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Abstract

In this paper a method to recognize the set of consistent markings in labelled Petri nets is proposed. In

this method, the set of unobservable transitions are partitioned into pseudo-observable and strictly unob-

servable ones, and the subnet induced by the latter is acyclic. The unobservable reach of a marking can be

characterized by the union of the strictly unobservable reach of several basis markings, called representa-

tive markings, in the unobservable subnet. The set of consistent markings can be characterized by a linear

algebraic system based on those representative markings. Based on the representative marking graph, the

current marking estimation problem for a labelled Petri net can be efficiently solved. This method does not

require the assumption that the unobservable subnet is acyclic.
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1 Introduction

Petri nets have been proposed as a fundamental model for Discrete Event Systems in a wide variety of appli-

cations and have been an asset to reduce the computational complexity involved in solving control problems.

In this manuscript, we focus on the marking estimation problem in a special Petri net model called labelled

Petri nets. In a labelled Petri net some transitions are unobservable, i.e., their firing cannot be detected by

an external agent, and some transitions are not distinguishable, i.e., the agent cannot determine which one

has fired among all those sharing the same label. Due to the presence of these transitions, to determine the

current marking (i.e., state) of the plant net becomes difficult. The observability of labelled Petri nets, i.e., a

property ensuring that the current marking can be precisely determined, is studied in [1], where a sensor de-

ployment method is proposed to estimate the current marking in the modified net. However, in general cases

where the observation structure cannot be modified, it is not possible to determine the exact current marking

but only a set of possible markings called consistent markings. The marking estimation problem plays an

important role in Petri net theory since it is relevant to many problems, including supervisory control [2–5],

observation [6, 7], diagnosis [8–11], and opacity [12].

In particular, marking estimation problem in Petri nets has received much attention, and several approach-

es have been developed for its solution. If all transitions are observable, [6] proposed a method to estimate

the lower bound of the current marking in case that the information of the initial marking is uncomplete.

Moreover, several efficient methods based on minimal explanations are proposed by Cabasino et al. [11] and

by Jiroveanu et al. [13, 14] for fault diagnosis in Petri nets. It was shown in [11, 12] that only a subset of

the reachability space, consisting of the so-called basis markings, needs to be enumerated, while all other

markings reachable from them by firing only unobservable transitions can be characterized by a linear alge-

braic system. The drawback of the method relies on the assumption that the unobservable subnet does not

contain cycles. However, such assumption (which is common in automata) is unnecessary in Petri net mod-

els, since unobservable cycles in Petri nets do not necessarily imply a divergent behavior. Moreover, people

may encounter unobservable cycles when modeling many physical systems by Petri nets (see Example 1 in

Section 3).

To handle labelled Petri nets with unobservable cycles, Ru et al. [5] and Cabasino et al. [15] developed

methods based on the notion of reduced consistent markings (RCMs), which can be used to for marking

avoidance and probabilistic marking estimation in some classes of labelled Petri nets. However, although the

set of consistent markings is the union of the unobservable reach of all RCMs, there is no efficient method to

recognize the set of consistent markings from RCMs except to enumerate all reachable markings from each

RCM in the unobservable subnet.

In this paper, we relax the structural assumption concerning the acyclicity of unobservable subnets consid-

ered in [11], thus generalizing the class of nets that the approach can handle. The key feature of this approach

2



is to treat a subset of unobservable transitions as pseudo-observable so that the remaining transitions form an

acyclic subnet, and hence it can be applied to Petri nets with arbitrary structures of the unobservable subnet.

In such a case the unobservable reach of a marking can be characterized by the union of the strictly unob-

servable reach of several basis markings, called representative markings. By computing an representative

marking graph, consistent markings can be characterized by a linear algebraic system parameterized by the

representative markings. The proposed approach requires a very low online computational effort since the

most burdensome part of the observer design is done offline.

This paper is organized in five sections. The basics of Petri nets are recalled in Section 2. Section 3

introduce several notions, based on which properties of unobservable reach are studied. In Section 4 an

algorithm is proposed to construct the representative marking graph that can be used for marking estimation.

