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Abstract

Current-state opacity is a key security property in discrete event systems. A system is said to be current-state

opaque if the intruder, who only has partial observation on the system’s evolution, is never able to establish if

the current state of the system is within a set of secret states. In this work, we address the problem of enforcing

current-state opacity by supervisory control. Given a system that is modeled with a finite automaton and that is not

current-state opaque with respect to a given secret, the enforcement problem consists in designing a supervisor so

that the controlled system is current-state opaque. We assume that the supervisor can only observe and control a

subset of events. To be more general, we assume there is no specific containment relationship between the sets of

events that can be observed by the intruder and the supervisor, respectively. We call this general setting incomparable

observations. We show that the maximally permissive supervisor always exists and propose a novel approach for its

design.
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I. INTRODUCTION

Motivated by the concern about security and privacy in computer systems, communication protocols etc., various

notions of secrecy have been formulated, such as non-interference [1], [2], anonymity [3], [4] and opacity [5], [6],

[7], [8], [9]. In this paper we focus on opacity, and especially on current-state opacity in discrete event systems.

Given a system, a subset of its states is considered as “secret”. There exists a malicious observer (called intruder)

who attempts to detect the secret so that an attack can be launched. It is usually assumed that the intruder knows the

structure and the initial state of the system but has only partial observation of the system’s evolution. The system is

said to be current-state opaque with respect to a given secret if the intruder cannot determine with certainty if the

current state of the system belongs to the secret. There are several ways to verify current-state opacity [9], [10].

The aim of this work is not to check current-state opacity for a system but to enforce this property using

supervisory control. More precisely, given a system that is not current-state opaque with respect to a given secret,

our purpose is to design a supervisor that minimally restricts the behavior of the system while guaranteeing that

the controlled system is current-state opaque. Formally, a supervisor is a map specifying for each possible string of

generated events, the set of events (which should include all uncontrollable events) that are allowed to occur at that

point such that the current state remains opaque [11]. The supervisor should be maximally permissive (optimal),

i.e., the system’s behavior should not be unnecessarily restricted.

There has been some related work on the design of supervisors to enforce opacity properties. In [12], the authors

consider the secret defined as a set of event sequences (such an opacity property is usually called language-based

opacity) and more than one intruder having different observations. They assume that all events are observable and

controllable to the supervisor, and show that the optimal supervisor always exists. Considering the same language-

based opacity enforcement problem but with only one intruder, Dubreil et al. [13], [14] study a more general case

where the supervisor may observe a set of events different from the one observed by the intruder in the presence

of uncontrollable events. The authors of [15] propose methods for designing optimal supervisors to enforce two

different opacity properties: initial-state opacity and infinite-step opacity, with the assumption that the supervisor

can observe all events.

More recently, the common assumption that all controllable events are also observable [12], [13], [14], [15] is

relaxed in [16] to enforce current-state opacity. In such a case, the maximally permissive supervisor may not be

unique. We point out that all the aforementioned works are carried out in the framework of finite automata and all

of them assume that the set of events observed by the intruder is a subset of the events observed by the supervisor

(or vice versa). We also point out that in [14] it is assumed that the intruder knows not only the structure of the

system but also the sets Ec and ES under the assumption that Ec ⊆ ES ⊆ EI , where Ec is the set of controllable

events, ES is the set of events observable by the supervisor and EI is the set of events observable by the intruder.

Therefore, the intruder predicts the control policy by applying supervisory control theory and updates his estimation

accordingly. However, this assumption results in a paradigm of a full information game between two smart-enough

players, under which the solution to the opacity enforcement problem would be difficult to find since the supervisor
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needs to be iteratively computed. Moreover, this assumption could hardly be satisfied in practical cases, since the

intruder may not be able to acquire all the information. As a result, it is reasonable for us to assume that the intruder

does not know what can be observed and controlled by the supervisor.

In this paper we tackle the current-state opacity enforcement problem in the framework of finite automata and

in particular, we assume that no specific containment relationship exists between the sets of events that can be

observed by the intruder and the supervisor, respectively. We call this general setting incomparable observations.

