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Abstract: This paper focuses on the detection of cyber-attacks in a timed probabilistic setting. The plant
and the possible attacks are described in terms of a labeled continuous time Markov model that includes
both observable and unobservable events, and where each attack corresponds to a particular subset
of states. Consequently, attack detection is reformulated as a state estimation problem. A verification
methodology is described using a parallel-like composition of the Markov model and its logical observer.
The construction of this parallel composition allows us to (i) concisely characterize the set of attacks
that can be detected based on the sequences of observations they generate, and (ii) compute performance
indicators of interest, such as the a priori probability of an undetectable attack, the average detectability,

and the mean delay to detection.
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1. INTRODUCTION

Due to their heterogenous and often distributed nature, cyber-
physical systems are exposed to attacks from malicious intrud-
ers. Therefore, there is an emerging need for developing tools
that evaluate the risk of attacks in a quantitative way. Cyber-
security in dynamical systems has been studied in the frame-
work of continuous time systems and discrete event systems
(Teixeira et al.,, 2012; Lun et al., 2019; Ding et al., 2018).
As long as continuous time models are used, attack scenarios
depend mainly on replay, zero dynamics, and bias injection
(Teixeira et al., 2012). When discrete event models are consid-
ered, attacks depend on: (i) the communication channel where
the attack happens, (ii) the attack impact on the transmitted
data, and (iii) the mechanism to prevent damage (Rashidinejad
etal., 2019).

Attacks may occur in the observation channel (known as a
sensor attack), in the control channel (known as an actuator
attack) or in both the observation and control channels (as
in most realistic cases) (Carvalho et al., 2018). For example,
vulnerabilities in the address resolution protocol may be ex-
ploited by malicious hosts in a local area network to imple-
ment attacks (Hubballi et al., 2011). Deletion, insertion, and
replacement are typical examples of the ways an attack can
alter the transmitted information (Cardenas et al., 2008). With
the purpose of preventing the consequences of cyber-attacks,
two main approaches have been presented in the literature:
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detection and prevention on the one hand, and synthesis of a
resilient supervisor on the other hand. Detection approaches
place an intrusion detection module in the system to detect
an attack and prevent it before it causes damage to the system
(Carvalho et al., 2018; Gao et al., 2019). For supervisory control
approaches, a supervisor is synthesized which is resilient to
attacks (Rashidinejad et al., 2019).

The problem considered in this paper concerns the first ap-
proach where attack detection is formulated in a timed prob-
abilistic setting. The main advantages obtained by introducing
probabilistic/timing information are associated with the ability
to refine the detection decision. This refinement can appear in
two distinct ways as described below.

e (Case 1: Logical Decision and Probabilistic Verification.
One can maintain a logical decision formulation (in other
words, one can insist on obtaining a binary decision re-
garding the occurrence of an attack when that is absolutely
certain) and use the probabilistic/timing information pro-
vided by the model to assess performance indicators of in-
terest. Such performance indicators include, for instance,
the a priori probability of (logically) detecting an attack or
the a priori average delay involved in (logically) detecting
an attack.

o Case 2: Probabilistic Decision and Probabilistic Ver-
ification. One can also relax the logical requirement on
the decision (that an attack is detected with absolute cer-
tainty) by using the probabilistic information to determine
the posterior likelihood of an attack, conditioned on the
specific sequence of observations. Such relaxations can
offer advantages in cases where the attacks of a given
system may be undetectable in a logical setting whereas
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they may have probability of detection near unity (close to
1 — € for a small € that is a design choice). Such systems
might be considered e-safe; in fact, when there is some
system behavior that leads to violations of e-safety, we
can determine (as in Case 1) the a priori probability that
the system will generate behavior that does not violate e-
safety.

It is worth pointing out that, in the context of fault diagnosis
for stochastic DES that can be modeled as probabilistic finite
automata under partial observation, Case 1 above appeared
under the name of A-diagnosability whereas Case 2 appeared
under the name of A A-diagnosability (Thorsley and Teneketzis,
2005). Similarly, in the context of observability analysis (again
for probabilistic finite automata), Case 1 above appeared under
the name of A-detectability (Keroglou and Hadjicostis, 2015)
whereas Case 2 appeared under the name of A A-detectability
(Keroglou and Hadjicostis, 2017).

