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Abstract

This paper is about state estimation in a class of labeled timed probabilistic automata. In detail, we consider

continuous time Markov processes where the occurrence of some transitions produces observable events. Such

observations can be used to update and refine the state estimation. In this setting, we discuss how a logical state

estimation approach can be used to characterize the probabilistic state estimation whenever a new event is observed

or when the system evolves without producing new observations (silent closure). The main results of the paper show

that the final behaviour, as the silent closure goes to infinity, cannot be characterized only in terms of the graphical

structure of the underlying automaton but also depends on the values of the firing rates.
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I. INTRODUCTION

In a standard Markov model there is no notion of observed output and the only measurable signal that can be used

for the purpose of state estimation is the current time value t. Starting from a given initial state probability vector

π0 that is assumed to be known, the current state probability vector π(t) can be computed from the knowledge of

the transition rate matrix of the model. Vector π(t) allows one to estimate not only the set to which the current

state belongs but also to obtain a probability measure associated with all possible values. Thus, a necessary and

sufficient condition to ensure that the estimation error goes to zero in probability is the following: the system is

ergodic — i.e., there exists a unique stationary distribution for the probability vector — and this distribution is non-

ambiguous — i.e., it is a standard unit vector.1 Furthermore, there exists a very elegant structural characterization

of this property, namely the underlying graph of the Markov model must consist of a single absorbing component

which contains a single state.

The usual way to include observations in Markov models is to associate them to the states according to

nondeterministic or probabilistic mappings. Such approaches lead to hidden Markov processes or similar models

[13], [23]. In this paper, we consider a different Markovian model, called labeled timed probabilistic automaton

[9], [10], which can be seen as a continuous-time Markov process where some transitions are labeled with symbols

from a given alphabet E of observable events. When such a transition occurs, an observation (e, t) is produced,

where e is the observable event and t is the time of occurrence. This observation mechanism can be used to update

and refine the state probability vector whenever a new event occurs or when time elapses with no observation (silent

closure). In [9], [10] it has been shown that the conditional state probabilities are piecewise continuous signals:

they are continuous when the silent closure increases, and (possibly) present discontinuities each time a new event

is observed.

The goal of this paper is that of better characterizing this evolution, in particular as the silent closure, i.e., the

time interval from the last observation to the current time, increases. To this aim we investigate the relationship

that exists between the state estimation in terms of the conditional state probability vector and the corresponding

logical observation in the underlying untimed automaton. Two main cases are considered: 1) the silent closure is

finite, 2) the silent closure goes to infinity. A simple and quite intuitive result is provided in the first case, which

applies to any labeled timed probabilistic automaton. On the contrary, in the second case the final evolution can be

characterized in terms of the eigenstructure of the generator matrix relative to a special automaton that depends on

the logical observation. We believe that such results are novel and, surprisingly, they show that the state probability

when the silent closure goes to infinity, is not simply related to ergodicity properties of the graphical structure of

the automaton as in the purely logical case.

In our opinion the proposed study has applications in numerous problems related to state estimation and detectability

in a timed probabilistic setting as far as timed observations are captured. Vulnerability and privacy but also cyber

attack detection are concerned at first. We notice that the results presented in this paper may be preliminary to

1A standard unit vector is a vector with a unique nonzero component which must necessarily take a unitary value (since, in our case, we are
dealing with a probability distribution).
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Fig. 1. LTPA in Example 1.

further results in the framework of state estimation and detectability of labeled timed probabilistic automata. This

is surely interesting because most of the contributions in the discrete event systems framework related to such

problems either ignore probabilistic and timing aspects [1], [6], [14], [16], [18], [19], [21], [22] or consider a

probabilistic but untimed setting [7], [8], [15].

II. BACKGROUND

A. Labeled timed probabilistic automata

This section introduces the basic notions about the reference model used in this paper.

