper,
the corrupting function ϕ is used to model the capabilities of the attacker to
temper with sensor readings.

4 Problem Setting: Diagnosis Under Attack

In this section, we first describe the stealthiness and harmfulness of a cor-
rupting function and then formalize the problem statement. Stealthiness implies
that the attack remains undetected by the operator. This can be formalized as
follows.

Definition 3: Let G be a plant with the set of observable events Eo. A cor-
rupting function ϕ is said to be stealthy if L(ϕ,G) ⊆ P (L(G)). ⋄

The stealthiness is guaranteed provided that any corrupted observation is
contained in the set of uncorrupted observations that the plant may generate
when no attack occurs. In this sense, the operator does not realize that the
system is under attack. We additionally define the notion of harmful attacks.

Definition 4: Let G be a plant with the set of observable events Eo. Let
γ : E∗

o → {N,F,U} be a diagnosis function. A corrupting function ϕ is harm-
ful if there exists an observation s ∈ P (L(G)) generated by the plant, such
that s can be corrupted into a word s′ = ϕ(s) ∈ P (L(G)), and (γ(s), γ(s′)) ∈
{(F,N), (F,U)}. ⋄

According to the above definition, a corrupting function is harmful if an
uncorrupted observation s which allows the operator to detect a fault (diagnosis
state F ) can be altered into a corrupted observation s′ corresponding to the
absence of fault or to the uncertain situation (diagnosis state N or U). In
simple words, a harmful attack may prevent the operator from detecting the
occurrence of the fault during the system evolution.

Given a plant G with the set of compromised events Ecom, the main con-
tribution of this paper is that of providing a diagnoser, called a stealthy joint
diagnoser, which contains all possible stealthy attack actions that an attacker is
able to execute. Then, it is shown how such a structure allows one to determine
if there exist stealthy attacks which are harmful, thus allowing the operator to
establish if the diagnoser is robust to attacks in the considered setting.

5 STEALTHY JOINT DIAGNOSER

5.1 Attacker Diagnoser and Operator Diagnoser

In this subsection, we introduce two special diagnosers, called Attacker Di-
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agnoser and Operator Diagnoser, which serve to compute Joint Diagnoser used
to solve the considered diagnosis problem under attack. In [14], given a plant
G, the notions of attacker observer Obsatt(G), operator observer Obsopr(G) and
their construction algorithms are proposed to solve the state estimation problem
in the presence of an attack. Given a plant G, due to the fact that the diagnoser
of G is equivalent to the observer of Rec(G), we define the attacker diagnoser
and the operator diagnoser as follows.

Definition 5: Given a plant G with set of observable events Eo and set of fault
events Ef , let Rec(G) be its fault recognizer. We define the attacker diagnoser
as

Diagatt(G) = Obsatt(Rec(G)), (5)

and the operator diagnoser as

Diagopr(G) = Obsopr(Rec(G)). (6)

Given a plant G, one can compute Diagatt(G) (resp. Diagopr(G)) by apply-
ing Algorithm 1 (resp. Algorithm 2) in [14] to its fault recognizer Rec(G). Note
that a non-stealthy attack may transform an observation s into a corrupted
observation s′ that cannot be generated by the plant when no attack occurs. In
this case, the operator diagnoser receives an attack word that is not consistent
with any uncorrupted observation and yields a dummy state, denoted as xd,∅.

Based on an attack word ω, Diagatt(G) and Diagopr(G) make their diag-
nostic decisions γatt(ω) and γopr(ω), respectively, where γatt : E

∗
a → {N,F,U}

and γopr : E∗
a → {N,F,U} are the attack diagnosis function and the operator

diagnosis function, respectively. The computation of their diagnostic decisions
will be discussed in Section 6.

