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Abstract: This work describes a novel control protocol for multi-agent systems to solve the
dynamic max-consensus problem. In this problem, each agent has access to an external time-
varying scalar signal and has the objective to estimate and track the maximum among all these
signals by exploiting only local communications. The main strength of the proposed protocol
is that it is able to self-tune its internal parameters in order to achieve an arbitrary small
steady-state error without significantly affecting the convergence time. We employ the proposed
protocol in the context of distributed graph parameter estimations, such as size, diameter, and
radius, and provide simulations in the scenario of open multi-agent systems.
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1. INTRODUCTION

In the context of multi-agent systems, there has been a
significant interest in the design of distributed algorithms
to solve the so-called consensus or agreement problem.

Problem of interest and motivation. The consensus
problem consists in the design of local interaction rule
driving the agents to agree upon a common value of inter-
est. Historically, such common value has been considered
to be a function of the initial state of the agents. More
recently a variation of the problem that goes by the name
of dynamic consensus problem has been considered, where
the agents are required to converge to a state value which
is a function of local time-varying reference signals fed to
the agents. The current literature has paid major attention
to the average value, for which Kia et al. (2019) have
provided an insightful tutorial paper, but also other quan-
tities have received some attention, such as the median
value (Sanai Dashti et al., 2019; Vasiljevic et al., 2020),
and the max/min value (Deplano et al., 2021b).

In a recent paper (Deplano et al., 2021b) we considered
the previously unexplored dynamic max/min-consensus
problem, which is also the focus of this paper. We propose
an improved protocol for dynamic max/min-consensus
that allows the designer to decouple convergence rate and
steady-state error: this provides a way to jointly increase
convergence rate and decrease steady-state error. Applica-
tions of max/min-consensus protocols are various and di-
versified, including monitoring and optimization (Iutzeler
et al., 2012); distributed synchronization, such as time-
synchronization (Dengchang et al., 2013) and target track-
ing (Petitti et al., 2011); network parameter estimation,
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such as cardinality (Lucchese et al., 2015), diameter and
radius (Garin et al., 2012; Oliva et al., 2016; Deplano et al.,
2021a), as well as highest/lowest node degree (Borsche and
Attia, 2010).

Related literature. The standard max-consensus pro-
tocols can be traced back to the works of Tahbaz-Salehi
and Jadbabaie (2006) and Cortés (2008), in continuous-
time and discrete-time frameworks, respectively. Since
then, different approaches and settings were considered,
such as switching topologies (Nejad et al., 2010), second-
order dynamics (Zhang and Li, 2018), asynchronous, de-
layed and noisy communications (Agrawal et al., 2019;
Muniraju et al., 2019), gossip-based or randomized ap-
proaches (Iutzeler et al., 2012; Franceschelli and Gasparri,
2019), as well as open multi-agent systems (Abdelrahim
et al., 2017), anonymous and resilient networks (Wang
et al., 2018; Muniraju et al., 2019; Shang, 2020). The dy-
namic version of the max-consensus problem has recently
been studied by us in (Deplano et al., 2021b), wherein two
protocols are presented: one achieves bounded tracking
and steady-state error, while the other one achieves zero
steady-state error but requires a high memory burden.

Main contributions. In this paper, we provide a self-
tuning version of the protocol we have previously proposed
in (Deplano et al., 2021b) to solve the dynamic max-
consensus problem. The main novel features are:

• Tracking and steady-state errors are decoupled by
design;

• The protocol achieves bounded steady-state error
that can be made arbitrarily small;

• The protocol achieves bounded tracking error that
can be traded-off for improved convergence time;

• The memory burden does not increase with the di-
mension of the network.
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As a second contribution, we employ the proposed protocol
in the context of open multi-agent systems in order to es-
timate and track some important time-varying parameters
of the network, such as the number of agents, the radius,
and the diameter. More precisely, we equip the algorithms
proposed in (Deplano et al., 2021a) and (Deplano et al.,
2021b) with the protocol proposed in this paper achieving
the following improvements:

• The size-estimation technique employed in (Deplano
et al., 2021b) is highly sensitive to the steady-state
error of the dynamic max-consensus protocol, a prob-
lem that is completely solved by employing the pro-
tocol proposed in this paper.

• The radius/diameter estimation technique employed
in (Deplano et al., 2021a) does make use of a static
version of the max-consensus protocol, which requires
a centralized step. The implementation of the novel
protocol allows to avoid such a centralized step and
enables the employment of the algorithm in the case
of open multi-agent systems.