Definition 1 (Labeled timed probabilistic automata): A (finite) labeled timed probabilistic automaton (LTPA)

is a 4-tuple G = (X,E,Λ,π0), where:

• X = {x1, x2, . . . , xn} is a finite set of n states;

• E is an alphabet of observable events;

• Λ ⊆ X × Eε × R>0 ×X is the transition relation, where Eε = E ∪ {ε} and ε denotes the empty string on

E, associated with events that are not observable;

• π0 ∈ [0, 1]1×n is an initial probability vector, with
∑
xi∈X π0,i = 1, where π0,i (the i-th entry of vector π0)

refers to the initial probability of state xi. N

The transition relation Λ specifies the dynamics of the LTPA: if (x, e, µ, x′) ∈ Λ, then a transition from state

x to state x′, which we call e-jump, may occur after a random delay θ, counted from the time when the system

enters x. The delay θ follows an exponential distribution with probability density function f(θ) = µ exp(−µθ),

where µ is the rate of the transition. An e-jump generates an observation e when e ∈ E, while no observation is

generated when e = ε (silent transition).

A run of the LTPA G is a trajectory

xj0
e1, τ1−−−−→ xj1

e2, τ2−−−−→ . . .
eK , τK−−−−−→ xjK (1)

where, for i = 1, . . . ,K, (xji−1
, ei, ·, xji) ∈ Λ , τi denotes the time of occurrence of the i-th jump and 0 < τ1 <

τ2 < ... < τK , where times τi are counted from the instant when the system enters xj0 . Such a run determines

a timed sequence st = (e1, τ1)(e2, τ2) . . . (eK , τK) ∈ (Eε × R≥0)∗, consisting of K pairs: st has duration



τlast(st) = τK (time stamp of the last jump) and length |st| = K. The empty sequence, denoted by λ, has duration

and length equal to 0.

A timed sequence st produces a timed observation denoted P (st) and defined as σt = P (st) = (e′1, τ
′
1)

(e′2, τ
′
2) . . . (e′K′ , τ

′
K′) ∈ (E × R≥0)∗ obtained from st by projection P , which filters out all silent pairs. The

observation has duration τlast(σt) = τ ′K′ and length |σt| = K ′. More specifically, P : (Eε×R≥0)∗ → (E×R≥0)∗

is formally defined by (i) P (λ) = λ, (ii) P ((e, τ)) = (e, τ) for e ∈ E and P ((ε, τ)) = λ, (iii) P (st(e, τ)) =

P (st)P ((e, τ)) for st ∈ (Eε × R≥0)∗ and (e, τ) ∈ Eε × R≥0.

We use σ = H(σt) = e′1e
′
2 . . . e

′
K′ ∈ E∗ to denote the logical observation sequence associated with σt, where

H filters out the timing information.

A timed sequence st and a time tf ≥ τlast(st) define a timed evolution (st, tf ) ∈ (Eε × R≥0)∗ × R≥0 of

duration tf . Such a timed evolution includes a silent closure of duration tf − τlast(st) during which no further

jump occurs. The observed timed evolution corresponding to (st, tf ) is (σt, tf ) = (P (st), tf ), which also includes

a silent closure of duration tε = tf − τlast(σt), during which no further observable jump occurs. We denote by

Ls(G) (resp., Lσ(G)) the set of timed evolutions (resp., the set of observed timed evolutions) corresponding to runs

which start from an initial state, i.e., a state with nonzero initial probability.

Example 1: Figure 1 shows a graphical representation of an LTPA with X = {x1, x2, x3, x4, x5}, alphabet E =

{a, b}, π0 = [1 0 0 0 0] and transition relation Λ = {(x1, a, µa, x3), (x1, ε, µ, x2), (x3, a, µa, x3), (x2, a, µa, x4),

(x4, ε, µ, x5), (x5, b, µ, x5)}. A possible run starting from the initial state x1 is

x1
ε, 0.5−−−→ x2

a, 2−−→ x4
ε, 4−−→ x5

which determines timed sequence st = (ε, 0.5)(a, 2)(ε, 4) of duration τlast(st) = 4 and length |st| = 3. The

corresponding observation σt = P (st) = (a, 2) has duration τlast(σt) = 2, length |σt| = 1 and logical sequence

H(σt) = a. At current time tf = 6, the previous run determines a timed evolution (st, tf ) = ((ε, 0.5)(a, 2)(ε, 4), 6)

with a silent closure of duration 6− 4 = 2, and an observed evolution (σt, tf ) = ((a, 2), 6) with a silent closure of

duration 6− 2 = 4. �

B. Eigenstructure of matrices

This section contains a series of elementary definitions of linear algebra. Given a real matrix Q of order n, we

denote by spec(Q) the set of its eigenvalues and by abs(Q) = max{Re(ζ) | ζ ∈ spec(Q)} the maximum among

the real parts of the eigenvalues of Q İn addition, for any eigenvalue ζ of Q, we use ν(ζ) to denote the algebraic

multiplicity of ζ and νgeo(ζ) the geometric multiplicity of ζ, i.e., the number of blocks associated to ζ in the Jordan

form of Q [2], [20].