Example 1: Consider the plant G in Fig. 2(a). Let Eins = {b} and Eera = {c}.
Figs. 4(a) and 4(b) showDiagatt(G) andDiagopr(G), respectively. We have self-
loop transitions labeled with the inserted event b+ at all the states of Diagatt(G)
since the attacker knows that the inserted event is fictitious. Analogously, we
have self-loop transitions labeled with the erased event c− at all the states of
Diagopr(G) since the event has been erased by the attacker and the operator
receives no information regarding such an event occurrence. There exists a
transition labeled with the erased event c− from state {2N} to {5N, 6F} in
Diagatt(G) since the attacker knows that the event c has occurred. There
exists a transition labeled with the inserted event b+ from state {2N} to {3N}
in Diagopr(G) since the Diagopr(G) cannot distinguish between b+ and the
corresponding event b.

5.2 Joint Diagnoser and Pruning Process

Definition 6: A joint diagnoser J-Diag(G) = (R,Ea, δa, r0) with respect to
G and Ecom is defined as J-Diag(G) = Diagatt(G) ∥Diagopr(G). ⋄
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(a) Diagatt(G) (b) Diagopr(G)

Figure 4: (a) Attacker diagnoser and (b) operator diagnoser.

A joint diagnoser J-Diag(G) is obtained by performing the parallel compo-
sition of Diagatt(G) and Diagopr(G). The joint diagnoser is an extension of the
joint estimator proposed in [14] where we append to every state pair the fault
diagnosis information. We notice that the joint diagnoser generates the same
language as the joint estimator; thus all the results that put in relationship
the language of the joint diagnoser and the language of the joint estimator are
omitted here due to the limited space.

In general, J-Diag(G) includes the non-stealthy attacks, i.e., attacks that
reveal the attacker’s presence to the operator. Therefore, J-Diag(G) must be
pruned, in the sense that some particular diagnosis states must be withdrawn.
The states of J-Diag(G) are defined by pairs, i.e., r = (xd, x̄d). We define the
set of exposing states as Re := {r ∈ R | r = (xd, x̄d), x̄d = xd,∅}. Each time
the joint diagnoser reaches an exposing state, the attack is no longer stealthy.
Furthermore, there may exist some weakly exposing states defined as Rwe from
which an exposing state is necessarily reached. Then we define R̄e = Re ∪Rwe

as the weakly exposing region. At the weakly exposing state r ∈ Rwe, neither
the firing of a legitimate event e, the erasure of this event (if it is possible), nor
the insertion of some e′+ ∈ Eins can lead the joint diagnoser outside the weakly
exposing region R̄e. One can recursively compute R̄e in J-Diag(G) following
the algorithm in [15].

Definition 7: Given a joint diagnoser J-Diag(G) = (R,Ea, δa, r0), the stealthy
joint diagnoser of J-Diag(G) is defined as SJ-Diag(G) = (Rs, Ea, δsa, r0),
where Rs = R \ R̄e, δsa = δa|Rs×Ea→Rs

. ⋄

The notation δa|Rs×Ea→Rs
means that we are restricting δa to the smaller

domain of the stealthy states Rs. The stealthy joint diagnoser SJ-Diag(G) can
be obtained from J-Diag(G) by removing all states in R̄e and their correspond-
ing input and output arcs. As a result, SJ-Diag(G) includes all the possible
stealthy actions that an attacker may implement during the system evolution.
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Example 2: Consider again the plant in Fig. 2(a). The joint diagnoser J-
Diag(G) is shown in Fig. 5, where exposing states are highlighted in gray and
weakly exposing states are highlighted in yellow. Consider the state ({2N}, {3N}).
Since there exists a transition labeled b ∈ Eo\Eera that yields from ({2N}, {3N})
to the exposing state ({3N}, {xd,∅}) in R̄e, and there does not exist a transi-
tion in E+ yielding to a state not in R̄e, the state ({2N}, {3N}) is added to
R̄e. Note that the state ({5N, 6F}, {2N}) is not a weakly exposing state. The
attacker can perform the insertion action b+ before the execution of the event
d ∈ Eo\Eera, thus leading the joint diagnoser outside the set R̄e.

Figure 5: Joint diagnoser J-Diag(G) in Example 2.