In this sense, the problem considered here is more general than the one in [12], [13], [14], [15], [16]. Furthermore,

we assume that all controllable events are also observable by the supervisor, which is a common and practical

assumption when dealing with supervisory control. A structure called parallel observer (PO) is constructed to

capture the observations of the intruder and the supervisor simultaneously. The PO of a system is a deterministic

finite automaton, where each state corresponds to the current-state estimate of the intruder and the supervisor.

Finally, based on the PO, the optimal supervisor enforcing current-state opacity can be designed. The contributions

of this work can be summarized as follows.

• A novel finite structure, the PO, that enables one to relax the assumption ES ⊆ EI (or EI ⊆ ES) is proposed.

• An approach to design the maximally permissive supervisor that enforces current-state opacity is developed

based on the PO.

The rest of this paper is organized as follows. Basic notions on automata and supervisory control are recalled in

Section II. Section III presents the definition of current-state opacity and the corresponding verification approach.

In Section IV the current-state opacity enforcement problem is formalized and a method for the synthesis of the

optimal supervisor is proposed. Finally, this paper is concluded in Section V, where our future work in this topic

is also discussed.

II. PRELIMINARIES AND BACKGROUND

In this section we recall the basics on automata and supervisory control. For more details, we refer the reader to

[11], [17].

A. Automata

A deterministic finite automaton (DFA) is a 4-tuple G = (X,E, δ, x0), where X is the finite set of states, E is

the set of events, δ : X ×E → X is the (partial) transition function, and x0 ∈ X is the initial state. The transition

function can be extended to δ : X×E∗ → X recursively: δ(x, ε) = x and δ(x, σe) = δ(δ(x, σ), e) for σ ∈ E∗ and

e ∈ E. We denote by δ(x, σ)! the fact that σ is defined at x. The generated language of a DFA G = (X,E, δ, x0)

is defined as

L(G) = {σ ∈ E∗|δ(x0, σ)!}.

To model the partial observation on event sequences of the intruder and the supervisor, we denote EI ⊆ E and

ES ⊆ E the set of events observable by the intruder and the supervisor, respectively. The set of events observable
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either by the intruder or the supervisor is Eo = EI ∪ ES . The natural projection PI : E∗ → E∗I on EI is defined

as i) PI(ε) = ε; ii) for all σ ∈ E∗ and e ∈ E, PI(σe) = PI(σ)e if e ∈ EI , and PI(σe) = PI(σ), otherwise.

Given a set of sequences L ⊆ E∗, its projection is defined as PI(L) =
⋃
σ∈L{PI(σ)}. Similarly, the natural

projection PS : E∗ → E∗S on ES can be defined. Given an event sequence σ ∈ E∗, its projection wi = PI(σ)

(resp., ws = PS(σ)) on EI (resp., ES) is called an observation of the intruder (resp., supervisor).

Given a state x and the empty word ε, the unobservable reach RI(x, ε) of x with respect to the intruder is

RI(x, ε) = {x′ ∈ X|∃σ ∈ (E \ EI)∗ : δ(x, σ) = x′}.

Clearly, x ∈ RI(x, ε). Given an event e ∈ EI , the e-reach RI(x, e) of x is defined as RI(x, e) = RI(x
′, ε), where

x′ = δ(x, e). Analogously, we can define the unobservable reach RS(x, ε) and the e-reach RS(x, e) with e ∈ ES
for the supervisor.

In this work, it is assumed that the system is modeled by a DFA. We note that since a nondeterministic finite

automaton can always be converted into an equivalent DFA, this assumption does not restrict the application of the

proposed approach.