Assume matrix Q has a Jordan form consisting of k blocks. Given a block i ∈ {1, , . . . , k} we can associate

with it an eigenvalue ζi, a left eigenvector v(0)
i and a chain of generalized left eigenvectors of length hi

v
(hi−1)
i −→ v

(hi−2)
i −→ . . . −→ v

(0)
i .



Then, a basis2 V of Rn is defined, consisting of the generalized left eigenvectors of the k chains

V =

k⋃
i=1

{
v

(hi−1)
i ,v

(hi−2)
i , . . . ,v

(0)
i

}
. (2)

Note that such a basis always exists and
∑k
i=1 hi = n. Multiple chains may be associated to the same eigenvalue,

i.e., i, i′ ∈ {1, . . . k} and i 6= i′ does not necessarily imply ζi 6= ζi′ .

III. STATE ESTIMATION FOR LTPA

In this section we focus on the problem of state estimation for LTPA. In particular, in the first subsection we

consider the problem of state estimation only looking at the logical sequence that is generated during the system

evolution. The solution is based on the notion of state observer, which corresponds to the deterministic finite

automaton (DFA) equivalent to the original non deterministic finite automaton (NFA). In the second subsection we

show how to compute the conditional state probability vector relative to a given observed timed evolution.

A. Logical state estimation via observer

Given an LTPA G, let us first define the support of a probability vector.

Definition 2 (Support): Given an LTPA G with set of states X and state probability vector π, the support of π

is the subset of states X (π) = {xi ∈ X | πi > 0}, having nonzero probability. N

An LTPA G can be associated with an underlying NFA AG defined as follows.

Definition 3 (Underlying NFA associated to G): Let G = (X,E,Λ,π0) be an LTPA. The underlying nonde-

terministic finite automaton associated to G is the 4-tuple AG = (X,E,∆G, X0), where

• ∆G = {(x, e, x′) | (x, e, ·, x′) ∈ Λ} ⊆ X × Eε ×X is the transition relation;

• X0 = X (π0) is the set of initial states. N

In simple words, AG is obtained from G by disregarding the firing rates in the transition relation as well as the

initial probabilities associated with the initial states.

In the literature about discrete event systems, a fundamental notion for the state estimation of an NFA is that of

an observer, i.e., the DFA equivalent to the NFA [3]. Here we point out that the observer of the underlying NFA

AG can be used for state estimation ignoring the timing/probabilistic aspects: we call this automaton the logical

observer of G and denote it by OG. Each state of the logical observer is a subset of states of AG, hence of states

of G. Given AG = (X,E,∆, X0), a subset X ′ ⊂ X and an event e ∈ E we first denote:

• Dε(X
′) ⊆ X: the set of states reachable in AG from states in X ′ by executing zero or more ε-transitions;

• De(X
′) ⊆ X: the set of states reachable in AG from states in X ′ by executing exactly one e-transition.

The logical observer is formally defined as follows.

Definition 4 (Logical observer of G): The logical observer of an LTPA G with underlying NFA AG =

(X,E,∆, X0) is defined as a DFA OG = (XL, E, δL, xL,0) where:

2A complex conjugate pair of eigenvalues ζ, ζ′ can be associated with a complex conjugate pair of eigenvectors v,v′ = u ± jw. In V ,
complex vectors v,v′ can be replaced by real vectors u,w [5].



• XL ⊆ 2X is the set of observer states;

• E is the alphabet;

• δL is the transition function defined for all xL ∈ XL and e ∈ E by δL(xL, e) = Dε(De(xL)) if Dε(De(xL)) 6=

∅; otherwise δL(xL, e) is undefined;

• xL,0 = Dε(X0) is the observer initial state. N

The initial state of OG is defined as the set of states reachable from an initial state of AG by executing zero or

more ε-transitions. Then, all other states can be iteratively computed. By searching the observer states that have

cardinality equal to 1, i.e., they are of the form xL,k = {xi}, one can provide the conditions to estimate exactly

the LTPA state, based only on the logical information H(σt) of a given timed observation.