Structure of the paper. After introducing the nota-
tion used throughout the paper along with some theoret-
ical preliminaries, Section 2 first formalizes the dynamic
max/min-consensus problem and the main working as-
sumptions, then it presents our self-tuning dynamic max-
consensus (STDMC) protocol along with its theoretical
characterization. Section 3 provides numerical simulations
validating the theoretical characterization and employ the
STDMC Protocol in the context of graph parameter es-
timation for open and time-varying network of agents.
Concluding remarks are given in Section 4.

2. SELF-TUNING DYNAMIC MAX-CONSENSUS
(STDMC) PROTOCOL

2.1 Notation and Preliminaries

We denote by R and N the sets of real numbers and positive
integer numbers, respectively. Maximum and minimum of
an n-elements vector u = [u1, . . . , un]

ᵀ, are denoted by

u = max
i=1,...,n

ui, u = min
i=1,...,n

ui. (1)

We consider networks modeled by undirected graphs
G = (V,E), where V = {1, . . . , n} with n ∈ N is the set of
nodes, and E ⊆ V × V is the set of edges connecting the
nodes. The state and the input of the i-th agent are scalars
and are denoted by xi ∈ R and ui ∈ R, respectively.

A path between two nodes i, j ∈ V in a graph is a sequence
of consecutive edges πij = (i, p), (p, q), . . . , (r, s), (s, j)
where each successive edge shares a node with its predeces-
sor. An undirected graph G is said to be connected if there
exists a path πij between any pair of nodes i, j ∈ V . The
diameter δG of a graph G is defined as the length (number
of edges) of the longest shortest path between any pair of
nodes in the graph.

Nodes i and j are neighbors if there exists an edge
(i, j) ∈ E, which represents a point-to-point communica-
tion channel between nodes i and j. The set of neighbors of
the i-th node is denoted by Ni = {j ∈ V : (i, j) ∈ E}. For
sake of simplicity, we consider graphs without self-loops,
i.e., i �∈ Ni, and define N ◦

i = Ni ∪ {i}.

2.2 Problem statement and working assumptions

Consider a network of n agents modeled as discrete-
time dynamical systems with scalar state xi ∈ R for
i = 1, . . . , n. The i-th agent has access to a scalar time-
varying reference signal ui ∈ R and interacts with other
agents according to an undirected graph G = (V,E) and a
local interaction rule

xi(k) = fi(ui(k), xj(k − 1) : j ∈ N ◦
i ). (2)

The dynamic max-consensus problem consists in the design
of proper local interaction rules fi(·) for estimating and
tracking the maximum u(k) ∈ R among the time-varying
reference signals. The performance can be expressed in
terms of the convergence time and the tracking error

e(k) = max
i∈V

|xi(k)− u(k)|. (3)

Our only assumption concerns the boundedness of the
reference signals’ variation, which is deemed a reasonable
assumption in the dynamic consensus literature. We define
the variation of the reference signals in one step as

∆ui(k) = ui(k)− ui(k − 1), ∀i ∈ V. (4)

and, in a similar way, we define the variation of the
maximum among the reference signals as

∆u(k) = u(k)− u(k − 1). (5)

Assumption 1. The absolute variation of the reference
signals in one step is bounded by a constant Π ≥ 0, i.e.,

|∆ui(k)| ≤ Π, ∀i ∈ V, ∀k ≥ 0. (6)

If the reference signals are sampled versions of continuous-
time signals, then by increasing the sampling frequency
their variation in one iteration is reduced. Thus, for any
signal with bounded variation there exists a sampling
frequency such that Assumption 1 is also satisfied. We
refer the interested reader to Remark 1 at the end of
Section 2.3 for a discussion about the case when the bound
on the input variation is not known a-priori, but it can be
estimated in a distributed way by the agents.

2.3 Proposed self-tuning protocol

When the reference signals are assumed to be constant
over time, i.e., u(k) = u(0) for all k ∈ N, the problem can
be recast as a standard max-consensus problem by

xi(k) = max
j∈N◦

i

{xj(k − 1)}, xi(0) = ui(0), (7)

which has been proved to converge in finite-time and with
zero error (Tahbaz-Salehi and Jadbabaie, 2006). Instead,
when the reference signals are assumed to be time-varying,
the strategy we have previously proposed (Deplano et al.,
2021b) modifies the above interaction rule into

xi(k) = max
j∈N◦

i

{
xj(k − 1)− α, ui(k)

}
. (8)

where α > 0 is a design parameter. Such protocol has been
proved to converge in finite-time and with bounded error,
both depending on the parameter α. More precisely, the
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As a second contribution, we employ the proposed protocol
in the context of open multi-agent systems in order to es-
timate and track some important time-varying parameters
of the network, such as the number of agents, the radius,
and the diameter. More precisely, we equip the algorithms
proposed in (Deplano et al., 2021a) and (Deplano et al.,
2021b) with the protocol proposed in this paper achieving
the following improvements:

• The size-estimation technique employed in (Deplano
et al., 2021b) is highly sensitive to the steady-state
error of the dynamic max-consensus protocol, a prob-
lem that is completely solved by employing the pro-
tocol proposed in this paper.

