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Abstract: Innovation or information propagation in social networks has been widely studied
in recent years. Most of the previous works are focused on solving the problem of influence
maximization, which aims to identify a small subset of early adopters in a social network to
maximize the influence propagation under a given diffusion model. In this paper, motivated by
practical scenarios, we propose two different influence minimization problems. We consider a
Linear Threshold diffusion model and provide a general solution to the first problem solving a
linear integer programming. For the second problem, we provide a technique to search for an
optimal solution that works only in particular cases and discuss a simple heuristic to find a

solution in the general case.
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1. INTRODUCTION

With the rapid growth of information and communication
technology during the last two decades, people are actively
using networks for getting information, exchanging ideas,
and even adopting new products. From a psychology per-
spective, it is well understood that an individual’s idea or
behavior is highly influenced by its neighbors or friends.
Motivated by this, the study of influence propagation finds
several applications in real-world life including viral mar-
keting, the spread of rumors or memes, trust, the adoption
of innovations in organizations, opinion dynamics, etc. In
order to model the propagation of an idea or innovation
through a network, Kempe et al. (2003) proposed two main
diffusion models, namely the Independent Cascade model
and the Linear Threshold model. They consist in directed
graphs where each node can be either active (if it has
adopted the innovation) or inactive (if it has not adopted
the innovation). The innovation propagates in the network
in a progressive fashion, i.e., nodes can only switch from
inactive to active, but not in the opposite direction.

The influence mazximization problem has a clear practical
motivation in many applications, e.g., viral marketing
(Domingos and Richardson, 2001). It aims to identify
a small subset of initial adopters (seed set) in a social
network to maximize the influence propagation under a
given diffusion model and has been widely studied in the
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literature. Kempe et al. (2003) formalize this problem
as an optimization problem, showing that it is NP-hard
for both the Independent Cascade model and the Linear
Threshold model, and present a greedy algorithm that
can reach a good approximation of the optimal solution.
Later, several improved algorithms (Leskovec et al., 2007;
Chen et al., 2009, 2010; Goyal et al., 2011; Ramasuri and
Narahari, 2011; Liu et al., 2014; Song et al., 2015) were
presented to solve the influence maximization problem by
balancing the running time and the influence spread of
algorithms, trying to make them scalable to large datasets.

For the Linear Threshold model, Rosa and Giua (2013)
provided a linear algebraic characterization of the set of
final adopters corresponding to a given seed set. The
set of final adopters — which is the complement of the
maximal cohesive set not containing nodes in the seed
set — can be computed solving an Integer Programming
Problem (IPP). They also used this approach to solve some
problems of influence maximization over a finite horizon.
Unfortunately, the main drawback is that the number of
decision variables is too large, being of order n x K, where
n is the size of the net and K is the length of the finite
horizon.

In this paper we also consider a Linear Threshold diffu-
sion model. Differently from the works in (Budak et al.,
2011) and (He et al., 2012) which study the limitation of
the misinformation and influence blocking maximization
respectively under a competitive circumstance where both
the good and bad information co-exist, we address prob-
lems related to influence minimization, that so far have
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not received much attention. In particular we consider
two scenarios that we believe have practical relevance in
different application domains.

Scenario 1. Consider a company that must cut the supply
to some of its customers since current demand exceeds its
capacity. Cutting the supply will damage the reputation of
the company and this bad reputation may propagate in the
networks of customers. The company wants to determine
a suitable set of customers, whose supply will be cut, so
as to minimize this damage spread.

Scenario 2. Consider a hacker who wants to spread a virus
to a set of servers Vigrgetr but can only directly infect
servers in a given set Vj,;;. The hacker aims to find a
suitable subset of Vj,;; such that starting from this seed
the infection will propagate to all nodes in Vi4rget. On the
other hand, she aims to minimize the number of nodes
affected that do not belong to the target set, to avoid
attracting too much attention or creating unnecessary
damage to the network.