B. Probabilistic state estimation via probability vector

In an LTPA, as in a classical Markov chain [12], it may be possible to compute, for tf ≥ 0, the a priori

probabilities πi(tf ) that the system is in state xi ∈ X at time tf , given an initial probability vector π0. In the next,

we do not report the dependence to π0 when no confusion exists.

Definition 5 (A priori state probability vector): Given a state xi ∈ X , πi(tf ) is the probability to be in state xi

at time tf ignoring the observation of the timed sequence σt. Consequently, π(tf ) is defined as the unconditional

probability vector. N

If we denote by µ(xi, xj) the sum of the rates of the transitions from state xi to state xj ,

µ(xi, xj) =
∑

(xi,e,µ,xj)∈Λ

µ, (3)

the vector π(tf ) can be computed as [9], [12]:

π(tf ) = π(0) · exp(Qtf ) (4)

where the transition rate matrix (also known as generator matrix) Q = {qi,j} has elements: qi,j = µ(xi, xj) for

j 6= i and qi,i = −
∑
j 6=i qi,j for all i.

For an LTPA, however, we can exploit the additional information deriving from the observed evolution to update

a posteriori the state probability vector.

Definition 6 (Conditional state probability vector): Given an observed timed evolution (σt, tf ) and a state

xi ∈ X , πi(σt, tf ) is the probability to be in state xi at time tf conditioned by the observation of timed sequence

σt. Consequently, π(σt, tf ) is defined as the conditional probability vector.

The maximal conditional state probability at time tf is denoted by ρ(σt, tf ) = max{πi(σt, tf ) | xi ∈ X}. N

The conditional probability vector π(σt, tf ) can be formally computed in an iterative way by considering the

extended ε-sub chain of G and the set of e-transition matrices, e ∈ E as described in [9], [10]. Note that when

no event is observable, i.e., Lσt(G) = {(λ, tf ) | tf ∈ R≥0} then the a posteriori probability vector π(σt, tf )

coincides with the a priori probability vector π(t) solution of Eq. (4) (where the entries of matrix Q are given by

(3) with e = ε).
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Fig. 2. The logical observer for the LTPA in Figure 1 for π0 = [1 0 0 0 0].

We conclude this section discussing how the conditional state probability vector can be used for the purpose of

state estimation. Given an LTPA G, after observing evolution (σt, tf ) one wants to estimate the set of consistent

states, i.e., the set of states where G could be at time tf . Given an observed evolution (σt, tf ), the set of states

consistent with this observation is X (π(σt, tf )), i.e., the support of the corresponding a posteriori probability

vector. In addition, if the maximal state probability is ρ(σt, tf ) = 1, then necessarily there exists a state xi∗ such

that X (π(σt, tf )) = {xi∗} and the state can be correctly estimated at time tf .

Example 2: Consider again the LTPA G in Figure 1 with initial distribution π0 = [1 0 0 0 0]. The logical

observer is shown in Figure 2. Let µa = µ = 1. Let σt = (a, 1)(a, 4) be a timed sequence of observations, and

tf = 5 be the final time instant of observation. The components πi(σt, tf ), i = 1, 2, 3, 4, 5 of the conditional

probability vector vary with respect to time as shown in Figure 3. Finally, Figure 4 shows how the support of such

probability vector changes with respect to time during the time intervals (0, 1), (1, 4) and (4, 5]. In particular, it

shows how the support of the conditional probability vector in such time intervals is related to the states of the

logical observer in Figure 2. Note that after the second observation of a the state is perfectly reconstructed; thus,

the maximal state probability is equal to ρ(σt, t) = 1, ∀t ∈ [4, 5]. �

IV. PROBABILISTIC VS. LOGICAL ESTIMATION

The relation between probabilistic and logical state estimation for LTPAs, which we have previously defined, is

discussed in this section.

One can immediately verify that an LTPA G admits a timed observed evolution (σt, tf ) ∈ Lσ(G) with σt =

(e1, τ1)(e2, τ2) . . . (eK , τK) if and only if its logical observer OG admits an evolution3:

xL = δ∗L(xL,0, H(σt)) ∈ XL,

where sequence H(σt) = e1e2 . . . eK ∈ E∗ and xL is some state in XL. In the following, we discuss how the

conditional probability vector π(σt, tf ) is related to such a state xL = δ∗L(xL,0, H(σt)), thus characterizing the

evolution of the probabilistic state estimate.