• The radius/diameter estimation technique employed
in (Deplano et al., 2021a) does make use of a static
version of the max-consensus protocol, which requires
a centralized step. The implementation of the novel
protocol allows to avoid such a centralized step and
enables the employment of the algorithm in the case
of open multi-agent systems.

Structure of the paper. After introducing the nota-
tion used throughout the paper along with some theoret-
ical preliminaries, Section 2 first formalizes the dynamic
max/min-consensus problem and the main working as-
sumptions, then it presents our self-tuning dynamic max-
consensus (STDMC) protocol along with its theoretical
characterization. Section 3 provides numerical simulations
validating the theoretical characterization and employ the
STDMC Protocol in the context of graph parameter es-
timation for open and time-varying network of agents.
Concluding remarks are given in Section 4.

2. SELF-TUNING DYNAMIC MAX-CONSENSUS
(STDMC) PROTOCOL

2.1 Notation and Preliminaries

We denote by R and N the sets of real numbers and positive
integer numbers, respectively. Maximum and minimum of
an n-elements vector u = [u1, . . . , un]

ᵀ, are denoted by

u = max
i=1,...,n

ui, u = min
i=1,...,n

ui. (1)

We consider networks modeled by undirected graphs
G = (V,E), where V = {1, . . . , n} with n ∈ N is the set of
nodes, and E ⊆ V × V is the set of edges connecting the
nodes. The state and the input of the i-th agent are scalars
and are denoted by xi ∈ R and ui ∈ R, respectively.

A path between two nodes i, j ∈ V in a graph is a sequence
of consecutive edges πij = (i, p), (p, q), . . . , (r, s), (s, j)
where each successive edge shares a node with its predeces-
sor. An undirected graph G is said to be connected if there
exists a path πij between any pair of nodes i, j ∈ V . The
diameter δG of a graph G is defined as the length (number
of edges) of the longest shortest path between any pair of
nodes in the graph.

Nodes i and j are neighbors if there exists an edge
(i, j) ∈ E, which represents a point-to-point communica-
tion channel between nodes i and j. The set of neighbors of
the i-th node is denoted by Ni = {j ∈ V : (i, j) ∈ E}. For
sake of simplicity, we consider graphs without self-loops,
i.e., i �∈ Ni, and define N ◦

i = Ni ∪ {i}.

2.2 Problem statement and working assumptions

Consider a network of n agents modeled as discrete-
time dynamical systems with scalar state xi ∈ R for
i = 1, . . . , n. The i-th agent has access to a scalar time-
varying reference signal ui ∈ R and interacts with other
agents according to an undirected graph G = (V,E) and a
local interaction rule

xi(k) = fi(ui(k), xj(k − 1) : j ∈ N ◦
i ). (2)

The dynamic max-consensus problem consists in the design
of proper local interaction rules fi(·) for estimating and
tracking the maximum u(k) ∈ R among the time-varying
reference signals. The performance can be expressed in
terms of the convergence time and the tracking error

e(k) = max
i∈V

|xi(k)− u(k)|. (3)

Our only assumption concerns the boundedness of the
reference signals’ variation, which is deemed a reasonable
assumption in the dynamic consensus literature. We define
the variation of the reference signals in one step as

∆ui(k) = ui(k)− ui(k − 1), ∀i ∈ V. (4)

and, in a similar way, we define the variation of the
maximum among the reference signals as

∆u(k) = u(k)− u(k − 1). (5)

Assumption 1. The absolute variation of the reference
signals in one step is bounded by a constant Π ≥ 0, i.e.,

|∆ui(k)| ≤ Π, ∀i ∈ V, ∀k ≥ 0. (6)

If the reference signals are sampled versions of continuous-
time signals, then by increasing the sampling frequency
their variation in one iteration is reduced. Thus, for any
signal with bounded variation there exists a sampling
frequency such that Assumption 1 is also satisfied. We
refer the interested reader to Remark 1 at the end of
Section 2.3 for a discussion about the case when the bound
on the input variation is not known a-priori, but it can be
estimated in a distributed way by the agents.