We formalize two optimization problems that generalize
these scenarios. Following the characterization of Rosa and
Giua (2013), we provide a general solution to the first
problem solving a linear IPP. For the second problem,
we provide a technique to search for an optimal solution
that works only in particular cases and discuss a simple
heuristic to find a solution in the general case. In addition,
for the influence minimization problems, we tested the pro-
posed algorithms on two real-world datasets and compared
their performance with respect to other simple heuristic
approaches based on nodes’ degrees and centrality that
are commonly used in the literatures to estimate a node’s
influence.

The rest of this paper is organized as follows. Section 2
reviews the Linear Threshold model and its properties.
Section 3 proposes two optimization problems related
to influence minimization and their solutions. Section 4
presents a series of experimental results. Conclusions and
directions for future research are discussed in Section 5.

2. BACKGROUND
2.1 Linear Threshold model

First, we introduce the Linear Threshold model to describe
the diffusion of innovations in social networks. Table 1 lists
the notation that will be used extensively in the rest of this

paper.

Table 1. Notation Explanation

Notation Description

G = (V,E) A directed graph with node set V and edge set F

n The size of G, i.e., the number of nodes in G

m The number of directed edges in G

0; Threshold value of node i € V'

N; The in-neighbor set of node i € V

b0 The seed set

bt The set of nodes that become active at step ¢

oo (d0) The set of final adopters given that ¢g is
(90 the seed set

5 The optimal seed set for influence minimization
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Network structure ~ We consider a directed graph G =
(V,E), where V = {1,2,...,n} is the set of nodes involved
in a network and E is the set of edges where (i,j) € E.
Besides, we assign a threshold value 6; € [0,1] to each
node i. The thresholds 6; intuitively represent the different
tendencies of nodes to adopt the innovation when their
neighbors do (Kempe et al., 2003).

We define the in-neighbor set of node i € V as N; =
{il(4,7) € E}.

The adjacency matriz A is a square n X n matrix. Its
element A; ; = 1 if there is an edge from node 7 to node j,
otherwise 0. No self-loops are allowed, i.e., A4;; = 0.

We define the in-neighbor scaled adjacency matriz A €
[0,1]"*™ as follows:

Let © = diag([f1,02, - ,0,]) be the threshold matriz
whose diagonal elements are the thresholds of the nodes
and other elements are equal to 0.

Activation process Let ¢y be the seed set which repre-
sents a set of agents (in this paper, we will use node, agent,
and individual interchangeably) that are initially activated
at step ¢t = 0. The activation from the seed set propagates
to the network step by step. We denote ¢; the set of nodes
which are activated at step t. The set of nodes active at
step ¢, i.e., those which are activated in the interval [0, ],
is denoted by

t
o = ¢

k=0

By definition, we have ®3 = ¢y.

The activation process is described as follows. At each step
t = 1,2,..., a non active node i becomes active iff the
fraction of its neighbors that are active at the previous
step is at least 6;, i.e.,

|P:—1 N N

—
| Vi

>0, (VieV\d,1).

(1)
The evolution proceeds until no more individuals adopt

the innovation, and we define the set of final adopters as
follows:

1€ Py

oo (d0) = U Gi-
=0

Note that we write @, (¢g) to highlight that if the network
structure G = (V, E) and each node’s threshold 6;(i € V)
are given, the propagation process depends on the seed set

bo-

2.2 Cohesiveness

Definition 2.1. (Acemoglu et al., 2011) A subset X C V
is called a cohesive set if for all ¢ € X it holds:

X NN
||.N"|>1_9i (2)
<
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This states that a set X C V is cohesive if Vi € X the
fraction of its neighbors which are still in set X is strictly
larger than 1 — 6;, or equivalently say that the fraction
of its neighbors that are not in set X is smaller than its
specific threshold, i.e., % < 0;.