Conclusions are given in Section 5.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; T is a set

of n transitions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence

functions, respectively, which specify the arcs in the net and are represented as matrices in Nm×n (here N =

{0,1,2, . . .}). The incidence matrix of a net is defined by C = Post−Pre ∈ Zm×n (here Z= {0,±1,±2, . . .}).

A net is said to be acyclic if there does not exist a sequence v1v2 · · ·vk where vi ∈ P∪T such that vi ∈• vi+1

for i ∈ {1, . . . ,k1} and vk ∈• v1.

A marking is a vector M : P→ N that assigns to each place of a Petri net a non-negative integer number

of tokens, represented by black dots and can also be represented as an m-component vector. We denote by

M(p) the marking of place p. A marked net 〈N,M0〉 is a net N with an initial marking M0. We denote by

R(N,M0) the set of all markings reachable from the initial one. We also use x1 p1 + · · ·+ xn pn to denote the

marking [x1, . . . ,xn]
T for simplicity.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ = M0 +C(·, t).

We write M[σ〉 to denote that the sequence of transitions σ is enabled at M, and we write M[σ〉M′ to denote

that the firing of σ yields M′.

We use yσ to denote the firing vector (also called the Parikh vector) of σ ∈ T ∗, i.e., yσ (t) = k if transition

t appears k times in σ .

A Petri net 〈N,M0〉 is said to be bounded if there exists an integer K ∈ N such that for all M ∈ R(N,M0),
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M(p) ≤ K for all p ∈ P. A net N is structurally bounded if for any M0 ∈ Nm, the marked net 〈N,M0〉 is

bounded.

Given a net N = (P,T,Pre,Post) we say that N̂ = (P̂, T̂ , P̂re, P̂ost) is a subnet of N if P̂ ⊆ P, T̂ ⊆ T and

P̂re (resp., P̂ost) is the restriction of Pre (resp., Post) to P̂× T̂ .

Proposition 1 [16] Given a Petri net N = (P,T , Pre,Post) that is acyclic and two markings M and M′, if

∃y ∈Nn,y≥ 0 such that M+C ·y = M′ ≥ 0, then there exists a sequence σ ∈ T ∗ whose firing vector is y such

that M[σ〉M′.

2.2 Labelled Petri Net

A labeled Petri net (LPN) is a 4-tuple G=(N,M0,E, `), where 〈N,M0〉 is a marked net, E is the alphabet (a set

of labels), and ` : T→E∪{ε} is the labeling function that assigns to each transition t ∈T either a symbol from

E or the empty word ε . Therefore, the set of transitions can be partitioned into two disjoint sets T = To∪Tuo,

where To = {t ∈ T | `(t) ∈ E} is the set of observable transitions and Tuo = T \ To = {t ∈ T | `(t) = ε} is

the set of unobservable transitions. We use `(t) = e to denote that the label of the transition t is e. The

labeling function can be extended to sequences ` : T ∗→ E∗, i.e., `(σt) = `(σ)`(t) with σ ∈ T ∗ and t ∈ T .

The cardinality of To and Tuo are denoted as no and nuo, respectively.

We use w to denote the word that is observed from σ , i.e., w = `(σ). The language of the labelled net G

is denoted as L (G) = {w ∈ E∗ | (∃σ ,M0[σ〉)`(σ) = w}. We use M1[w〉M2 to denote that ∃σ ∈ T ∗, `(σ) = w

and the firing of σ at M1 yields M2.

2.3 Basis Marking and Basis Reachability Graph

In this subsection we revise the main definitions concerning basis markings presented in [11], since the

original definitions are tailored for diagnosis purpose.

Given a labelled Petri net G = (N,M0,E, `), N = (P,T,Pre,Post) where T = To ∪ Tuo and the subnet

induced by Tuo is acyclic, for a marking M and a transition t ∈ To, the set of explanations of t at M is the set:

Σ(M, t) = {σ ∈ T ∗uo |M[σ〉M′,M′ ≥ Pre(·, t)},

and the set of explanation vectors is the set:

Y (M, t) = {yσ ∈ Nnuo | σ ∈ Σ(M, t)}.
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Moreover, the set of minimal explanation vectors is:

Ymin(M, t) = {y ∈ Nnuo | @y′ ∈ Y (M, t),y′ � y}

which consists of all minimal elements in Y (M, t).