In this paper we focus on the analysis of cyber attacks in a
timed probabilistic setting assuming logical decisions and prob-
abilistic verification (Case 1), though we plan to discuss the
setting of probabilistic decisions and probabilistic verification
(Case 2) in future extensions of this work. The considered
systems are modeled with Markov models. A Markov chain is
a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state
attained after the previous event, and the next state is a function
of the current state and the event that is selected (Karlin and
Taylor, 2012; Gagniuc, 2017). In continuous-time, a Markov
chain is known as a continuous-time Markov model (CTMM),
or as a Markov process, and is suitable for describing stochastic
processes where the interarrival times between events are dis-
tributed exponentially (Norris, 1997; Gagniuc, 2017). Such pro-
cesses are used in various domains. In particular, Poisson pro-
cesses, birth and death processes, and parallel queuing systems
are examples of uses of continuous-time Markov models in
the domain of computer science and networked systems where
cyber-attacks may occur (Gagniuc, 2017). With usual CTMM,
the events from one state to the next one are assumed to be
unknown and the best one can do is to compute the probability
of the states. In this work, on the contrary, we are interested
in the case where some (but not necessarily all) events are
observable (Thorsley, 2010). For this purpose, labeled CTMM
(LCTMM) are considered. Each time an observable event oc-
curs, the label of the event is collected as well as the time
when the event occurs. The observation of these timed events
is helpful for refining the computation of the probabilities of
the various states or to even disqualify certain states.

In this paper, LCTMM are used to model plants and their pos-
sible cyber-attacks. The first step is to design a logical observer
by abstracting from the timing aspects in order to capture the
logical structure of successive observations. Then, a parallel-
like composition, similar to the one detailed in (Lefebvre and
Hadjicostis, 2019), of the continuous-time Markov model with
its logical observer is proposed to compute a probabilistic veri-
fier. Given a sequence of past observations and an initial state,
this probabilistic verifier can be used to estimate the probability
that the system is attacked. The average attack detectability
(as well as the mean detection delay) can be computed from
its steady state distribution. Compared to previous works by
some of the authors (Lefebvre and Hadjicostis, 2019,b), the
contributions of this paper are twofold. From a methodological
point of view, the paper extends the design of a probabilistic

verification methodology for LCTMM and focuses on detection
properties based on particular sequences of observations. From
a practical point of view, it extends the opacity analysis (that
does not include any model of the intruder actions) to cyber-
attacks analysis where intruder actions are detailed.

The paper is organized as follows. Section II introduces prob-
abilistic models of cyber attack with LCTMM. Section III de-
tails the design of probabilistic verifiers for LCTMM. Then, in
Section IV, the probabilistic verifier is used for attack detection
purposes and mean detectability analysis. Section V concludes
the paper.

2. PROBABILISTIC MODELS OF ATTACKS

In this section we first provide some background on continuous-
time Markov models. Then, we introduce labeled continuous-
time Markov models. Finally, we show how such a model can
be used to describe the behaviour of a plant affected by a certain
number of attacks in the communication channel, which may
alter the observations.

2.1 Continuous-time Markov models

A continuous-time Markov model is a continuous-time stochas-
tic process { X (t), ¢ > 0} that has a countable number of states
in its state space Sp = {1,2, ...} and that possesses the Markov

property

prob(X (t) = j1X(s) =4, X (tn-1) = in-1, ..
= prob(X(t) = j|X(s) =1),

L X(t) =11)

where 0 < ¢; < ... < t,-1 < s < tis any nondecreasing
sequence of times and 4y, ...,%,_1,%,7 are states in the state
space Sp (Karlin and Taylor, 2012; Gagniuc, 2017; Norris,
1997). Given the state of the process at time s, the probability
distribution of the process at any time after s, namely ¢, is
independent of the entire past of the process before a time
s. The Markov property is a “forgetting” property, suggesting
memorylessness in the distribution of the time a continuous-
time Markov model spends at any state. A continuous-time
stochastic process with a set of discrete states {X (¢),t > 0}
is a Continuous-Time Markov Model (CTMM) if it satisfies the
Markov property.

In addition, an CTMM with state space S, is time homogeneous
if the transition probabilities only depends on the difference
t — s between s and ¢ and not on the actual times s and ¢. Then,
for any s < t and any states i, j € Sp,

prob(X (t) = j|X (s) = i) = prob(X(t — s) = j|X(0) = i).