2.3 Proposed self-tuning protocol

When the reference signals are assumed to be constant
over time, i.e., u(k) = u(0) for all k ∈ N, the problem can
be recast as a standard max-consensus problem by

xi(k) = max
j∈N◦

i

{xj(k − 1)}, xi(0) = ui(0), (7)

which has been proved to converge in finite-time and with
zero error (Tahbaz-Salehi and Jadbabaie, 2006). Instead,
when the reference signals are assumed to be time-varying,
the strategy we have previously proposed (Deplano et al.,
2021b) modifies the above interaction rule into

xi(k) = max
j∈N◦

i

{
xj(k − 1)− α, ui(k)

}
. (8)

where α > 0 is a design parameter. Such protocol has been
proved to converge in finite-time and with bounded error,
both depending on the parameter α. More precisely, the

parameter α trades-off estimation errors for convergence
time, with larger values of α resulting into faster conver-
gence of the protocol but also higher estimation errors, and
lower values of α resulting into smaller estimation errors
but also slower convergence of the protocol.

The strategy proposed in this paper is that of equipping
the update rule in eq. (8) with local and self-tuning
parameters αi(k) for i ∈ V , as follows

xi(k) = max
j∈N◦

i

{
xj(k − 1)− αj(k − 1), ui(k)

}
, (9)

Intuitively, one can expect that the parameters αi should
take large values when the maximum input varies and
the tracking task becomes the priority, while they should
take arbitrarily small values when the maximum input
remains constant and the estimation accuracy becomes
more important. This is correct, and we further clarify this
qualitative reasoning by discussing two different cases:

• The maximum input u is higher than all states xi.
In this case, the agent i with the maximum input
ui = u updates its state to u, regardless of the value of
αi. Thus, the parameter αi can be an arbitrarily small
value. Note that in this case, the state of the agent i
increases (or remains the same) after the update.

• The maximum input u is lower than all states xi.
In this case, each agent i update its state to the max-
imum among xj − αj with j ∈ Ni, which depends on
the parameters αj . Thus, the parameters αj must be
sufficiently large in order to guarantee the tracking of
the maximum input. Note that in this case, the state
of the agents eventually decreases if the maximum
input continues decreasing. This process stops when
the input remains constant (or increases) and the first
case holds instead.

As a consequence of the above discussion, we propose
to make the parameters αi switch between two design
parameters αmax ≥ αmin > 0 according to

αi(k) =

{
αmax if xi(k) < xi(k − 1)

αmin otherwise
. (10)

Due to the above update rule, if the state of agent i is
decreasing, then its local parameter αi is set to a high
value αmax in order to speed up the convergence toward
the maximum input that has a smaller value. Contrarily,
if the state of agent i is increasing or constant, then
its local parameter αi is set to a small value αmin in
order to improve the estimation accuracy. We describe
the steps required to implement the interaction rule (9)
with the local self-tuning (10) in the STDMC Protocol,
shown in the column on the right, while the next theorem
characterizes its convergence time and tracking error.

Remark 1. The agents can make sure to employ the same
design parameters αmax, αmin and deal with unknown
upper bounds Π on the inputs’ variation ∆ui(k) by locally
tuning their local parameters αmax

i , αmin
i according to

αmax
i (k) = max

j∈N◦
i

{αmax
j (k − 1), θ ·∆ui(k)}, θ > 1,

αmin
i (k) = min

j∈N◦
i

{αmin
j (k − 1)} (11)

In such case, the characterization of the STDMC Protocol
is provided by Corollary 1.

.
STDMC Protocol :
Self-Tuning Dynamic Max-Consensus

(Input): Tuning parameters αmax ≥ αmin > 0.
(Initialization): xi(0) ∈ R for i ∈ V ;

αi(0) ∈ {αmin, αmax} for i ∈ V
(Execution): for k = 1, 2, 3, . . . each node i does

Gather xj(k − 1) and αj(k − 1) from each
neighbor j ∈ Ni(k − 1)
Update the current state according to
xi(k) = max

j∈N◦
i

{xj(k − 1)− αj(k − 1), ui(k)}
Update the current parameter according to

αi(k) =

{
αmax if xi(k) < xi(k − 1)

αmin otherwise

Theorem 1. Consider a multi-agent system executing the
STDMC Protocol under Assumption 1 and let k = 0 be
the initial time. If the graph G is connected and if

αmax > Π, (12)

then there exists a convergence time Tc ≥ 0 such that the
tracking error is bounded for k ≥ Tc by

e(k) ≤ (αmax +Π)δG , (13)

where δG is the diameter of graph G, and it holds

Tc ≤ δG +max

{
x(δG)− u(δG)