Given a labelled Petri net G = (N,M0,E, `), N = (P,T,Pre,Post) where T = To ∪ Tuo and the subnet

induced by Tuo is acyclic, its basis marking set M (G,M0) is iteratively defined as follows:

• M0 ∈M (G,M0);

• If M ∈M (G,M0), then ∀t ∈ To, ∀y ∈ Ymin(M, t),

(M′ = M+Cuo ·y+C(·, t))⇒ (M′ ∈M (G,M0)).

A marking M in M (G,M0) is called a basis marking of G. The basis reachability graph of G, denoted as

B(G,M0), can also be iteratively defined as follows:

• M0 is the root node in B(G,M0);

• If M ∈B(G,M0), then ∀t ∈ To, ∀y ∈Ymin(M, t), ∀M′ = M+Cuo ·y+C(·, t), M′ ∈B(G,M0) holds, and

there is an arc from M to M′ with a label (t,y).

The work of [11] provided a tabular algorithm to compute Ymin(M, t) in Petri nets with acyclic unob-

servable subnet1, and also an algorithm to compute the corresponding BRG. However, if the unobservable

subnet contains cycles, basis markings cannot be used for the purpose of marking estimation (this will be

shown in Example 1 shortly), since the state equation does not provide a sufficient condition for the marking

reachability in nets that contains cycles.

3 Basis Markings and Unobservable Reaches

In this paper we propose a different strategy to solve this problem. The key feature of this approach is that

some unobservable transitions that create cycles in the unobservable nets are now treated as “observable” so

that the remaining part of the unobservable subnet is acyclic.

1If the unobservable subnet contains cycles, a different algorithm in [13] can be used to compute Ymin(M, t).
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3.1 Partition of Unobservable Transitions

Given an unobservable subnet that is not acyclic, we can partition the unobservable transition set Tuo into

two new sets: Tuo = T̂o∪ T̂uo such that the subnet induced by T̂uo is acyclic. This partition is always possible

and can be efficiently constructed, e.g., T̂uo can be obtained by recursively removing some transitions from

Tuo until an acyclic subnet is obtained. The transitions in T̂o are called pseudo-observable transitions and the

transitions in T̂uo are called strictly unobservable transitions. Note that the partition of Tuo into T̂o and T̂uo

does not necessarily have a physical meaning, and such partition is not unique in general.

Definition 1 Given a labelled Petri net G = (N,M0,E, `), N = (P,T,Pre,Post) where T = To ∪ Tuo, Tuo =

T̂o ∪ T̂uo, and the subnet induced by T̂uo is acyclic, the net Nuo = (P,Tuo,Preuo,Postuo) and the net N̂uo =

(P, T̂uo, P̂reuo, P̂ostuo) are called the unobservable subnet and the strictly unobservable subnet, respectively,

and their incidence matrices are denoted as Cuo and Ĉuo, respectively. We denote |To| = no, |Tuo| = nuo,

|T̂o|= n̂o, and |T̂uo|= n̂uo. �

In the following we give a series of definitions on strict explanations and strictly minimal explanations.

We remind that if T̂o = /0 and T̂uo = Tuo then these definitions reduce to classical definitions of explanations

and explanation vectors in [11].

Definition 2 Given a labelled Petri net G = (N,M0,E, `) in which T = To ∪Tuo, Tuo = T̂o ∪ T̂uo, a marking

M, and a transition t ∈ To∪ T̂o, we define

Σ̂(M, t) = {σ ∈ T̂ ∗uo |M[σ〉M′,M′ ≥ Pre(·, t)}

the set of strict explanations of t at M, and we define

Ŷ (M, t) = {yσ ∈ Nn̂uo | σ ∈ Σ̂(M, t)}

the set of strict explanation vectors. �

The physical meaning of Σ̂(M, t) is the following: from M if we want to enable t ∈ To∪ T̂o by firing only

strictly unobservable transitions, then some sequence σ ∈ Σ̂(M, t) must fire. The set Ŷ (M, t) is composed of

the firing vectors associated to the firing sequences in Σ̂(M, t).