Herein we provide the following result that characterizes the transition func-
tion of SJ-Diag(G).

Theorem 1: Consider a plant G with set of observable events Eo and set of
fault events Ef , and its diagnoser Diag(G) = (Xd, Eo, δd, xd,0). Let ϕ : E∗

o →
E∗

o be a corrupting function. Given attack alphabet Ea, let SJ-Diag(G) =
(Rs, Ea, δsa, r0) be its stealthy joint diagnoser. For all uncorrupted observations
s ∈ P (L(G))) with the corresponding attack word ω = f(s) and corrupted
observation s′ = ϕ(s), it holds that:
[δ∗sa(r0, ω)=(xd, x̄d)⇐⇒δ∗d(xd,0, s)=xd, δ

∗
d(xd,0, s

′)= x̄d] .

The result follows from arguments similar to those in [14] (Theorem 1 therein).
The state pair (xd, x̄d) reached in SJ-Diag(G) by an attack word ω describes
the joint diagnosis state estimate. The first element xd represents the correct
diagnosis state estimate of the operator, denoted as xd = δ∗d(xd,0, s), as seen by
the attacker for the uncorrupted observation s consistent with the attack word
ω. The second element x̄d represents the corrupted diagnosis state estimate
of the operator, denoted as x̄d = δ∗d(xd,0, s

′), which is the current state of its
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realization based on the corrupted observation s′ that it receives. As desired,
a state pair in SJ-Diag(G) embeds the necessary information for the opera-
tor to draw diagnostic conclusions based on the uncorrupted and the corrupted
observations, respectively, which will be further discussed in the next section.

6 Fault Diagnosis Under Attack

Recall how the attacker compromises a system. Assume that the system gen-
erates an observation s. The attacker may corrupt the observation s, resulting in
the corrupted observation s′ = ϕ(s), where ϕ is the corrupting function. In more
detail, this function ϕ proceeds in two steps: first, the observation s is trans-
formed into an attack word ω = f(s) via the attack function f . Subsequently,

the attack word ω is transformed into the corrupted observation s′ = P̂ (ω) using

the operator mask P̂ . The attacker aims to mislead the operator to make an
incorrect diagnostic decision based on the corrupted observation that it receives.

Problem 1: Given a plant G with Eo, Ef and Ecom, and given an attack
word ω ∈ E∗

a , the fault diagnosis problem under attack consists in determining
if the operator takes consistent diagnostic decisions based on an uncorrupted
observation s and the corresponding corrupted observation s′, respectively.

In this section, we show that the stealthy joint diagnoser SJ-Diag(G) can
provide a solution to Problem 1. Let us first define the diagnosis pair function
whose purpose is to classify the diagnosis state of SJ-Diag(G).

Definition 8: Let SJ-Diag(G) = (Rs, Ea, δsa, r0) be a stealthy joint diagnoser.
Given a state rs reached in SJ-Diag(G) by the attack word ω ∈ E∗

a , the diag-
nosis pair function

d : Rs → {N,F,U} × {N,F,U}

associates each state rs to a diagnosis pair d(rs) = (γatt(ω), γopr(ω)), where
γatt : E∗

a → {N,F,U} and γopr : E∗
a → {N,F,U} are the attack diagnosis

function and the operator diagnosis function, respectively. ⋄

According to Theorem 1, based on an attack word ω, the diagnostic de-
cision γatt(ω) of Diagatt(G) is equivalent to that of the nominal diagnoser
Diag(G) based on the uncorrupted observation s consistent with the word
ω, i.e., γatt(ω) = γ(s). Likewise, Diagopr(G) makes its diagnostic decision
γopr(ω) = γ(s′), where s′ is the corrupted observation consistent with the word
ω. Therefore, SJ-Diag(G) shows the joint diagnostic decision of the operator
composed by the correct diagnostic decision based on s without attack and the
corrupted diagnostic decision based on s′ in the presence of an attack. Once the
stealthy joint diagnoser has been constructed, fault diagnosis under attack can
be performed by tracking the current stealthy joint diagnoser state in response
to the attack word ω.
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Then we define the set of all diagnosis pairs as D = {N,F,U} × {N,F,U}
that can be classified as