In the following, time homogeneous CTMM will be considered
with a finite number |Sp| of states. We further assume that
each state i € Sp is associated with a set of n; indepen-
dent, exponential alarm clocks with rates i; j, , ..., fi,j,,. , and
Post(i) = {j1, ..., Jn, } is the set of possible states the process
may jump to when it leaves state i. The rates pi; i, ..., li,j,,,
are input parameters assumed to be known. When the process
enters state ¢, the time ¢ it spends at state ¢ has an average value
di = (pij, + - + pij,, )" and is exponentially distributed
with the probability density function (1/d;) x exp(—t/d;). The
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probabilities of going to state ji € {ji,...,Jn, } are given by
Hi g X dl

The state probability functions, mp;(¢,IIp(0)) that the system
is in state ¢ € Sp at time ¢, when the vector of initial
probabilities is IIp(0), form an 1 x |Sp| vector IIp (¢, I1p(0))
whose ith entry is wp;(¢,I1p(0)). Vector Ip(t) is defined by
Eq. (1) as

Ip(t,11p(0)) = Hp(0) x exp(Gp x t). 1

The matrix G'p in Eq. (1) is the CTMM generator where the ith
row has (—d;) ! at the ith column (diagonal entry) and y; ;, at
the jith column. A CTMM can be formally defined as follows.

Definition 1. A CTMM is defined as Mp = (Sp,Gp,I1p(0))
where Sp is a set of states, Gp is the generator matrix, and
I (0) is the initial probability vector.

In general, it is impossible to know precisely the state of a given
CTMM at a given time ¢, but one can evaluate the probability
7p,i(t,IIp(0)) that the system is in state ¢ € Sp at time ¢.
The time d; j, , jx € Post(i), required to jump from ¢ to jj is
exponentially distributed and satisfies Eq. (2) below

p’l"Ob(diJ'k S t) =1- exp(fmvjk X t) (2)

where ¢ is any value of the time. When simulating an CTMM,
the successor j* of a given state ¢ is randomly selected by
computing first the times d; j, , jx € Post(i) with exponential
probability density functions of the form (2) and then by search-
ing for the successor j* reached after a duration d; ;- that takes
the minimal value over the set of times d; j, , jr € Post(4)

argmin {d; ;, }.
Ik EPOSt(i)

i =

2.2 Labeled CTMM

In this work, CTMM with partial observations of the process
jumps are considered (namely labeled CTMM). To define for-
mally such a labeled CTMM, let us introduce E as a finite set
of events such that each jump from state 7 € Sp to state j € Sp
is associated to the event e; ; € F. Then, consider the partition
of Fas F = E,UFE,,, where E, is the set of observable events
and F,, is the set of unobservable events, and introduce an
output alphabet () (i.e., a set of observed labels). The labeling
function Obs : E — Q U {e} is defined such that for each
e € E,, Obs(e) € @ and for each e € E,,, Obs(e) = ¢,
where € stands for the empty string. Essentially, Obs acts as an
observation filter that associates at most one label ¢ € @ to
each event e € FE. The advantage of this model is to separate
the events that drive the jump within the process states and the
labels that result from observation.

Definition 2. A Labeled Continuous-Time Markov Model (LCT
MM) is a pair (Mp, Obs) where Mp = (Sp,Gp,I1p(0)) is an
CTMM, E, and E,, are respectively the sets of observable and
unobservable jumps, @ is a set of output labels and Obs : E, U
E.o — Q U {e} is alabeling function.

2.3 Application to cyber security

In this section we consider a plant that is partially observed
through a labeling function. The following assumptions are
considered for simplicity:

(1) the attacks are not permanent,

(2) only one attack affects the system at a time,

(3) the plant is not attacked at time O and the initial state is
assumed to be known.

We assume that the nominal behaviour of the plant when no
attack is present is described by an LCTMM (M, Obsy) with
My = (Sn,Gn,IIN(0))). The plant can be subject to K
different types of attack. The behaviour of the system under
attack of type A; (for i = 1,..., K) can also be described
by LCTMM (MA” ObSAi) with MAi = (SAm GA” HAi (0))
with IT4, (0) = 0 (Assumption 2). The LCTMM of the nominal
mode and of the altered modes have similar generators (wih
the exception of the diagonal terms that depend on the time
parameters of the possible jumps to other modes) but the
observation functions Obsy and Obsy, are different. This
model corresponds to the situation where the intruder just
changes the observations without affecting the process itself.
Assuming the switching between the nominal mode and the
attack modes is also a Markovian process, the plant under
attack can be described by an LCTMM (M p, Obs) with Mp =
(SP,GP,HP(O)), Sp=SyU SA1 U...u SAK and