αmax −Π
, 0

}
. (14)

Proof sketch of Theorem 1. It can be shown 1 that
there exists a convergence time Tc ≥ 0 such that the
maximum and minimum among the agents’ state for
k ≥ Tc are bounded by the following

x(k) ≤ u(k) + (Π− αmin)δG (15)

x(k) ≥ u(k)− (Π + αmax)δG . (16)

The bound (15) comes from the consideration that if
u(k) ≥ x(k), then due to the update rule in eq. (9) it must
hold x(k + 1) = u(k + 1). otherwise, if the u(k) < x(k)
then their distance at subsequent times depends on their
maximum variations. In the worst case, the maximum
state decreases by αmin for δG steps and the maximum
input decreases by Π, leading to the bound in eq. (15).
Indeed, after δG steps, all the parameters αi are updated to
αmax according to the self-tuning in eq. (10), and thus the
distance becomes smaller after δG steps. The bound (16)
comes from the consideration that the maximum distance
between the minimum state x and the maximum input u
occurs when during the tracking all αi are set to αmax and
the input suddenly reverses behavior and start increasing
with maximum variation Π. Thus, their maximum distance
is proportional to Π+αmax, but after at most δG steps the
αi are set to αmin according to the self-tuning in eq. (10),
and thus the distance becomes smaller after δG steps.

Note that the convergence time Tc is upper bounded by the
diameter of the network, which is the largest time needed
by the network to complete the cascade update. Indeed,
δG is the length of the longest shortest path between any
pair of agents. Now, at time k = δG two cases may occur:
1 Formal proofs of the bounds in eqs. (15)-(16)-(17) are given in
Appendix A, which is available at (Deplano et al., 2022).
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• x(δG) ≤ u(δG). In this case, both bounds in eqs. (15)-
(16) hold, and thus Tc ≤ δG .

• x(δG) > u(δG). In this case, the maximum state
x decreases with rate αmax and, in the worst case,
the maximum input decreases with rate Π. Due
to eq. (12), then there exists a time T ′ such that
x(δG + T ′) ≤ u(δG + T ′) and Tc ≤ δG + T ′, given by

T ′ = max

{
x(δG)− u(δG)

αmax −Π
, 0

}
. (17)

From the above discussion one can verify the upper bound
to the convergence time given in eq. (14). Now, exploiting
the upper bound in eq. (15) and the lower bound in
eq. (16), the bound on the tracking error can be derived
for k ≥ δG + T ′ as follows

e(k) ≤ max{(Π− αmin)δG , (Π + αmax)δG} ≤ (Π + αmax)δG

completing the proof. �

Corollary 1. Consider a multi-agent system executing the
STDMC Protocol under Assumption 1. Assume that the
maximum input variation Π is not known and that αmax

is locally updated according to eq. (11). If the graph G is
connected, then there exists a convergence time Tc ≥ 0
such that the tracking error is bounded for k ≥ Tc by

e(k) ≤ (θ + 1)ΠδG , (18)

where δG is the diameter of graph G, and it holds

Tc ≤ k0 + δG +max

{
x(k0 + δG)− u(k0 + δG)

θ
, 0

}
, (19)

where k0 is the time at which the variation of one of the
inputs is maximum, i.e., ∃i ∈ V such that ∆ui(k0) = Π.

The characterization provided in Theorem 1 reveals that
the convergence time is inversely proportional to αmax,
while the tracking error is directly proportional to αmax.
Therefore, αmax trades off convergence time for tracking
error, which are not influenced by the choice of αmin. On
the other hand, αmin does affect the steady-state error
when the maximum among the inputs does not change
for a sufficiently large amount of time, as formalized next.

Theorem 2. Consider a generic time k0 ≥ Tc. The estima-
tion error for Theorem 1, in the case all reference signals
remain constant for k ≥ k0, satisfies the next condition

e(k) ≤ αminδG , k ≥ k0 + 2δG . (20)

Proof. By Theorem 1, for any k ≥ TC it holds
x(k) ≤ u(k) + (Π− αmin)δG , k ≥ Tc, If this upper bound
holds strictly at k, i.e., x(k) = u(k) + (Π− αmin)δG , then:

• All αi(k) are exactly equal to αmax;
• u(k) is decreasing, i.e., u(k) < u(k − δG).