3Here δ∗L : X × E∗ → X denotes the transitive and reflexive closure of transition function δL : X × E → X .
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Fig. 4. The support of the conditional probabilities in Figure 3 as a function of the states of the logical observer in Figure 2 during the time
intervals (0, 1), (1, 4) and (4, 5].

For a given timed observed sequence σt, we will consider all possible timed evolutions (σt, tf ) for a finite final

time tf ∈ [τlast(σt),∞) or, equivalently, for an ε-closure tε = tf − τlast(σt) ∈ [0,∞). The limit as tε →∞ will

also be discussed.

A. Finite tε ∈ [0,∞)

The following lemmata describe how the support of the conditional probability vector is related to the observer

structure when no event has occurred yet (Lemma 1) and when a new event occurs (Lemma 2).

Lemma 1: Given an LTPA G = (X,E,Λ,π0) with logical observer OG = (XL, E, δL, xL,0) and an observed

timed evolution (λ, tf ) ∈ Lσ(G), it holds:

(i) tf = 0 =⇒ X (π(λ, 0)) = X (π0) ⊆ xL,0;



(ii) tf > 0 =⇒ X (π(λ, tf )) = xL,0.

Proof. If tf = 0 then π(λ, 0) = π0 and X (π(λ, 0)) = X (π0) = X0 ⊆ Dε(X0) = xL,0 according to the definition

of logical observer. If tf > 0 then in the interval [0, tf ] any arbitrary sequence of unobservable jumps may have

occurred (due to the exponential distribution of the delays). Thus the states of G with a nonzero probability are

exactly the states of the underling NFA AG associated with G that are reachable from a state in X0 with zero or

more ε-transitions. Thus, X (π(λ, tf )) = Dε(X0) = xL,0.

Lemma 1 claims that for an empty observation (λ, tf ) the set of states with nonzero probabilities is a subset of

the initial state of the logical observer xL,0 at tf = 0 and is equal to xL,0 for tf > 0.

Lemma 2: Given an LTPA G = (X,E,Λ,π0) with logical observer OG = (XL, E, δL, xL,0), consider an

observed timed evolution (σt, tf ) ∈ Lσ(G) with σt = σ′t (e, τ). If one defines x′L = δ∗L(xL,0, H(σ′t)) and xL =

δ∗L(xL,0, H(σt)) it holds:

(i) tf = τlast(σt) =⇒ X (π(σt, tf ) = De(x
′
L) ⊆ xL;

(ii) tf > τlast(σt) =⇒ X (π(σt, tf )) = xL.

Proof. We first consider the particular case σ′t = λ. The occurrence time of event e is τ > τlast(λ) (= 0) according

to Eq. (1). This means that just before event e occurs, the probability vector has support X (π(σ′t, τ
−)) = x′L,

according to Lemma 1.(ii). Now at time τ a single transition labeled e occurs, hence: X (π(σ, τ)) = De(x
′
L) ⊆

Dε(De(x
′
L)) = xL according to the definition of logical observer, thus proving (i). When tf > τ in the interval

(τ, tf ] any arbitrary sequence of unobservable jumps may have occurred and, as in the proof of the previous lemma,

we can claim that X (π(σt, tf )) = Dε(De(x
′
L)) = xL, thus proving also (ii). Iterating on the length of σ′t, we can

prove Lemma 2 for observation sequences of arbitrary length.

Lemma 2 claims that each time a new event e is observed after a previous sequence σ′t, the set of states with

nonzero probabilities is the set of states that can be reached by the occurrence of an e-transition from states in the

observer state consistent with the logical sequence H(σ′t). Immediately after, however, as time progresses without

any new event observation, the set of states with nonzero probabilities coincides with the observer state consistent

with the observed logical sequence H(σt) = H(σ′t e).