Gy Gn, a4, GN, A
GP — GAl,N GA1 GA17AK . (3)
Gae,. N Gag,a, - Gag

The underlying graph described by Gp is strongly connected
(Assumption 1). The submatrix G 4, describes how the at-
tack Ay starts from normal behaviour. On the contrary, the
submatrix G 4, v describes how the attack A;, ends, when the
system returns to the normal behavior. The submatrix G 4, 4,,
describes how attack A, switches to attack A,,. The attack
starting, ending and switching correspond obviously to silent
events. Other events may be silent or observable.

Example 1: Consider the example of a plant affected by two
different attacks A, and Ao, depicted in Fig. 1. The set of states
is Sp = SNUSAl USA2 with Sy = {1,273}, SAl = {4,5,6}
and S4, = {7,8,9}. The events that correspond to the starting
or end of an attack are unobservable. The other events generate
symbols in the alphabet Q = {a, b, c}. Attack A; permutes the
labels and transforms a into b, b into ¢ and ¢ into a. Attack A;
starts from state 1 and ends from state 5. Attack A, replaces a
and c by b except the label a from 3 to state 2 that is replaced
by c. Attack A, also starts from state 1 and ends from state
8. For simplicity, all events in this system are assumed to be
exponentially distributed with time parameters that are equal
to 1 (more generally, one can imagine that different rates are
associated with different events). The initial state is assumed to
be state 1. In Fig. 1, the labels resulting from the observation
function and the time parameters are reported.
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Attack A2

Attack Al

eps: 1 plant

Fig. 1. LCTMM model of a plant and two attacks.

3. DESIGN OF OBSERVERS FOR LCTMM

In this section we present the logical observer for a given
LCTMM.

3.1 Logical observer of an LCTMM

Making abstraction of timing aspects, an LCTMM can be
viewed as a Labeled Deterministic Finite Automaton.

Definition 3. A Labeled Deterministic Finite Automaton (LD
FA) is a pair (G,0bs). G = (X, E, §, () is a Deterministic
Finite Automaton (DFA) where X is a finite set of states, F is
an alphabet (finite set of events), § : X x F — X is a transition
function and zy € X is the initial state. Obs : E — Q U {e} is
a labeling function, where () is a set of observable labels and &
represents the empty string.

Such an automaton is based on two primitives, namely states
and transitions, and describes in a natural way the behavior
of a dynamical system that evolves from state to state upon
the occurrence of discrete events (Cassandras and Lafortune,
2008; Giua, 2017). Compared with the DFA, there are two
nondeterministic primitives that are possible in an LDFA: (i)
some transitions correspond to the occurrence of silent events;
(ii) two or more transitions outgoing from one state can produce
the same label.

To obtain a logical observer (LOB) of a given LCTMM, we
consider the LCTMM as a LDFAwith a set of states Sp, a set
of events F, a transition function ¢ defined for any i,j € Sp,
ei; € Ebyd(i,e; ;) = j, and an initial state that corresponds
to the LCTMM state ¢ such that 7p;(0) = 1 (see Assumption
3). The labeling functions of the LCTMM and the LDFA are
the same. Consequently, ignoring the timing aspects of an
LCTMM, a state observer LOB = (X, Q, d,, o) is obtained
using standard methods (Giua, 2017): X is the set of observer
states (which are subsets of Sp), @) is the alphabet of observed
symbols, J, is the transition function of LOB, and z is the
observer initial state. Each state + € X of the observer is
the subset of plant states (i.e., we can regard state x as a
subset of Sp) that are consistent with the sequence of untimed
observations seen thus far.

3.2 Product of an LCTMM with its logical observer
For probabilistic verification purposes, we are interested in the

parallel product of the LCTMM generator G p and its logical
state observer LOB. The PV of a given LCTMM (Mp, Obs)

with Mp = (Sp,Gp,11p(0)) is defined below.

Definition 4. Let (Mp, Obs) with Mp = (Sp, Gp, HP(O)) be
an LCTMM. The Probabilistic Verifier (PV) of (Mp, Obs) is
defined as the triplet M = (S, G,II(0)) with

o S={(i,z),i € Sp,x € X such thati € z},

o G(s,8')=Gp(i,i') fors = (i,8) € Sand s’ = (i',e) €
S,s# s and G(s,8) =3, —G(s,8),

o II(0) is defined by 75(0) = mp,(0) for s = (i,e) € S.