Definition 3 Given a labelled Petri net G = (N,M0,E, `) in which T = To ∪Tuo, Tuo = T̂o ∪ T̂uo, a marking

M, and a transition t ∈ To∪ T̂o, we define

Σ̂min(M, t) = {σ ∈ Σ̂(M, t) | @σ
′ ∈ Σ̂(M, t) : yσ ′ � yσ}
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the set of strict minimal explanations of t at M, and we define

Ŷmin(M, t) = {yσ ∈ Nn̂uo | σ ∈ Σ̂min(M, t)}

the corresponding set of strict minimal explanation vectors. �

In plain words, Σ̂min(M, t) is the set of sequences in Σ̂(M, t) with minimal firing sequences and Ŷmin(M, t)

is the set of these minimal firing vectors.

Typically Σ̂min(M, t) and Ŷmin(M, t) are not singletons, since there are possibly multiple minimal se-

quences σ ∈ T̂ ∗uo that can enable a transition t ∈ To ∪ T̂o. If the T̂o-induced subnet is acyclic and backward-

conflict-free (i.e., each place has at most one input transition), then Σ̂min(M, t) and Ŷmin(M, t) are always

singletons [7]. If Σ̂(M, t) = Σ̂min(M, t) = /0 (which implies that Ŷ (M, t) = Ŷmin(M, t) = /0), then from M one

cannot enable t ∈ To∪ T̂o by firing only strictly unobservable transitions.

Since the strictly unobservable subnet is acyclic, the algorithm based on algebraic manipulations can

be used to efficiently compute Ŷmin(M, t) from a given marking M and a transition t ∈ To ∪ T̂o, if the net is

bounded [11]. Moreover, a more general approach to compute Ŷmin(M, t) which can be applied for unbounded

nets has been presented in [17].

3.2 Unobservable Reach

Next we give the definitions of unobservable reach and strictly unobservable reach of a given marking.

Definition 4 Given a labelled Petri net G in which T = To∪Tuo,Tuo = T̂o∪ T̂uo, and a marking M, its unob-

servable reach is defined as:

Ruo(G,M) = {M′ ∈ Nm | ∃σ ∈ T ∗uo,M[σ〉M′},

its strictly unobservable reach w.r.t. T̂uo is defined as:

R̂uo(G,M, T̂uo) = {M′ ∈ Nm | ∃σ ∈ T̂ ∗uo,M[σ〉M′}.

�

The physical meaning of the unobservable reach of M is the set of markings that are reachable by firing

only unobservable transitions, and the physical meaning of its strictly unobservable reach is the set of mark-

ings that are reachable by firing only strictly unobservable transitions. Since the strictly unobservable subnet
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is acyclic, R̂uo(G,M, T̂uo) consists of markings that satisfy the state equation of the strictly unobservable

subnet Ĝuo.

Proposition 2 Given a labelled Petri net G and a marking M, its strictly unobservable reach w.r.t. T̂uo is:

R̂uo(G,M,T̂uo) =

{M′ ∈ Nm | (∃y ∈ Nn̂uo)M′ = M+Ĉuo · y}.
(1)

Proof: This result directly follows from Proposition 1 since the T̂uo-induced subnet is acyclic. �

An analogous result does not hold for Ruo(G,M) since the unobservable subnet is not assumed to be

acyclic. However, the following proposition (which is Theorem 3.8 in [11]) shows that the unobservable

reach of a marking M can be written as a union of strictly unobservable reaches of basis markings in the

unobservable subnet.

Theorem 1 Given a labelled net G = (N,M0,E, `) whose unobservable subnet is acyclic. There exists a

sequence σ ∈ T ∗ such that M0[σ〉M if and only if there also exist a basis marking Mb such that M0[`(σ)〉Mb

and an unobservable sequence σ ∈ T ∗uo such that Mb[σu〉M.