Example 3: Consider again the LTPA G in Figure 1 with initial distribution π0 = [1 0 0 0 0] and let σt = (a, 1)

be a timed sequence of observations. At time t = 1 the state probability vector switches to π(σt, 1) = [0 0 π3 π4 0]

with π3, π4 > 0 and π3 + π4 = 1 and whose support satisfies X (π(σt, 1)) = {x3 x4} and is included in the

observer state xL,1 = {x3, x4, x5}. Then, an arbitrarily small amount of time dt later, as shown in Figure 3, the

probability vector π(σt, 1 + dt) has support X (π(σt, 1 + dt)) = {x3, x4, x5} that coincides with the observer state

xL,1. �

B. Limit as tε →∞

Let xL be a state of the logical observer OG and let π be an arbitrary probability vector of G such that X (π) = xL.

Let π′ be the vector of dimension |xL| obtained by projecting π on its support xL. We define MxL
∈ {0, 1}|X|×|xL|



to be the matrix of binary entries such that π′ = π ×MxL
. In detail, we first order the states in xL according

to the enumeration used for X = {x1, x2, . . . , xn}. Then, mi,j , i.e., the element of MxL
at row i and column j,

equals 1 if the jth state in xL is xi, and equals 0 otherwise. Observe that this also implies that π = π′× (MxL
)T .

Definition 7 (xL-equivalent LTPA): Given an LTPA G = (X,E,Λ,π0) and an observed timed sequence σt,

let xL = δ∗L(xL,0, H(σt)) be the state of the logical observer OG consistent with σt. The xL-equivalent LTPA is

defined by G′ = (xL, E,Λ
′,π′0) where:

• Λ′ = {(x, ε, µ, x̄) ∈ Λ | x, x̄ ∈ xL} ∪ {(x, e, µ, x) | x ∈ xL, e ∈ E, (x, e, µ, x̄) ∈ Λ};

• π′0 = π(σt, τlast(σt))×MxL
. N

In other words, the structure of G′ is obtained from G by i) changing the arrival state of any observable transition

emanating from a state x ∈ xL so that it is self-looped on x; ii) removing all states in X \ {xL} and their input

and output transitions. The initial probability vector of G′ is the projection on xL of the vector π(σt, τlast(σt)) of

G.

To compute π′(λ, tf ), we adapt here the method initially proposed in [9], [10]. For this purpose, we define the

xL-equivalent LTPA generator as the | xL | × | xL | real matrix QxL
= {qi,j} where

• each off-diagonal element qi,j is equal to the sum of the rates of ε-transitions in G′ from xi to xj , or is equal

to 0 if no such a transition exists:

qi,j =
∑

(xi,ε,µ,xj)∈Λ′

µ, i, j ∈ {1, . . . , | xL |}, i 6= j;

• each diagonal element is equal to the negative of the sum of the rates of all transitions in G′ emanating from

xi, or is equal to 0 if no such a transition exists

qi,i = −
∑

(xi,e,µ,x)∈Λ′

µ, i ∈ {1, . . . , | xL |}.

Lemma 3: Consider an xL-equivalent LTPA G′ with initial probability vector π′0 and generator QxL
. Let V be

a basis of left generalized eigenvectors of QxL
composed by k chains as detailed in Eq. (2). The state probability

vector at time tf assuming no event is observed in [0, tf ] is

π′(λ, tf ) =

k∑
i=1

hi−1∑
j=0

βi,j

(
j∑
p=0

(tf )p

p!
exp(ζit)v

(j−p)
i

)
∣∣∣∣∣∣
∣∣∣∣∣∣
k∑
i=1

hi−1∑
j=0

βi,j

(
j∑
p=0

(tf )p

p!
exp(ζit)v

(j−p)
i

)∣∣∣∣∣∣
∣∣∣∣∣∣
1

, (5)

where parameters βi,j ∈ R, i = 1, ..., k, j = 0, ..., hi − 1 are the components of the initial probability vector π′0

expressed in basis V:

π′0 =

k∑
i=1

hi−1∑
j=0

βi,jv
(j)
i . (6)

Proof. The state probability vector π′(λ, tf ) can be computed thanks to the xL-equivalent LTPA G′ [9], [10]



π′(λ, tf ) =
π′0 exp(QxL

tf )

||π′0 exp(QxL
tf )||1

.