B. Supervisory Control

Given a system G = (X,E, δ, x0) and a series of specifications, the goal of supervisory control is to design a

supervisor such that the controlled system satisfies the specifications. The supervisor observes a subset ES of the

events in E and is able to control (i.e., disable) a subset of events Ec ⊆ E. We denote Euc = E\Ec the set of events

that cannot be controlled by the supervisor. According to [11], a supervisor is a map f : E∗S → 2Ec . In other words,

given an observation ws of the supervisor, the set of events enabled by the supervisor is f(ws)∪Euc. Namely, based

on its observation, the supervisor can disable one or more controllable events so that the system will not violate the

specification. In this work, the supervisor is described by a DFA Sup = (Y,E, δs, y0). Given an observation ws of

the supervisor, let δs(y0, ws) = y, then the set of events enabled by the supervisor is Euc ∪ {e ∈ E|δs(y, e)!}.

III. CURRENT-STATE OPACITY AND VERIFICATION

Current-state opacity has been defined in both automata and Petri nets framework [6], [9], [10], [18]. In this

section, we recall the definition of current-state opacity in finite automata and the approach to checking this property.

Given a system, it is usually assumed that the intruder knows the system’s structure G but only some events

occurrence can be detected by the intruder. Current-state opacity is defined as follows.

Definition 3.1: Given a system G = (X,E, δ, x0), a secret S ⊆ X , and the set EI of events observable by the

intruder, the system is said to be current-state opaque wrt S and EI if ∀σ ∈ L(G) such that δ(x0, σ) ∈ S,

∃σ′ ∈ L(G) : PI(σ′) = PI(σ) and δ(x0, σ′) /∈ S. �

In simple words, for each sequence of events σ that leads to a state in the secret, i.e., a secret state, there exists

at least an event sequence that reaches a non-secret state but produces the same observation PI(σ) to the intruder.

Therefore, when the intruder observes wi = PI(σ), it cannot conclude whether the current state is contained or not
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Fig. 1. System G that is not CSO wrt S = {5} and EI = {a, d}.

in the secret. However, based on the system’s structure and its observation, the intruder can estimate the current

state.

Definition 3.2: Given a system G = (X,E, δ, x0) and an observation wi of the intruder, the estimate of the

intruder1 is defined as

CI(wi) = {x ∈ X|∃σ ∈ E∗ : δ(x0, σ) = x, PI(σ) = wi}.�

Therefore, if the intruder observes a sequence of events wi, it knows that the current state is any state in the set

CI(wi). Such a set is called the set of states consistent with wi.

Theorem 3.3: Let G = (X,E, δ, x0) be the system, S ⊆ X be the secret and EI be the set of events observable

by the intruder. The system is current-state opaque wrt S and EI if and only if for all σ ∈ L(G),

CI(wi) * S

holds, where wi = PI(σ). �

Proof: Let σ ∈ L(G) and wi = PI(σ).

(If ) Assume CI(wi) * S. Let x′ ∈ CI(wi) \ S. According to Definition 3.2, there exists σ′ ∈ L(G) such that

δ(x0, σ
′) = x′ /∈ S and PI(σ′) = wi. By Definition 3.1, the system is current-state opaque.

(Only If ) Assume the system is current-state opaque. Thus, there exists at least one sequence of events σ′ ∈ L(G)

such that δ(x0, σ′) = x′ /∈ S and PI(σ
′) = wi. According to Definition 3.2, x′ ∈ CI(wi), i.e., x′ ∈ CI(wi) \ S.

Therefore, CI(wi) * S.

In simple words, to verify if a system is current-state opaque wrt the given secret, one needs to build the sets

CI(wi) for all σ ∈ L(G) and check whether CI(wi) * S holds. This can be done by constructing the observer of

the system for the intruder (i.e., wrt EI ). The observer captures all state estimates of the intruder. More specifically,

the state of the observer reached by wi is equal to CI(wi). Therefore, we can use the observer to verify current-state

opacity of the system. The observer is defined in Section 2.5.2 of [17], where the algorithm to construct it can also

be found. Herein, it is not recalled for the sake of simplicity. Therefore, to avoid leaking the secret, we should

make unreachable the states of the observer such that CI(wi) ⊆ S .