Proposition 3 Given a labelled Petri net G = (N,M0,E, `), let Tuo = T̂o ∪ T̂uo such that the subnet induced

by T̂uo is acyclic. It holds:

Ruo(G,M) =
⋃

Mb∈M (Guo,M)

R̂uo(G,Mb, T̂uo) (2)

where Guo = (Nuo,M0,{ê}, `′) in which Nuo is the unobservable subnet, and `′(t) = ê which assigns a unique

label ê to all pseudo-observable transition t ∈ T̂o while `′(t) = ε for all t ∈ T̂uo,

Proof: By Definition 4, Ruo(G,M) = R(Nuo,M) holds, i.e., the unobservable reach of M in G consists

of all markings that are reachable from M in the unobservable subnet Nuo. Since in Nuo the transition set

Tuo can be partitioned into T̂o and T̂uo while the T̂uo-induced subnet is acyclic, by Theorem 3.8 in [11],

R(Nuo,M) =
⋃

Mb∈M (Guo,M) Ruo(Guo,Mb) holds. Since Ruo(Guo,Mb) = R̂uo(G,Mb, T̂uo), hence

Ruo(G,M) = R(Nuo,M) =
⋃

Mb∈M (Guo,M)

Ruo(G,Mb, T̂uo)

holds, which concludes the proof. �

By Proposition 3, the unobservable reach of a marking M in G is the union of the strictly unobservable

reaches of those basis markings Mb ∈M (Guo,M). Moreover, Proposition 2 indicates that the unobservable
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reach of an arbitrary marking M can be characterized by a linear system of basis markings in the unobservable

subnet Guo, as stated in the following corollary.

Corollary 1 Given a labelled Petri net G = (N,M0,E, `) in which T = To∪Tuo, Tuo = T̂o∪ T̂uo such that N̂uo

(i.e., the subnet induced by T̂uo) is acyclic and given a marking M, the following condition holds:

Ruo(G,M) =⋃
M∈M (Guo,M)

{M′ | (∃y ∈ Nn̂uo)M′ = M+Ĉuo · y}.
(3)

By Proposition 3 and Corollary 1, we can use the markings M (Guo,M) to represent Ruo(G,M) since all

markings in Ruo(G,M) can be characterized by the linear algebraic system of markings in M (Guo,M). This

allows us to use relatively few markings to represent the unobservable reach of a given marking, which helps

us to build our algorithm in the next section. Although for different marking M the set of basis markings

M (Guo,M) is different, the net structure is always the same and hence some intermediate results can be

reused during the computation. Computing M (Guo,M) can be done by a simplified basis marking enumera-

tion by Algorithm 1, whose correctness can be analogously derived from the construction of BRG in [11]. In

particular, we note that for bounded nets M (Guo,M)⊆ R(N,M), and hence Mnew eventually become empty

in a finite number of steps and Algorithm 1 terminates.

Algorithm 1 Basis Unobservable Representation

Input: A labelled Petri net G = (N,M,E, `) where T = To∪Tuo, Tuo = T̂o∪ T̂uo
Output: The basis unobservable representation M (Guo,M)

1: Let M = /0, let Mnew = {M};
2: while Mnew 6= /0, do
3: Select a marking M′ ∈Mnew;
4: for all t ∈ T̂o, do
5: for all y ∈ Ŷmin(M′, t), do
6: Let M̂′ = M′+Ĉuo ·y+C(·, t);
7: if M̂′ /∈M ∪Mnew then
8: Let Mnew = Mnew∪{M̂′};
9: end if

10: end for
11: end for
12: Let M = M ∪{M′}, let Mnew = Mnew \{M′};
13: end while
14: Output M (Guo,M) = M .

Example 1 Consider the labelled Petri net G in Figure 1. It models a system that contains two workflows

(p1t1 p2t2 p3t3 p4 and p5t4 p6t5 p7t6 p8) that machine two types of parts that are assembled later (transition t7).

There is a robot that can machine parts on one workflow (p2 on workflow 1 or p6, p7 on workflow 2) at the

same time. Suppose that two sensors are deployed on t5 and t9, respectively, i.e., `(t5) = a, `(t9) = b, and
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p1 
p2 p3 

p5 

p7 p6 p8 

t1 (ε) 

p10 

p4 

p9 

t2 (ε) t3 (ε) 

t4 (ε) t5 (a) t6 (ε) 

t7 (ε) 

t8 (ε) t9 (b) 

Figure 1: A labelled Petri net plant for Example 1 in which To = {t5, t9}, Tuo = {t1, t2, t3, t4, t6, t7, t8}.

p1 
p2 p3 

p5 

p7 p6 p8 

p10 

p4 

p9 t2 (t1) 

p1 + p3 + 2p5 + p9 

t2 (t1) 

M0 

M3 

M4 

2p1 + 2p5 + p9 

2p3 + 2p5 + p9 

Nuo BRG 

t1 (ε) t2 (ê) t3 (ε) 

t4 (ε) t6 (ε) 

t7 (ε) 

t8 (ε) 

Figure 2: The unobservable subnet Guo of the net G in Figure 1. The transition t2 is treated as pseudo-
observable while other transitions are strictly unobservable. In the BRG of this net, the notion (·) in t(·) on
arcs denotes the (strict) minimal explanation of t.