Using the notations introduced in Section II.B, for any generalized left eigenvector v(j)
i , j = 0, . . . , hi− 1, of QxL

,

it holds:

v
(j)
i exp(QxL

tf ) =

j∑
p=0

(tf )p

p!
exp(ζit)v

(j−p)
i (7)

i.e., any evolution that starts from a generalized eigenvector of the chain of rank j will contain (and only contain)

components along all the generalized eigenvectors of the chain of rank j or lower, i.e., v(j)
i ,v

(j−1)
i , . . . ,v

(0)
i . Then,

replacing in π′0 exp(QxL
tf ) the vector π′0 by Eq. (6) and using in addition Eq. (7), it holds,

π′0exp(QxL
tf ) =

∑k
i=1

∑hi−1
j=0 βi,jv

(j)
i exp(QxL

tf )

=
∑k
i=1

∑hi−1
j=0 βi,j

(∑j
p=0

(tf )p

p! exp(ζitf )v
(j−p)
i

)
.

Equation (5) results consequently.

In addition, matrix QxL
has interesting properties that are summed up in Lemma 4.

Lemma 4: Matrix QxL
satisfies the following properties:

(a) QxL
has a real and non-positive eigenvalue ζF = abs(QxL

), called Frobenius eigenvalue.

(b) For any other eigenvalue ζ 6= ζF it holds that Re(ζ) < ζF . Note however that ζF may have multiplicity greater

than one.

(c) The left and right eigenvectors associated to ζF can be chosen non-negative.

(d) If QxL
is irreducible then ζF is a simple eigenvalue and these eigenvectors can be chosen positive: they are

called dominant eigenvectors.

Proof. By construction, the generator QxL
of the xL-equivalent LTPA is a diagonally dominant Metzler4 matrix

with non-positive diagonal elements. There exist a non-negative matrix P and a real α ∈ R such that QxL
= P+αI .

This implies that the eigenstructures of QxL
and P are closely related: v is an eigenvector of QxL

associated to

eigenvalue ζ if and only if v is an eigenvector of P associated to eigenvalue ζ − α. Based on this observation, it

is not difficult to show that properties (a), (b), (c) and (d) follow from Perron-Frobenius theorem [2], [20].

To determine the final probability vector as tf → ∞ we need to identify the dominant terms in Eq. (5), which

may depend on the initial probability vector.

Let us introduce some notations.

Definition 8: Consider an xL-equivalent LTPA G′ whose initial probability vector π′0 is expressed as in Eq. (5).

We define the set
B(π′0) = {(i, j) ∈ N2 | βi,j 6= 0 ∧ 6 ∃(i′, j′) ∈ N2

with βi′,j′ 6= 0 and Re(ζi′) > Re(ζi)},

4A matrix is Metzler if all its non-diagonal elements are non-negative.



containing the indices of non-null coefficients β’s in Eq. (6) associated with the dominant abscissa eigenvalues. We

also define

jsup = max {j ∈ N | (∃i ∈ N) (i, j) ∈ B(π′0)},

the rank of generalized eigenvectors associated with a dominant term in Eq. (5) and

I = {i ∈ N | (i, jsup) ∈ B(π′0)},

the set of indices of chains associated with a dominant term in Eq. (5). N

Note that in the previously defined set I , for all i ∈ I , it holds that eigenvalues ζi have the same real part.

The following propositions provide sufficient conditions for the existence of a final probability vector as tf →∞.

Proposition 1: Assume there exists a coefficient βi,j > 0 with ζi = ζF in Eq. (6), i.e., the initial probability

vector has a non-null component along one of the generalized eigenvectors associated to the Frobenius eigenvector.

Then for all i ∈ I it holds that ζi = ζF and

lim
tf→∞

π′(λ, tf ) =

∑
i∈I

βi,jsup
v

(0)
i∣∣∣∣∣

∣∣∣∣∣∑
i∈I

βi,jsup
v

(0)
i

∣∣∣∣∣
∣∣∣∣∣
1

. (8)

where I and jsup are given in Definition 8.

Proof : The Frobenius eigenvalue is the unique abscissa dominant eigenvalue and since by assumption there exists

i∗ ∈ I with ζi∗ = ζF , it holds that ζi = ζF for all i ∈ I . Being ζF real, there are no dominant complex eigenvalues

in (5), hence its limit as tf →∞ exists and is given by (8).