Note that if ¢pg N X = @, it holds that V¢t > 0, ¢; N X = (),
or in other words, if there is no individual in X adopting
the innovation initially, then no individual in X will adopt
the innovation at the following steps.

Lemma 2.1. (Acemoglu et al., 2011) Given a network G
with seed set ¢g € V, let M € V \ ¢o be the mazimal
cohesive set contained in V'\ ¢g. The final adopter set is:

Poo(do) =V \M 3)

<

Lemma 2.1 gives an immediate way to compute the final
adopters that does not require to determine the evolution
of the network.

Definition 2.2. Given a set X € V, the corresponding
characteristic vector & € {0,1}™ satisfies that x; = 1 if
i € X, otherwise a; = 0. o

Lemma 2.2. (Rosa and Giua, 2013) A set X C V is
cohesive if and only if its characteristic vector @ for all
1 € X satisfies

2l A(-i) > 1—0;

where

6,4 |N
AR [Ni| € N

(4)

<

According to Equation (4), we define the updated thresh-
old matriz as © = diag([f1, 02, - ,0,]) whose diagonal
elements are the newly defined thresholds of nodes 6; and
other elements are equal to 0.

Proposition 2.1. (Rosa and Giua, 2013) Given a Linear
Threshold model represented by a social graph G = (V, E)
with n nodes and thresholds value {6;}icv, let ¢ C V
be a seed set with characteristic vector y. The maximal
cohesive set M contained in V' \ ¢ has a characteristic
vector x* that is the solution of the following IPP:

max 17 - z (IPP —1)
st.1—xz>y
1-6-AT]. <0
xzec {0,1}".
H}ence, the set of final adopters is P (dg) = {i € V] =
0}. o

3. INFLUENCE MINIMIZATION PROBLEMS AND
SOLUTIONS

In this section, we introduce two different influence mini-
mization problems generalizing the two scenarios discussed
in the introduction and discuss approaches for their solu-
tion. Note that all proofs of our results are omitted for the
sake of space.
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3.1 Scenario 1

In the first scenario discussed in the introduction, a compa-
ny must cancel the supply offered to some of its customers
because the current demand exceeds its capacity. We con-
sider a supply vector w = [wy,we, - ,w,] € R}, where
w; denotes the supply customer ¢ € V receives. The total
supply must be reduced of a quantity k£ € R,..

Cutting the supply of a customer will lower the con-
sideration of the company and this bad reputation may
propagate in the networks of customers. We consider a
damage vector ¢ = [c1, ¢, -+ ,¢,] € R where ¢; denotes
the reputation damage due to customer ¢ € V having a
low consideration of the company. The company wants to
determine a suitable set of customers, whose supply will be
cut, so as to minimize this damage spread. We formalize
this problem as follows.

Problem 3.1. Given a diffusion model represented by a
social graph G = (V, E) with n nodes, let ¢ € R’ be
a cost vector, w € R’ a weight vector and k¥ € Ry a
constant. Find a seed set ¢y whose total weight is at least
k, such that the total cost of the corresponding set of final
adopters @, (¢p) is minimized, i.e.,

> e

iE‘Poo((bo)

s.t. Z w; > k.

i€po

min

<

Optimal solution  Based on Proposition 2.1, we present a
solution to Problem 3.1 under the Linear Threshold model.

Proposition 3.1. Given a Linear Threshold model repre-
sented by a social graph G = (V, E) with n nodes and
thresholds value {0;}icy, let ¢ € R} be a cost vector,
w € R a weight vector and k£ € R a constant. Consider
the following IPP with binary variables x and y:

max ¢’ -z (IPP —2)

st.1—-xz>y (a)
[[-6—-AT].2<0 (b)
w' -y >k (©)
z,ye{0,1}"

and let z*, y* € {0,1}"™ be the optimal solution of (IPP-
2). Then the seed set ¢§ = {i € V| yf = 1} is the optimal
solution of Problem 3.1 and the corresponding set of final
adopters is @ (¢f) = {i € V|zF = 0}. o

3.2 Scenario 2

In the second scenario discussed in the introduction,
a hacker is targeting a set of nodes Vigrger but can
only directly infect nodes in the set Vj,;;. She wants to
determine a suitable seed set such that the infection will
reach all target nodes but the number of non-target nodes
infected is minimal. We can formalize this problem as
follows.