`(t) = ε for all other transitions. The reachability graph of the net has 69 reachable markings, which is too

complex to be graphically presented here.

Since the unobservable subnet contains cycles (t1 p2t2 p9), the classical BRG approach in [11] cannot be

applied for marking estimation, since the unobservable reach R̂uo(G,Mb) of a basis marking Mb cannot be

characterized by the linear expression Mb +Cuo · y. For example, at a basis marking M1 = 2p1 + p5 + p7,

there is a marking M2 = p1 + p3 + p5 + p7 such that M2 = M1 +Cuo · y where y = [1,1,0,0,0,0,0,0,0]T , but

one can readily verify that M2 is not reachable from M1 since the robot is occupied by workflow 2 at M1 such

that workflow 1 cannot proceed. Hence the classical basis markings cannot be used to estimate the current

markings.

On the other hand, let us consider a further partition Tuo = T̂o ∪ T̂uo where T̂o = {t2}, i.e., t2 is treated

as a pseudo-observable transition. One can verify that the subnet induced by T̂o = {t1, t3, t4, t6, t7, t8} is

acyclic. For the initial marking M0 = 2p1 +2p5 + p9, the basis markings M (Guo,M0) (the structure of Guo

is shown in Figure 2 in which t2 is the only observable transition) consists of three markings: M (Guo,M0) =

{M0,M3,M4} where M3 = p1 + p3 + 2p5 + p9,M4 = 2p3 + 2p5 + p9. One can verify that Ruo(G,M0) =⋃
Mb∈{M0,M3,M4}{M

′ | (∃y ∈ Nn̂uo)M′ = Mb +Ĉuo · y}, according to Proposition 3. �
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As we have mentioned, given a labelled net G, the possible partition of Tuo into T̂o and T̂uo is not u-

nique. However, to characterize Ruo(G,M) by the basis markings M (Guo,M), it is preferable to select a set

of pseudo-observable transitions with a minimal cardinality, since |M (Guo,M)| is non-decreasing with the

increase of the set T̂o [17].

4 Representative Markings and the Representative Marking Graph

Definition 5 Given a labelled Petri net G = (N,M0,E, `), the consistent marking set of a word w ∈L (G) is

defined as:

C (w) = {M |M0[w〉M}.

A marking M ∈ C (w) is called a consistent marking of w. �

The consistent marking set C (w) consists of all markings that are reachable from M0 by firing some

sequences σ whose observation `(σ) is w. In the following we propose an algorithm to construct a current

marking estimator called the representative marking graph (RMG).

Definition 6 Given a labelled Petri net G = (N,M0,E, `), its representative marking graph (RMG) is a de-

terministic finite state automaton constructed by Algorithm 2. The RMG B is a quadruple (X ,E,δ ,X0),

where:

• each state X in the state set X is a set of markings called representative markings;

• the event set E is the set of labels;

• δ is the transition relation;

• the initial state is X0 ∈X .

�

Algorithm 2 works in the following way. Initially, the set Xnew consists of an initial state X0 which

contains M (Guo,M0) and X0 is not checked. In the iteration cycle, if Xnew is not empty, then a state X ∈Xnew

is selected. For each event e ∈ E, for each pair (t,M) where t ∈ T (e) and M ∈ X , the set Ŷmin(M, t) is

calculated. Then for each y ∈ Ŷmin(M, t), a new marking M̂ = M + Ĉuo · y+C(·, t) is computed. By Step 9

its representation set M (Guo,M̂) is computed by Algorithm 1 and all representative markings in it are added

to Xtemp. Finally we have Xtemp that consists of all markings that can be reached from some marking in X

by firing a transition t labelled e and with one of its strict minimal explanations. If Xtemp does not exist in
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Algorithm 2 Representative Marking Graph