Algorithm 1 is similar to the algorithm detailed in (Lefebvre
and Hadjicostis, 2019), and can be used to design the PV. Each
state s € S of the PV is a pair s = (i,z) composed by the
LCTMM state i € Sp, and the observer state © € X. If the PV
is in state s it means that the state of the plant is ¢ and the set of
states that are consistent with the logical observation that led to
i is 2. S is composed of N states. Only states s = (4, z) with
mp;(0) > 0have a non zero initial probability 74(0) = 7p;(0).

Algorithm 1: PV design for LCTMM
Require: : (Mp,Obs), Mp = (Sp,Gp,11p(0)), E
Ensure: : M = (S, G, 11(0))

1: UNXPL+ 0,8+ 0

2: compute LOB = (X, Q, d,, o) from (Mp, Obs)
30 8+ (1,mg), m5(0) 1

4: S+ SU{s},UNXPL <+ UNXPLU/ s}
5. while UNXPL # () do

6: selectastate s = (i,2) inUNXPL

7. for eache; ; in E do

8: if ObS(Gi)Z‘/) 7& ¢ then

9: x'  6(x,Obs(e; 1))

10: else

11: '

12: end if

13: s (i, 2")

14: if s’ does not already exist in .S then

15: S Su{s}

16: UNXPL+«+ UNXPLU{s'}

17: end if

18: G(s,s") + Gp(i,)

19:  end for
200 G(s,8) ¢ Dy, —G(s,8)

2. UNXPL+«+ UNXPL\ {s}
22: end while

The sets UN X PL and S are initialized at lines 1-8. The main
cycle (lines 9-26) explores the successive states in UN X PL.
Each time a new state is found, it is added in sets S and
UNXPL (lines 19-20) and the generator matrix G is updated
(lines 22 and 24). Once, all possible successors of a given state s
have been found (lines 11-23), s is removed from set UN X PL
(line 25) so that UN X PL tends to the empty set. Proposition
1 proves that the PV is a CTMM, and also characterizes the
evolution of the state probability vector associated with the
PV . In particular, it illustrates the relationship with the state
probability vector of the plant.
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Proposition 1: The PV M = (S, G,I1(0)) of a given LCTMM
(Mp,Obs), with Mp = (Sp,Gp,I1p(0)) is a CTMM and for
all ¢ € Sp, it holds

mpi(t,1p(0)) = Zsz(i,-)

Proof : M = (S,G,II(0)) is an CTMM by construction: (i)
the initial probability vector I1(0) satisfies 75(0) = mp,;(0) for
s = (i,20) and 7,(0) = 0 otherwise. Obviously, > © 7,(0) = 1
and mp;(0) = > _(; o) ms(0); (ii) the matrix G is a generator
matrix because G(s,s) = > ., —G(s,s’). In addition, to
obtain Eq. (4), let o;(t,I1p(0)) = 32, ; ) 7s(t,11(0)), and
compute its derivative

75 (¢, 11(0))- @)

s=

dt dt
- Zs:(i,O) (ZS’/GS (TFS,(t7H(O)) x G(S/’ S))>
= Zjesp (ZS,_(M wsl(t,n(o))> x Gp(j,i)
=3, (@t TIR(0) X Gr(i,i).
Since «;(t,1I1p(0)) and 7p;(t,IIp(0)) have the same initial

value and the same derivative, one can conclude that they are
equal at any time ¢, thus Eq. (4) holds. O

do (1, TTp(0)) _ S dr, (£, T1(0))
s=(i,0)

To conclude, for any PV state s = (4, z), 7s(¢,IIp(0)) is the
probability that the plant is in state ¢ and the LO B is in state x at
time ¢. The advantage of the PV is to encode the dynamics and
the observations of the LCTMM (M p, Obs) in a single CTMM.

Example 2: Consider the LCTMM in Fig. 1. The LOB has 10
states and is reported in Fig. 2. Its initial state is ;1 = {1,4, 7}.
The PV, computed with Algorithm 1 has 20 states and is
reported in Fig. 3. Its initial state is (1, z1) (with a probability
that equals 1). State (1, 1) has three ouput arcs. The first one
leads to state (2, 2:3). It corresponds to event a that in the model
leads from the initial state 1 to state 2, while in the LOB leads
from state xz; to state xo. The second output arc from state
(1,2z1) to state (7,z1) corresponds to the e-transition going
from state 1 to state 7 in the plant. Finally, the third output arc
from state (1, z1) to state (4, 1) corresponds to the e-transition
going from state 1 to state 4 in the plant. Similarily, the other
states of the POB can be explained.