Proposition 2: Assume there exists a coefficient βi,j > 0 with ζi = ζF in Eq. (6). Assume eigenvector ζF has

geometric multiplicity νgeo = 1. Then it admits a unique5 left eigenvector vF and

lim
tf→∞

π′(λ, tf ) =
vF
||vF ||1

.

Proof : Follows from Eq. (8), because in this case |I| = 1.

Example 4: Consider again the LTPA G in Figure 1, its logical observer in Figure 2 and the xL,1-equivalent

LTPA detailed in Figure 5. The generator matrix is

QxL
=


−µa 0 0

0 −µ µ

0 0 −µ


with eigenvalues ζ1 = −µa and ζ2 = −µ. Eigenvalue ζ1 has eigenvector v(0)

1 = [ 1 0 0 ]. A chain of length 2 is

associated with eigenvalue ζ2, with eigenvector v(0)
2 = [ 0 0 1 ] and generalized eigenvector v(1)

2 = [ 0 1 0 ].

5Modulo a multiplicative constant.



x3 x4 x5

µ : εµa : a µ : b

Fig. 5. xL,1-equivalent LTPA for Example 1.

Observer state xL,1 is only reachable from observer state xL,0 upon the occurrence of event a. Thus the xL,1-

equivalent LTPA has initial state π′0 = [ π3,0 π4,0 π5,0 ] with π3,0, π4,0 > 0 and π5,0 = 0, since Da(xL,0) =

{x3, x4}. This implies that

π′0 = β1,0v
(0)
1 + β2,1v

(1)
2 (9)

with β1,0, β2,1 > 0. We need to discuss three possible cases.

• Case 1: µa < µ. This means ζF = ζ1, and this eigenvalue has geometric multiplicity νgeo = 1 (only one chain

is associated with it). By Proposition 2, it follows that

lim
tf→∞

π′(λ, tf ) =
v

(0)
1∣∣∣∣∣∣v(0)
1

∣∣∣∣∣∣
1

= v
(0)
1 .

• Case 2: µa > µ. This means ζF = ζ2, and again the Frobenius eigenvalue has geometric multiplicity νgeo = 1

(only one chain). By Proposition 2, it follows that

lim
tf→∞

π′(λ, tf ) =
v

(0)
2∣∣∣∣∣∣v(0)
2

∣∣∣∣∣∣
1

= v
(0)
2 .

• Case 3: µa = µ. This means ζF = ζ1 = ζ2 and this eigenvalue has geometric multiplicity νgeo = 2, thus two

chains are associated with it: {v(0)
1 ;v

(1)
2 −→ v

(0)
2 }. From Eq. (9), we get B(π′0) = {(1, 0), (2, 1)}, I = {2}

and jsup = 1. This means that the unique dominant mode is t · exp(−µt). By Proposition 1, it follows that

lim
tf→∞

π′(λ, tf ) =
β2,1 v

(0)
2∣∣∣∣∣∣β2,1 v
(0)
2

∣∣∣∣∣∣
1

= v
(0)
2 .

These results are consistent with the state probability evolution shown in Fig. 3, corresponding to rates µa = µ =

1. After (a, 1) has been observed and before the occurrence of observation (a, 4), the logical observer is in state

xL,1 = {x3, x4, x5}. Hence during the interval t ∈ [1, 4), we expect that the probabilities of all states x 6∈ xL,1 be

null, while according to Eq. (9) it holds that π5(1) = 0. Fig. 3 also shows, as discussed in Case 3 above, that when

the silent closure increases, the probability vector π′(λ, t) = [ π3(t) π4(t) π5(t) ] tends to v(0)
2 = [ 0 0 1 ]. �

In this example, the computation of the final probability vector does not depend on the initial probability vector

π′0 and is fully determined by the eigenstructure of the xL-equivalent LTPA.

V. CONCLUSIONS AND FUTURE WORK

This paper has discussed logical and probabilistic aspects of state estimation for a class of labeled timed

probabilistic automata. In particular, some results have been proposed to characterize the evolution of the conditional



state probability in two situations: immediately after an observation or when no additional observation is collected

in the long run.

In our further work, we will improve such conditions and introduce timed detectability notions for timed

probabilistic automata. In particular, we are interested in conditions which imply that the state probability vector

reaches a non-ambiguous stationary distribution at some observations or tends to such a distribution when no

observation occurs during a sufficiently long duration.
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