Input: A labelled Petri net G = (N,M0,E, `), T = To∪Tuo,Tuo = T̂o∪ T̂uo
Output: The RMG B = (X ,E,δ ,X0)

1: Let X = /0,Xnew = {X0}= {M (Guo,M0)};
2: while Xnew 6= /0, do
3: Select a state X ∈Xnew;
4: Let Xtemp = /0;
5: for all e ∈ E, do
6: for all t ∈ T (e),M ∈ X , do
7: for all y ∈ Ŷmin(M, t), do
8: Let M̂ = M+Ĉuo ·y+C(·, t);
9: Xtemp = Xtemp∪M (Guo,M̂);

10: end for
11: end for
12: if @X ′ ∈X ∪Xnew, X ′ = Xtemp, then
13: Let Xnew = Xnew∪{X ′};
14: Let δ (X ,e) = X ′;
15: else
16: Let δ (X ,e) = X ′;
17: end if
18: end for
19: Let X = X ∪{X}, let Xnew = Xnew \{X}.
20: end while

X ∪Xnew, this means that Xtemp is a new node, and hence Xtemp is added to Xnew, and δ (X ,e) is defined

accordingly. At the end of this iteration cycle, X is moved from Xnew to X to denote that X has been checked.

This procedure runs iteratively until there is no unchecked state in Xnew. Since M (Guo,M)⊆ R(N,M0), we

can conclude that X ⊆ 2R(N,M0), i.e., Algorithm 2 terminates in a finite number of steps.

Definition 7 Given a labelled Petri net G in which T = To∪ T̂o∪ T̂uo where the T̂uo-induced subnet is acyclic,

the marking set X = δ (X0,w) is called the representative marking set of w in G, denoted as Crep(w). �

The following theorem shows that the RMG B can be used to characterize the consistent marking set

C (w) for a given observation w. In short, C (w) can be characterized by a linear system parameterized by the

corresponding representative markings Crep(w).

Theorem 2 Given a labelled Petri net G in which T = To ∪Tuo,Tuo = T̂o ∪ T̂uo, and an arbitrary word w ∈

L (G), it holds:

C (w) =
⋃

M∈δ (X0,w)

R̂uo(G,M, T̂o).

Proof: We prove this theorem by induction.

(Base) If w= λ , i.e., the empty observation, then C(λ )=
⋃

M∈δ (X0,w) R̂uo(G,M, T̂o) holds by Proposition 3.

(Induction) Suppose that the statement holds for a word w, i.e., C (w) =
⋃

M∈δ (X0,w) R̂uo(G,M, T̂o).
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M0, M1, M2 

t5(a) 
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M6, M7, M8 

M2, M9, M10, M11 
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t5(a) 
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t9(b) 

t9(b) 

t9(b) t9(b) t5(a) 

Figure 3: The RMG B of the net in Figure 1 in which To = {t5, t9}, T̂o = {t2}, and T̂uo = {t1, t3, t4, t6, t7, t8}.

Consider a word we and an arbitrary marking M that belongs to the consistent marking set C (we). By def-

inition, there exist a marking M1 ∈ C (w), a transition t with `(t) = e, and σ1 ∈ T ∗uo such that M1[t〉M2[σ1〉M.

Since M1 ∈ C (w) =
⋃

M∈δ (X0,w), there exists a representative marking Mrep ∈ δ (X0,w) such that M1 ∈

R̂uo(G,Mrep, T̂o). Then ∃σ2 ∈ T̂ ∗uo such that Mrep[σ2〉M1[t〉M2[σ1〉M.

If σ2 is not the strict minimal explanation of t at Mrep, then there must exist a firing sequence σ3 ∈

T̂ ∗uo that is the strict minimal explanation such that Mrep[σ3t〉M3, and yσ3
� yσ2

. Let σ4 ∈ T̂ ∗uo be a firing

sequence such that yσ2
= yσ3

+ yσ4
. Then we claim that Mrep[σ3t〉M3[σ4〉M2 holds. This is due to the fact

that M3 + Ĉuo · yσ4
= M4 ≥ 0, and hence, since the strictly unobservable net is acyclic, by Proposition 2

the state equation is a sufficient condition for the firing of a sequence σ4 with a firing vector yσ4
. Since

Mrep ∈ δ (X0,w) and M3 = Mrep +Ĉuo ·yσ4
+C(·, t), it holds M3 ∈ δ (δ (X0,w),e) = δ (X ,we) by Algorithm 2.