Problem 3.2. Given a diffusion model represented by a
social graph G = (V, E), let sets Vigrger € V and Vi CV
be assigned. Find a seed set ¢y contained in Vj,;; such
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that the set of final adopters @ (¢p) contains all nodes in
Viarget and has minimal cardinality, i.e.,

min [P (¢o)]
s.t. <I)oo(¢0) D) Vtm‘get (a)
¢0 g ‘/z'm't- (b)

<

In the rest of this section we study this problem in the
framework of the Linear Threshold model.

A necessary and sufficient condition for the existence of
a solution. A first observation is that Problem 3.2 may
have no admissible solution. The following is a necessary
and sufficient condition for the existence of a solution.
Proposition 3.2. Given a Linear Threshold model repre-
sented by a social graph G = (V, E) with n nodes and
thresholds value {6; }icv , let sets Vigrger €V and Vipir C
V' with characteristic vectors vn;; and viqrger be assigned.
Consider the following IPP with binary variable
max 17 - 2 (IPP —3)

st. 1 —x> vt

I-0-A"]. <0

ze {0,1}"

Problem 3.2 has solution if and only if (IPP-3) has an
optimal solution " < 1 — vygpget- o

A sufficient condition for optimality In the following we
provide a sufficient condition for an optimal solution of
Problem 3.2.

Proposition 3.3. Given a Linear Threshold model repre-
sented by a social graph G = (V, E) with n nodes and
thresholds value {6;}icv, let sets Vigrger € V and Vi C
V' with characteristic vectors v+ and viqrger be assigned.
Consider the following IPP with binary variable a:
max 17 - z (IPP — 4)
st 1 — 2> Vigrget

I-6-AT]. <0

ze {0,1}"
Let Z* be its optimal solution and define z = max{ v+ —
z*,0}. If the following IPP,

max 17 - (IPP —5)
st.1—x> =z
I-6-AT].2<0
xz e {0,1}"
has optimal solution &* = Z*, then the seed set ¢f = {i €
V|z; = 1} is an optimal solution of Problem 3.2. o

A greedy algorithm  The algebraic approach discussed
above for finding an optimal solution works only in par-
ticular cases. Instead, in general case in order to obtain a
reasonably efficient solution to Problem 3.2, we propose a
greedy algorithm described in Algorithm 1.

We start with a seed set ¢9 = Vinin = Viarget N Vinat
(line 3). If the set of final adopters corresponding to
Vimin contains all nodes in Vigrget, we stop and output
¢p. Otherwise, at each iteration, we select a node u from
Veomptete = Vinit \ Vimin and add it to the seed set. To
choose a suitable node u, we select from Veompiete all nodes

Lan Yang et al. / I[FAC PapersOnLine 50-1 (2017) 14465-14470

Algorithm 1 Greedy algorithm

1: Input: A social graph G = (V, E), sets Vj,;: €V and
‘/target g V with cboo(‘/znzt) 2 V;targeb
Output: Seed set ¢g.
Let Vipin = ‘/target N Vinit-
Let V::omplete = Vinit \ Vinin.-
Let ¢0 = Vinin-
while (I)oo(d)o) ;_b Viarget do
S = acgmax |P oo (0 U {v}) N Viarget!-
vEVeomplete

8: u = argmin |Po(¢o U {i})].