D = Dcorr ∪Dwrng ∪Dharm,

where

� Dcorr = {(N,N), (U,U), (F, F )} is the set of correct diagnosis pair ;

� Dwrng = {(N,U), (N,F ), (U,N), (U,F )} is the set of wrong diagnosis
pair ;

� Dharm = {(F,N), (F,U)} is the set of harmful diagnosis pair.

Definition 9: Let SJ-Diag(G) = (Rs, Ea, δsa, r0) be a stealthy joint diagnoser.
A state rs ∈ Rs is correct if d(rs) ∈ Dcorr, wrong if d(rs) ∈ Dwrng, and harmful
if d(rs) ∈ Dharm. ⋄

The state set Rs of SJ-Diag(G) can be partitioned into correct state set
Rs,corr, wrong state set Rs,wrng, and harmful state set Rs,harm according to
their diagnosis pairs. First, when the SJ-Diag(G) is in a correct state, either
the attack does not corrupt the system’s observation, or the operator makes the
correct diagnostic decisions even if an attack has occurred. In this case, we say
that the attack is ineffective.

Then, when the SJ-Diag(G) reaches a wrong state, the operator makes
wrong diagnostic decisions based on the corrupted observation, which are in-
consistent with the decisions based on the uncorrupted observation. In this case,
due to the attack, the fault diagnosis result is degraded but does not pose a real
danger.

Finally, we define as harmful states of the stealthy joint diagnoser those
states that correspond to a harmful attack, namely those states that correspond
to the detection of the fault in the case of uncorrupted observation, and no
detection in the case of corrupted observation. The set of harmful states can be
partitioned into two classes (the state with d(rs) = (F,N) and d(rs) = (F,U))
in which the attacker has been able to hide the occurrence of a fault during
the system evolution, thus thwarting the operator’s effort. The stealthy joint
diagnoser can be used to identify if an attack is harmful according to the presence
of the harmful states.

Proposition 1: Given a plant G = (X,E, δ, x0) with the set of compromised
events Ecom, let Dharm = {(F,N), (F,U)} be the harmful diagnosis pair set,
and SJ-Diag(G) = (Rs, Ea, δsa, r0) be the stealthy joint diagnoser. There exists
a stealthy corrupting function that is harmful iff Rs,harm ̸= ∅, i.e., the SJ-
Diag(G) may reach a harmful state.

Proof: (If) Assume that there exists a harmful state rs = (xd, x̄d) in SJ-
Diag(G) by executing the attack word ω such that d(rs) = (γatt(ω), γopr(ω)) ∈
Dharm. By Definition 2, there exists an uncorrupted observation s ∈ P (L(G))
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such that ω = f(s). By Theorem 1, we have rs = δ∗sa(r0, ω) = (xd, x̄d) such that
δ∗d(xd,0, s) = xd and δ∗d(xd,0, s

′) = x̄d with s′ = ϕ(s), where ϕ is the corrupting
function. Therefore, there exists a stealthy corrupting function ϕ transforming
the observation s into s′ such that (γ(s), γ(s′)) = (γatt(ω), γopr(ω)) = d(rs) ∈
Dharm, i.e., (γ(s), γ(s′)) ∈ {(F,N), (F,U)}. According to Definition 4, we con-
clude that the corrupting function ϕ is harmful.