Since M3[σ4〉M2[σ1〉M, we have M ∈ R̂uo(G,M3, T̂uo) and M ∈ R̂uo(G,M3, T̂o)⊆
⋃

M∈δ (X0,we) R̂uo(G,M, T̂o).

Since the marking M ∈ C (we) is arbitrarily chosen, C (we)⊆
⋃

M∈δ (X0,we) R̂uo(G,M, T̂o) holds.

On the other hand, by the computation of δ (X0,we) from δ (X0,w) in Algorithm 2 as discussed before, it

is trivial to prove that C (we)⊇
⋃

M∈δ (X0,we) R̂uo(G,M, T̂o), which concludes the proof. �

By Theorem 2, to compute the consistent marking set of a given observation w, one just need to check its

representative markings in Crep(w) = δ (X0,w), as stated in the following corollary:

Corollary 2 Given a labelled Petri net G = (N,M0,E, `), its consistent marking set C (w) of a word w satis-

fies:

C (w) = {M′ ∈ Nm | (∃M ∈ Crep(w))

M′ = M+Ĉuo · y}.

Example 2 Still consider the net in Figure 1. By letting T̂o = {t2} and T̂uo = Tuo \ {t2} and applying Al-

gorithm 2, its RMG is shown in Figure 3 and the representative markings are listed in Table 1. This RMG,
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Table 1: The list of representative markings in Figure 3

M0 [2 0 0 0 2 0 0 0 1 0] M8 [2 0 0 0 0 0 1 1 0 0]
M1 [1 0 1 0 2 0 0 0 1 0] M9 [0 0 2 0 1 0 0 1 1 0]
M2 [0 0 2 0 2 0 0 0 1 0] M10 [2 0 0 0 1 0 0 1 1 0]
M3 [2 0 0 0 1 0 1 0 0 0] M11 [1 0 1 0 1 0 0 1 1 0]
M4 [1 0 1 0 1 0 1 0 0 0] M12 [2 0 0 0 0 0 0 2 1 0]
M5 [0 0 2 0 1 0 1 0 0 0] M13 [1 0 1 0 0 0 0 2 1 0]
M6 [0 0 2 0 0 0 1 1 0 0] M14 [0 0 2 0 0 0 0 2 1 0]
M7 [1 0 1 0 0 0 1 1 0 0]

consisting of only 8 states and 15 representative markings in all, can be used as the current marking estimator

of the original net (which has 69 reachable markings). By observing a word w, the consistent marking set

C (w) are such marking M satisfying the following IPP:


M = Mrep +Ĉuo · y≥ 0

y≥ 0

Mrep ∈ δ (X0,w)

(4)

For instance, given an observation w= a, the representative marking set Crep(a) contains 3 representative

markings (i.e., δ (X0,a) = {M3, M4, M5}) that characterizes the consistent marking set C (a) by the linear

algebraic system Eq. (4). For the observation w = ab, there are 4 representative markings in Crep(ab) (i.e.,

M2, M9, M10, and M11). Moreover, it is very easy to compute Crep(we) from Crep(w) by looking for the state

X = δ (Crep(w),e) in the RMG. Since nearly all computation is done offline, the online computational effort

of this method is negligible. �

By Theorem 2 and Corollary 2 the consistent markings of a Petri net can be efficiently described by a

linear algebraic system parameterized by a set of representative markings. Since this representative marking

analysis approach by-passes the need of enumeration and on-line maintenance/updating of a large list of

consistent markings, it brings significant advantages from the point of view of the computational effort.

5 Conclusion

In this paper a method to estimate the consistent markings in labelled Petri nets is proposed, which is based

on the representative marking analysis. This method does not require the assumption that the unobservable

subnet is acyclic. The set of consistent markings can be described by a linear algebraic system parameterized

by the representative markings that can be efficiently computed from the representative marking graph.
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