1Analogously, given an observation ws of the supervisor, the supervisor’s estimate is defined as CS(ws) = {x ∈ X|∃σ ∈ E∗ : δ(x0, σ) =

x, PS(σ) = ws}.
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Fig. 2. Observer of the system in Fig. 1 for the intruder.

Example 3.4: Consider the system in Fig. 1. Let EI = {a, d} and S = {5} (the secret state is in box). The

corresponding observer for the intruder is shown in Fig. 2. Since there exists wi = ad such that CI(wi) = {5} ⊆ S

(state in shadow), by Theorem 3.3, the system is not current-state opaque wrt S and EI . �

IV. CURRENT-STATE OPACITY ENFORCEMENT BY CONTROL

Given a system that is not current-state opaque wrt a secret, an interesting question is how to restrict its behavior

or how to modify the observation structure such that the secret will never be revealed to the intruder. In this work

we address the first issue using supervisory control theory [11]. The supervisor will restrict the system’s behavior to

prevent the evolutions that leak the secret. In this section, we present a novel approach to designing the maximally

permissive supervisor enforcing current-state opacity without assuming any containment relationship between ES

and EI .

A. Problem Formulation

Before we formalize the problem addressed in the rest of this work, the following assumptions are made.

A1) ∀σ ∈ E∗uc ∩ L(G), it holds CI(wi) * S, where wi = PI(σ).

A2) All controllable events are also observable by the supervisor, i.e., Ec ⊆ ES .

Assumption A1 claims that the secret cannot be leaked by the only occurrence of uncontrollable events. Such an

assumption guarantees that there always exists a solution, because in the worst case, all controllable events are

disabled at the initial state. Assumption A2 implies that there may be observable events that cannot be disabled by

the supervisor and all unobservable events are uncontrollable. Note that there is no specific containment relationship

between EI and ES , which makes the major difference of our work from [12], [13], [15], [14], [16]. The problem

we want to solve in this work can be formalized as follows.

Problem Statement: Consider a system G = (X,E, δ, x0), a secret S ⊆ X and a set of events EI observable

by the intruder such that the system is not current-state opaque wrt S and EI . Assume that the intruder does

not know the supervisor. Namely, it cannot update its estimation taking into account the supervisory action. Let

Assumptions A1 and A2 be satisfied, we want to synthesize an optimal (i.e., maximally permissive) supervisor such

that the controlled system is current-state opaque wrt S and EI .

Example 4.1: Consider again the system in Fig. 1. The sets of events observable/controllable by the intruder

and the supervisor are shown in Table I. In this case, EI and ES are not comparable, i.e., neither EI ⊆ ES nor

ES ⊆ EI holds. From Example 3.4 we know that, if the intruder observes EI = {a, d}, the system is not current
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TABLE I

OBSERVABILITY AND CONTROLLABILITY OF THE EVENTS.

Events EI ES Ec
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× ×
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Fig. 3. Parallel composition of observers

state opaque wrt S = {5}. Assuming that only events b and c can be observed by the supervisor and c can also be

controlled, we want to design an optimal supervisor, so that the system becomes opaque. �

In the next subsection, we introduce a structure, called parallel observer, based on which the optimal supervisor

can be designed.

B. Synthesis of the Optimal Supervisor

To design the supervisor, we have to characterize the supremal controllable and observable behavior of the system

such that the secret will never be leaked. However, the absence of specific containment relationships between EI

and ES greatly makes the problem non trivial. In the following we provide an example such that the approach in

[14] fails since none of the containment relationships EI ⊆ ES or ES ⊆ EI holds.

Consider the problem in Example 4.1. According to [14], observers of the system for the intruder and the

supervisor should be constructed first. Then we have to compute the parallel composition of them (see Fig. 3,

states in shadow should be forbidden). Such a structure characterizes the behavior that should be forbidden by

the supervisor. Finally, we compute the observer of the parallel composition structure for the supervisor (wrt ES).