4. PROBABILISTIC VERIFICATION

The PV is useful to evaluate the probability of a given plant
property A that depends on the plant states. We assume that
each state ¢ € Sp may or may not satisfy the property A
and this decision (to satisfy or not the property .A) is a logical
decision as mentioned in the introduction. Thus, .4 may be
defined as the subset A of states in Sp that satisfy the property.

4.1 Average detectability and mean detection delay

Independently from any sequence of observations, the PV can
be used to compute the a priori mean detectability of a given
property A. As long as the PV is composed by a transient and
a single strongly connected component, the PV steady state

Fig. 3. PV for the system in Fig. 1.

II(c0) does not depend on II(0) and is the unique solution of
the following equations (Norris, 1997)

(o0) x G = (0)1x)s], )
II(o0) x (1)15) =1,

where (0) o is the row vector of size | e| with all entries equal

to 0. The PV may be used to compute the probability that a

given property A is detected on the average. For this purpose,

let us introduce the sets E(A) and F'(A)

E(A) ={s € Ssuchthats = (i,z) and i € A}, ©)
F(A) ={s € Ssuchthats = (i,x) and x C A}.

Looking at the PV one can evaluate the average probability
prob(F(A)|oco) that the property A is detected in the long run
under the assumption that A is satisfied, namely the average
detectability of A,

prob(F(A)]oo) = BE@)(©) X (i)

_ , 7
HEga)(00) x (1)E(a) @

where I15(4)(00) refers to the steady state probability vector of
the states in the set F'(A).
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In addition, the analysis of PV leads to the Mean Detection
Delay of A (M DD A) that characterizes the time interval that
is needed, on the average, to detect that property A is satisfied.
Such a time interval is computed in a method similar to the one
detailed in (Lefebvre and Hadjicostis, 2019b) and captured by

MDDA =TI(A) x (=G(H(A), H(A))) " x (1) 4y, ®)
where G(X,Y’) denotes the square submatrix with rows X and
columns Y extracted from G, H(A) = {s € E(A)|s ¢ F(A)},
E(A) ={s e S|s ¢ E(A)}, and II(A) is the mean distribution
when the PV enters a state in E(A)

4.2 Probabilistic verification of attack detection

In this section we propose to evaluate the probability that the
system is under attack based on the sequence of observations
that is recorded, and to compute the average detectability of the
attacks. For each attack Ay, kK = 1, ..., K, we may define three
sets:

o the set of states of .S corresponding to the occurrence of
attack Ay: E(Ap) = {s € S|s = (i,x)andi € Su, },
where S 4, is the set of states of the LCTMM relative to
attack Ay,

o the set of states of S' corresponding to the detection of
attack Ay: F(Ar) ={s€ S|s=(i,z)andz C Sy, },

o the set of states of S corresponding to the non-detection
of attack Ay: H(Ay) = {s € E(Ay) | s ¢ F(Ar)}.

There is no difficulty to interpret M DD Ay, as the mean detec-
tion delay for attack Ay and compute it using Eq. (8).

Example 3: Continuing the previous example, we compute that
the mean probability to detect A; is O whereas the probability to
detect A5 (under the assumption that the system is under attack
As) is 0.33. The performance can be explained according to the
observer that is capable of detecting Ao but not A;. The mean
delay to detect A5 is about 1.5 time units and is oo for A;.

5. CONCLUSION AND FUTURE WORK

This paper has proposed a probabilistic verifier for LCTMM.
This verifier benefits from the timed observations generated by
the plant and from the exponential dynamics of the LCTMM
probabilities. It is helpful to verify plant properties that are
defined according to some subsets of plant states. The method
has been applied to evaluate the a priori probability that an
cyber-attack in a given system will be detected with certainty.

Future research directions for our work are twofold. From a
practical point of view, we will be interested in establishing
additional average indicators for cyber-security performance
characterization. From a methodological point of view, we will
study at first probabilistic decisions and probabilistic verifica-
tion. For that purpose, a probabilistic observer that uses the
timed observations to estimate the probability of states for
labeled continuous-time Markov models will be designed in a
formal way including a more general setting where the jump

between two states may deliver several different labels.
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