€S
9: Po — P U {’U,}
10: chomplete — Vcomplete \ {’LL}
11: end while

which added to the seed set will give a maximal marginal
gain in reaching the target nodes (line 7) and call this
new set S. Then we choose from S node v with minimal
cardinality of the set of final adopters (line 8) and add it
to the seed set ¢g. This is repeated until the current seed
set can influence all nodes in Vigpges: in this case we stop
and output ¢g.

The time complexity of Algorithm 1 is O(I?m) with | =
[Veomplete| and m = |E|, since the algorithm has at most
[ iterations (the worst case is that when we go through
all nodes in Vigmpiete We can reach all target nodes),
in each iteration we also need to go through all nodes
w € Veomplete to find the ones with maximal marginal
gain in reaching the target nodes, for each node w we
need to compute its corresponding final adopters which
may require a traversal of all graph edges.

A remark on Algorithm 1 is that a choice of the starting
seed set Vinin = Z = Vinit N @oo (Viarger) would result in a
smaller number of repetitions of the while-loop, since this
starting seed set is larger than the one described in line 3
of Algorithm 1, but it requires solving (IPP-4) firstly.

4. EXPERIMENTS AND ANALYSIS
4.1 FExperimental set up

We performed a series of experiments based on two real-
world networks of different scales under the Linear Thresh-
old model. NetScience and Hep-Th are from different
sections of the e-print arXiv, which is the same data
source used in the literatures of influence maximization.
Empirical evidence suggests that coauthorship graphs are
representative of typical social networks (Newman, 2006,
2001).

Here are some details about the two networks; precise
statistical information of the datasets is summarized in
Table 2.

NetScience: This is the co-authorship network of sci-
entists working on network theory and experiment, as
compiled by Newman (2006).

Hep-Th: This is the collaboration network of scientist-
s posting preprints on the high-energy theory archive
at www.arxiv.org, 1995-1999, as compiled by Newman
(2001).
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Table 2. Statistics of real datasets

Dataset [ Nodes [ Edges [ Average degree
NetScience 1,589 2,742 3.451
Hep-Th 8,361 | 15,751 3.768

Our experiment unfolds in two parts. For Problem 3.1, we
compare our ILP method with other heuristics. Two of
these heuristics, in particular, are based on node’s degrees
and centrality within the network and are commonly used
in the literatures studying the influence maximization
problem. While in a influence maximization problem it
is common to select the seed set among nodes with
highest degree/centrality, since we are solving an influence
minimization problem we make the opposite choice. The
tested algorithms are briefly described in the following.

Random: Randomly selects a set of k nodes from the
network as the seed set.

Low-Degree: A simple heuristic approach that selects a
set of k nodes with the lowest degrees in the graph.
Low-PageRank: PageRank algorithm is a popular algo-
rithm for ranking web pages (Brin and Page, 2012). We
select a set of k nodes with the lowest pagerank value as
the seed set. In this algorithm, we use the power method to
compute every pagerank value and the restart probability
of pagerank is set as 0.15. The stopping criteria is when
two consecutive iterations differ for at most 107°.
Integer Linear Programming (ILP): Our integer lin-
ear programming method presented in Proposition 3.1.

For Problem 3.2, since the greedy algorithm may take
several hours to run on large datasets, we tested our
method on Algorithm 1 under the Linear Threshold model
on dataset NetScience.

All experiments are performed using MATLAB on a 1.20
GHz Genuine Intel and 4G memory.

4.2 Ezperiment result for Problem 3.1

We tested the algorithms on the two networks under the
Linear Threshold model in terms of the influence spread
and the running time. For convenience, we consider a cost
vector ¢ = 1 and a weight vector w = 1. In order to
have a good estimate of the efficiency of the algorithms,
we simulated the process 100 times by re-choosing thresh-
olds randomly (standard uniform distribution) from [0, 1]
every time and computed the average number of the final
adopters. Furthermore, we select from 1 seed to 500 and
2,000 seeds for each dataset respectively. Figs. 1, and 2
show the average influence spread of the tested algorithms
on datasets NetScience and Hep-Th. The running time for
selecting each largest size seed set (500 for NetScience and
2,000 for Hep-Th) is illustrated in Table 3.