(Only if) Assume that there exists a corrupting function ϕ that is harm-
ful. By Definition 4, there exists an observation s ∈ P (L(G)), such that
s can be corrupted into a word s′ = ϕ(s) ∈ P (L(G)), and (γ(s), γ(s′)) ∈
{(F,N), (F,U)}. By s, s′ ∈ P (L(G)), we have δ∗d(xd,0, s) = xd and δ∗d(xd,0, s

′) =
x̄d. Since the stealthy joint diagnoser SJ-Diag(G) includes all the possible
stealthy attacks, according to Theorem 1, there necessarily exists a state rs =
(xd, x̄d) in SJ-Diag(G) by executing word ω = f(s) such that δ∗d(xd,0, s) =
xd and δ∗d(xd,0, s

′) = x̄d. By d(rs) = (γatt(ω), γopr(ω)) = (γ(s), γ(s′)) ∈
{(F,N), (F,U)}, i.e., d(rs) ∈ Dharm, and Definition 9, we conclude that the
state rs is harmful, i.e., Rs,harm ̸= ∅.

Thus, the existence of a harmful state in the stealthy diagnoser is a necessary
and sufficient condition for the existence of a stealthy harmful attack that can
hide the occurrence of a fault.

Example 3: Recall the plant G in Fig. 2(a) and the joint diagnoser J-Diag(G)
in Fig. 5. The stealthy diagnoser SJ-Diag(G) is shown in Fig. 6, where cor-
rect states are highlighted in brown, wrong states are highlighted in blue, and
harmful states are highlighted in green.

Figure 6: Stealthy diagnoser SJ-Diag(G) in Example 3.

Table 1 presents the performance of fault diagnosis during the occurrence
of the attack word ω1 = ac−ccc

n(n ∈ N). When the SJ-Diag(G) reaches the
harmful state ({6F}, {5N, 6F}) by executing ac−c as seen in the second row of
Table 1, the system generates the observation acc and the operator may identify
the corrupted observation ac. In the absence of an attack, the operator is able
to detect the occurrence of a fault. However, due to the erasure of event c by the
attack, the operator is no more sure if the fault has occurred or not. Indeed, as
seen in the third row of Table 1, the fault occurrence cannot be detected by the
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operator until the plant produces the third c, i.e., the uncorrupted observation
is accc.

Table 2 presents the performance of fault diagnosis during the occurrence
of the attack word ω2 = ac−b+de

n(n ∈ N). When the SJ-Diag(G) yields
the harmful state ({7F}, {4N}) by executing ac−b+d as seen in the second
row of Table 2, the observation acd has been transformed into the corrupted
observation abd by a harmful attack. As a result, the harmful attack induces
the operator to draw the incorrect conclusion that the fault has not occurred
based on the corrupted observation abd. Finally, the harmful attack can be
implemented by first erasing the occurrence of event c, and then inserting b+
when the plant generates the uncorrupted observation ac. We notice that the
SJ-Diag(G) will remain in a cycle formed with harmful states associated with
the attack word ω2 = ac−b+de

n(n ∈ N).

Table 1: Fault diagnosis during the occurrence of word ω1 = ac−ccc
n(n ∈ N)

ω rs s s′ d(rs)

ac− ({5N, 6F}, {2N}) ac a (U,N)

ac−c ({6F}, {5N, 6F}) acc ac (F,U)

ac−cc ({6F}, {6F}) accc acc (F, F )

Table 2: Fault diagnosis during the occurrence of word ω2 = ac−b+de
n(n ∈ N)

ω rs s s′ d(rs)

ac−b+ ({5N, 6F}, {3N}) ac ab (U,N)

ac−b+d ({7F}, {4N}) acd abd (F,N)

ac−b+de ({7F}, {4N}) acde abde (F,N)

7 Conclusions and future work

In the presence of an attack, we have considered the fault diagnosis of discrete
event systems, where sensor readings may be corrupted by the attack in the form
of insertions and erasures. In this context, we propose a stealthy joint diagnoser
with the purpose to show how an attacker may affect the operator to perform the
correct online fault diagnosis. Our future research in this framework will focus
on diagnosability analysis under attack. We plan to first formalize the notion of
system diagnosability under attack and and then provide its verification method.
Second, we plan to use the stealthy joint diagnoser to synthesize suitable attacks
that can avoid detection from the operator and result in a violation of system
diagnosability.
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