In the worst-case scenario, this is the case at k = k0,
since then the inputs remain constant and equal to u(k0).
Therefore, the maximum input starts decreasing at each
time step � by a factor αmax, until the maximum input is
reached, i.e., x(k0 + �) ≤ u(k0), indeed,

x(k0 + �) = x(k0)− �αmax

≤ u(k0) + (Π− αmin)δG − �αmax ≤ u(k0)

and since (Π − αmin) ≤ αmax, it follows that the smallest
value satisfying the above inequality is � = δG .

Now, once δG steps have elapsed, the parameter of the
agent with the maximum input is updated to αmin due to
the self-tuning rule in eq. (10) for k ≥ k0 + δG . Due to the
local interaction rule in eq. (9), its 1-hop neighbors update
their state to either x(k)−α∗ with α∗ ∈ {αmin, αmax} or to
their own input ui. In both cases, according to the update
rule in eq. (10), at subsequent instant of times their local
parameter is updated to the value of αmin. The cascade
effect updates all parameters αi with i ∈ V to αmin in at
most δG steps. We conclude that

u(k0) ≥ x(k) > x(k) = u(k)− αminδG , k ≥ k0 + 2δG ,

from which the statement of the theorem follows. �

Remark 2. A pragmatic choice for the parameter αmin is
αmin � Π, which reduces the steady-state error, even if it
is not required for the convergence of the STDMC Protocol
and for the validity of Theorems 1-2. However, the intuitive
choice αmax � Π greatly reduces the convergence time
but it may involve overshoots in the tracking error, see
Example 3 in Section 3.

3. NUMERICAL SIMULATIONS

We test the results for the STDMC Protocol by considering
the worst-case scenario of a network with line topology,
which maximizes the number of steps needed to make the
information flow through the network, that is δG = n− 1
steps, thus maximizing the bounds on both the tracking
and the steady state error errors.

3.1 Example 1: convergence time and steady-state error

We show in Fig. 1 the state evolution of a network
with n = 10 agents in a line configuration, with diameter
δG = 9, executing the STDMC Protocol when the maxi-
mum input variation Π is known (red curve) and unknown
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ū(k)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Step k

T
ra
ck
in
g
er
ro
r
e(
k
) Π is unknown

Π is known
ε
εss

Fig. 1. Example 1 : Evolution of a network with line
topology running the STDMC Protocol; ε and εss
are the bound on the tracking and steady-state error
defined in eq. (21) and provided in Theorems 1-2
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• x(δG) ≤ u(δG). In this case, both bounds in eqs. (15)-
(16) hold, and thus Tc ≤ δG .

• x(δG) > u(δG). In this case, the maximum state
x decreases with rate αmax and, in the worst case,
the maximum input decreases with rate Π. Due
to eq. (12), then there exists a time T ′ such that
x(δG + T ′) ≤ u(δG + T ′) and Tc ≤ δG + T ′, given by

T ′ = max

{
x(δG)− u(δG)

αmax −Π
, 0

}
. (17)

From the above discussion one can verify the upper bound
to the convergence time given in eq. (14). Now, exploiting
the upper bound in eq. (15) and the lower bound in
eq. (16), the bound on the tracking error can be derived
for k ≥ δG + T ′ as follows

e(k) ≤ max{(Π− αmin)δG , (Π + αmax)δG} ≤ (Π + αmax)δG

completing the proof. �

Corollary 1. Consider a multi-agent system executing the
STDMC Protocol under Assumption 1. Assume that the
maximum input variation Π is not known and that αmax

is locally updated according to eq. (11). If the graph G is
connected, then there exists a convergence time Tc ≥ 0
such that the tracking error is bounded for k ≥ Tc by

e(k) ≤ (θ + 1)ΠδG , (18)

where δG is the diameter of graph G, and it holds

Tc ≤ k0 + δG +max

{
x(k0 + δG)− u(k0 + δG)

θ
, 0

}
, (19)

where k0 is the time at which the variation of one of the
inputs is maximum, i.e., ∃i ∈ V such that ∆ui(k0) = Π.

The characterization provided in Theorem 1 reveals that
the convergence time is inversely proportional to αmax,
while the tracking error is directly proportional to αmax.
Therefore, αmax trades off convergence time for tracking
error, which are not influenced by the choice of αmin. On
the other hand, αmin does affect the steady-state error
when the maximum among the inputs does not change
for a sufficiently large amount of time, as formalized next.