From the influence spread on the two datasets, we can
make the following observations: (1) As expected, ran-
domly choosing the seed set is not a good idea. Some-
times when the seed set size is large, the bad influence
may propagate and cover most of the network; (2) Our
integer linear programming method (ILP) outperforms the
heuristics relying solely on the structure properties of the
network. On network NetScience, ILP outperforms Low-
Degree and Low-PageRank by 17.2% and 40.2% respec-
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tively. On network Hep-Th, ILP outperforms Low-Degree
and Low-PageRank by 38.5% and 48.2% respectively; (3)
Our ILP successfully selects the optimal seed set, and when
the seed size is not large enough the bad influence always
just exists in the seed set and will not propagate to others
through the network.

However, the running time of ILP is much longer than the
others when the size of the network is large since solving a
large scale IPP is hard; the result of the largest seed sets
is shown in Table 3.

Table 3. Running time of the tested algorithms
(for largest seed set on each dataset)

Dataset Running time (s)
Random | Low-Degree | Low-PageRank ILP
NetScience 8 2.7 6 21
Hep-Th 74 112 100 4,920

4.8 Ezperiment result for Problem 3.2

In this part, in order to have a good estimate of the
performance of the greedy algorithm, we run the process
100 times taking the average number of final adopters and
re-choose the sets Vj,;; (of size ky which is a constant)
and Vigrget (of size ko which is a constant) randomly at
each time. In order to guarantee that Problem 3.2 has a
solution and obtain a feasible seed set ¢g C Vi such that
®oo(¢0) 2 Viarget, we randomly choose a set of nodes of
size k1 in V as Vi, and compute @oo (Vinit), and then we
randomly choose a set of nodes of size kg in ®oo(Vinit) as
V;targeb

We introduce a coefficient pP"° which illustrates the per-
cent of nodes that avoid being activated by our strategy
but will be activated if the seed set is V-

pro _ 1Poo(Vinit)| — [Poo(d0) |
H’l)oo(‘/znzf” - “/target”

where |®o(¢o)| is the number of final adopters activated
by seed set ¢ chosen by Algorithm 1.

x 100%

The experiment result is listed in Table 4. In this table,
(|Vinitl, [Viarget|) is & number pair about the cardinality
of sets Vinit and Vigrge:- We test three pairs for dataset
NetScience. pPr¢  is the maximal percent (over all simula-
tions) of nodes which avoids being activated but will be

activated if the seed set is Vj,¢.

Table 4. Experiment result

Dataset (IVinitl, |Viarget|) prre Pra
(10,10) 57.27% | 100%
. (20,30) 21.57% | 55.17%
NetScience (30,50) 21.67% | 45.00%

We can observe from Table 4 that our strategy can protect
some percent of nodes from being activated. For example,
when (|Vipit|, [Viarget|) = (10,10), 27.27% nodes avoid
being activated. Besides, among all the simulations, the
maximal percent of nodes avoiding being activated is
100%, i.e., the selected seed set just reaches nodes in
Viarget at the end of the process and no additional node is
activated.
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Fig. 1. Influence spread of the tested algorithms on
NetScience.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we formalize two different influence mini-
mization problems generalizing real-world scenarios. For
Problem 3.1, following the characterization of Rosa and
Giua (2013), we provide a general solution solving a linear
IPP and show it outperforms other standard heuristics.
For Problem 3.2, we provide a technique to search for
an optimal solution that works only in particular cases
and discuss a simple heuristic to find a solution (possibly
suboptimal) in the general case.

We are aware that IPP based solutions do not scale well for
large graph: for this reason finding a technique to relax IPP
to linear programming will be the objective of our future
work. Furthermore, another interesting line of research
could be to study the influence minimization problems in
other models of diffusion, such as the Independent Cascade
model.
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