Therefore, the complexity of the approach is O(222|X|
). Without the assumption EI ⊆ ES or ES ⊆ EI , the parallel

composition between the observers would introduce event sequences (e.g., σ = ad) not belonging to Po(L(G)),

where Po : E∗ → Eo and Eo = EI ∪ES (in the case at hand, being Eo = E, it is Po(L(G)) = L(G)). As a result,
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Fig. 4. Parallel Observer of the system in Example 4.2

the behavior of the system would be over restricted. For instance, sequence ab does not leak the secret. However,

it should be disabled: after uncontrollable event d occurs, sequence abd will lead to a state in shadow. Therefore,

the obtained supervisor would not be optimal, or even no such an opacity enforcing supervisor exists (as in the

case at hand).

In this work, we introduce a structure, called a parallel observer (PO), based on which the optimal supervisor

can be designed without increasing the complexity even if no containment relationship exists between EI and ES .

Given an event sequence, the PO captures both the estimate of the intruder and the supervisor. The PO of the

system G is a DFA denoted as P = (Q,Eo, δp, q0), where Eo = EI ∪ES . A state q ∈ Q of P is a pair (CI , CS),

where CI ⊆ X and CS ⊆ X . The initial state of the PO is q0 = (RI(x0, ε), RS(x0, ε)). Algorithm 1 illustrates

the construction of the PO.

Now we explain the idea behind Algorithm 1. Given a state q = (CI , CS) ∈ Q and an event e ∈ Eo, using

Algorithm 1, the transition δp(q, e) = q′ = (C ′I , C
′
S) in the PO is computed as follows. If e can only be observed

by the intruder, C ′I is the e-reach of states in CI while CS does not change, i.e., C ′S = CS ; if e can only be

observed by the supervisor, C ′S equals the e-reach of states in CS while CI does not change, i.e., C ′I = CI ; on the

contrary, if e can be observed by both the intruder and the supervisor, C ′I and C ′S are e-reaches of states in CI and

CS , respectively. If q′ is a new state, it will be added to Q, otherwise Q does not change. In Algorithm 1 all states

in Q are analyzed. The maximum number of states of the PO is 22|X|. The difference between Algorithm 1 and

the parallel composition of observers for the intruder and the supervisor lies in Step 4: not all observable events

are considered in the loop.

Example 4.2: Consider the problem in Example 4.1. Using Algorithm 1, the PO is constructed and shown in

Fig. 4. �

From Algorithm 1, the PO has the following properties:

i) PI(L(G)) = PI(L(P)) and PS(L(G)) = PS(L(P));

ii) Given a sequence σ ∈ L(G), Let σo be the projection of σ on Eo, and in the PO q = (CI , CS) = δp(q0, σo).

8



Algorithm 1 Computation of the Parallel Observer
Input: A system G = (X,E, δ, x0) and sets of events EI and ES .

Output: The corresponding parallel observer P = (Q,Eo,

δp, q0).

1: q0 := (RI(x0, ε), RS(x0, ε)) and assign no tag to it;

2: Q := {q0};

3: while q = (CI , CS) ∈ Q with no tag exists, do

4: for all e ∈ Eo such that ∃x ∈ CI : δ(x, e)! and ∃x′ ∈ CS : δ(x′, e)!, do

5: if e ∈ EI \ ES , then

6: C ′I :=
⋃
x∈CI

RI(x, e);

7: C ′S := CS ;

8: else if e ∈ ES \ EI , then

9: C ′I := CI ;

10: C ′S :=
⋃
x∈CS

RS(x, e);

11: else if e ∈ EI ∩ ES , then

12: C ′I :=
⋃
x∈CI

RI(x, e);

13: C ′S :=
⋃
x∈CS

RS(x, e);

14: end if

15: q′ := (C ′I , C
′
S);

16: if q′ /∈ Q then

17: Q := Q ∪ {q′};

18: end if

19: δp(q, e) := q′;

20: end for

21: Tag q “old”;

22: end while

23: Remove all tags;

24: Output P .

It holds CI = CI(wi) and CS = CS(ws), where wi = PI(σ) and ws = PS(σ).