Theorem 2. Consider a generic time k0 ≥ Tc. The estima-
tion error for Theorem 1, in the case all reference signals
remain constant for k ≥ k0, satisfies the next condition

e(k) ≤ αminδG , k ≥ k0 + 2δG . (20)

Proof. By Theorem 1, for any k ≥ TC it holds
x(k) ≤ u(k) + (Π− αmin)δG , k ≥ Tc, If this upper bound
holds strictly at k, i.e., x(k) = u(k) + (Π− αmin)δG , then:

• All αi(k) are exactly equal to αmax;
• u(k) is decreasing, i.e., u(k) < u(k − δG).

In the worst-case scenario, this is the case at k = k0,
since then the inputs remain constant and equal to u(k0).
Therefore, the maximum input starts decreasing at each
time step � by a factor αmax, until the maximum input is
reached, i.e., x(k0 + �) ≤ u(k0), indeed,

x(k0 + �) = x(k0)− �αmax

≤ u(k0) + (Π− αmin)δG − �αmax ≤ u(k0)

and since (Π − αmin) ≤ αmax, it follows that the smallest
value satisfying the above inequality is � = δG .

Now, once δG steps have elapsed, the parameter of the
agent with the maximum input is updated to αmin due to
the self-tuning rule in eq. (10) for k ≥ k0 + δG . Due to the
local interaction rule in eq. (9), its 1-hop neighbors update
their state to either x(k)−α∗ with α∗ ∈ {αmin, αmax} or to
their own input ui. In both cases, according to the update
rule in eq. (10), at subsequent instant of times their local
parameter is updated to the value of αmin. The cascade
effect updates all parameters αi with i ∈ V to αmin in at
most δG steps. We conclude that

u(k0) ≥ x(k) > x(k) = u(k)− αminδG , k ≥ k0 + 2δG ,

from which the statement of the theorem follows. �

Remark 2. A pragmatic choice for the parameter αmin is
αmin � Π, which reduces the steady-state error, even if it
is not required for the convergence of the STDMC Protocol
and for the validity of Theorems 1-2. However, the intuitive
choice αmax � Π greatly reduces the convergence time
but it may involve overshoots in the tracking error, see
Example 3 in Section 3.

3. NUMERICAL SIMULATIONS

We test the results for the STDMC Protocol by considering
the worst-case scenario of a network with line topology,
which maximizes the number of steps needed to make the
information flow through the network, that is δG = n− 1
steps, thus maximizing the bounds on both the tracking
and the steady state error errors.

3.1 Example 1: convergence time and steady-state error

We show in Fig. 1 the state evolution of a network
with n = 10 agents in a line configuration, with diameter
δG = 9, executing the STDMC Protocol when the maxi-
mum input variation Π is known (red curve) and unknown

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Step k

S
ta
te

tr
a
je
ct
or
ie
s
x
i(
k
)

Π is unknown

Π is known
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Fig. 1. Example 1 : Evolution of a network with line
topology running the STDMC Protocol; ε and εss
are the bound on the tracking and steady-state error
defined in eq. (21) and provided in Theorems 1-2

(green curve). The agents are uniformly initialized within
[0, 1], the reference signals remain constant and equal to 0,
except for the 6-th input that is initialized at u6(0) = 0.5
and decreases with rate Π = 0.02 for k ∈ [20, 30). When
the bound Π is known, the parameters of the STDMC Pro-
tocol are chosen accordingly to Theorem 1 and are given by

αmax = 0.022 > Π, αmin = 0.005,

and Fig. 1 shows the state evolution (red curve). This
example allows to verify the validity of the bound ε on
the tracking error and the bound εss on the steady-state
error given in Theorems 1-2, i.e.,

ε = (αmax +Π)δG = 0.378, εss = αminδG = 0.045. (21)

When the bound Π is not known, the agents may also
tune the value of αmax(k) according to eq. (11) given in
Remark 1 with θ = 1.1. We show in Fig. 1 the state
evolution (green curve) when the initial guess of the bound
is wrongly made according to

αmax
i (0) = 0.011 < Π, ∀i ∈ V.

The 6-th agent updates its parameter αmax
6 to θΠδG = 0.378

at step k0 = 20 when it observes that its input varies with
rate Π and, accordingly to Corollary 1, the bound on the
tracking error ε = (1 + θ)Π = 0.378 remains unchanged,
but the convergence time increases.

3.2 Example 2: tracking error and comparison with non
self-tuning dynamic max-consensus

We compare in Fig. 2 the state evolution of a network
with n = 10 agents in a line configuration executing the
STDMC Protocol with self-tuning (red curve) and without
self-tuning (green curve). The agents are uniformly initial-
ized in the interval [0, 1.5] and all reference signals remain
constant and equal to −1, except for the 6-th agent. The
input of the agent 6 is initialized at u6(0) = 0.5 and varies
according to
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Fig. 2. Example 2 : Evolution of the network in Example 2
running the STDMC Protocol; ε is the bound on the
tracking error.

u6(k + 1) =




u6(k)−Π if k ∈ [100, 150)

u6(k) + Π if k ∈ [150, 200)

u6(k) otherwise

.

where Π = 0.02 is the maximum absolute variation as
in Assumption 1. In Fig. 2, the red curves represent the
estimation result provided by the STDMC Protocol when
the self-tuning is designed, accordingly to Theorem 1, i.e.,

αmax = 0.022 > Π, αmin = 10−12.

Instead, in Fig. 2, the green curves represent the estima-
tion result provided by the STDMC Protocol when the
self-tuning is disabled, which amounts to the DMC Proto-
col previously proposed by us in (Deplano et al., 2021b)
with constant parameter α = 0.022. It is straightforward
to notice how the self-tuning logic improves the accuracy
of the estimation, without significantly affecting the con-
vergence time. By looking at Fig. 2, one can also validate
the characterization of the STDMC Protocol provided in
Theorems 1-2. In particular, it can be verified that the
tracking error is always bounded by

ε = (Π + αmax)δG = 0.378,

and, more importantly, that the steady state error is
almost nullified by the choice αmin = 10−12.

3.3 Example 3: graph parameters estimation in open
multi-agent systems

In the third simulation shown in Fig. 3, we employ the pro-
posed protocol as a subroutine of the algorithms presented
in our previous works (Deplano et al., 2021a,b) for the
estimation and track of some important graph parameters
in open multi-agent systems, wherein the agents may join
and leave as time goes by. For the convenience of the
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Fig. 3. Example 3 : Estimation and tracking of the size
(top) and radius/diameter (bottom) in an open multi-
agent system running the protocols proposed in (De-
plano et al., 2021a,b) implementing the STDMC Pro-
tocol as a subroutine.
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readers, we detail both these algorithms in the unified
SDR Protocol presented in Appendix B, which is available
at (Deplano et al., 2022).

In particular, the algorithms enable to track the following
time-varying parameters:

• Size s(k): the number of agents within the network;
• Radius r(k): the length of the minimum distance
between any pair of agents in the network;

• Diameter d(k): the length of the maximum distance
between any pair of agents in the network.

We consider a network of n ≤ 100 agents that are allowed
to join and leave the network every Υ = 200 time steps,
as well as establishing or closing communications with
other agents. This leads to a network with a time-varying
number of nodes, as well as time-varying diameter and

radius. We denote by ŝ(k), d̂(k), r̂(k) their estimations.
The parameters are set as shown next

αmax = 10−1, αmin = 10−12

Fig. 3 (top) shows the estimation ŝ(k) (red dashed curve)
of the network’s size s(k) (blue solid curve), showing how
the algorithm is capable of tracking changes of the time-
varying size, with fast convergence rate ruled by parameter
αmax and high accuracy ruled by αmin.

We also show the estimation when the non self-tuning
dynamic max-consensus (DMC) Protocol proposed in (De-
plano et al., 2021b) is employed (green dashed curve),
which amounts to select αmax = αmin = α∗. In order to
provide a fair comparison, we select the good trade-off
α∗ = 10−4.

The comparison reveals that the employment of the
STDMC Protocol allows achieving both higher conver-
gence rate and accuracy. Fig. 3 (bottom) shows the es-

timations d̂(k), r̂(k) (red dashed curve) of the network’s
diameter and radius d(k), r(k) (blue solid curve), respec-
tively. Since the diameter is always greater or equal to the
radius, the curves on top refer to the diameter estimation
while the curves below refer to the radius estimation. Note
that we cannot provide a comparison with the original
algorithm proposed in (Deplano et al., 2021a), since it
cannot be employed in an open network setting without
the self-tuning logic proposed in this paper.

4. CONCLUSIONS

We have proposed the self-tuning dynamic max-consensus
(STDMC) Protocol, which enables the agents to track the
time-varying maximum value of a set of reference signals
given as inputs to the agents. As the name suggests, it
is capable of self-tune some internal parameters in order
to minimize both tracking and steady-state errors, which
are decoupled by design. Moreover, the tracking error
can be traded-off for convergence time, without affecting
the steady-state error. We further provided simulations
when the STDMC Protocol is employed as a subroutine
of two state-of-art algorithms to track size, the diameter,
and the radius of the network in open and time-varying
multi-agent systems. Future works will investigate the
theoretical characterization of the latter algorithms with
the implementation of the STDMC Protocol.
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