From the second property above and Theorem 3.3, we have Corollary 4.3, which shows that the PO can also be

used to verify current-state opacity of a system.

Corollary 4.3: Given a system G, a secret S and the sets of events EI and ES , let P = (Q,Eo,

δp, q0) be the parallel observer. G is not current-state opaque wrt S and EI if and only if there exists a state

q = (CI , CS) ∈ Q such that CI ⊆ S.
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Based on Corollary 4.3 and supervisory control theory, Algorithm 2 is proposed to derive the maximally permissive

supervisor. The inputs of the algorithm are the parallel observer P = (Q,Eo, δp, q0) of the system and the secret

S. First, all states such that CI ⊆ S are computed. We call Q̂ ⊆ Q such a set of states. Since there may be events

in the PO that cannot be observed by the supervisor, the observer of the PO wrt ES is first constructed. We denote

Ps = (Y,ES , δm,m0) the obtained observer. Clearly, if EI ⊆ ES , then P and Ps are identical. A state m of Ps is

a subset of Q. Initially, the supervisor Sup is identical to Ps. Then selfloops of events in Eo that are not defined

at some states of Sup are added. At this point, we compute the set Ŷ1 of states that contain a state in Q̂. In other

words, states in Ŷ1 are states needed to be unreachable in Ps, since they contain states in Q̂ that will leak the

secret. Secondly, to ensure controllability, states (i.e., states in Ŷ2) that lead to states in Ŷ1 by firing uncontrollable

events are computed. Finally, we remove all states in Ŷ1 and Ŷ2 and the related transitions from Sup. The obtained

DFA is the supervisor.

Algorithm 2 Computation of the Maximally Permissive Supervisor
Input: The PO P = (Q,Eo, δp, q0), and the secret S.

Output: The supervisor Sup = (Y,E, δs, y0).

1: Q̂ := {q = (CI , CS) ∈ Q|CI ⊆ S};

2: Compute the observer Ps = (Y,ES , δm,m0) of P for the supervisor.

3: Sup := Ps.

4: for all y ∈ Y , do

5: for all e ∈ Eo that is not defined at y, do

6: Add δs(y, e) = y;

7: end for

8: end for

9: Ŷ1 := {y ∈ Y |∃q ∈ y : q ∈ Q̂};

10: Ŷ2 := {y ∈ Y |∃σ ∈ E∗uc : δ∗s (y, σ) ∈ Ŷ1};

11: Remove all states and related transitions in Ŷ1 ∪ Ŷ2 from Sup;

12: Output Sup.

Theorem 4.4: Given a system G = (X,E, δ, x0), a secret S ⊆ X , the set of events observable by the intruder

EI , the set of events ES observable by the supervisor, and the set of controllable events Ec. Let Assumptions A1

and A2 be satisfied. The supervisor obtained using Algorithm 2 is maximally permissive and the controlled system

is current-state opaque wrt S and EI . �

Proof: We first prove that the controlled system is current-state opaque wrt S and EI . By Algorithm 2, the

supervisor obtained disables all events whose occurrence will lead to states in Q̂. In other words, in the parallel

observer there would be no state q = (CI , CS) such that CI ⊆ S. Therefore, by Corollary 4.3, the controlled

system is current-state opaque wrt S and EI .
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Fig. 5. (a) Observer of the PO in Fig. 4 for the supervisor; (b) Optimal supervisor enforcing current-state opacity.

Next we show that the supervisor is maximally permissive. Suppose that the supervisor Sup is not maximally

permissive. Namely, there exists at least a state x and an controllable event e ∈ Ec such that e is disabled by

the supervisor but the occurrence of e at x does not violate opacity. Let σx ∈ L(G) be such that δ(x0, σx) = x.

Considering that the supervisor has only partial observation, for any σ ∈ L(G) such that PS(σ) = PS(σx), the

following conditions hold:

• CI(wie) * S, where wi = PI(σ), and

• ∀σu ∈ E∗uc and w′i = PI(σ)ePI(σu), CI(w′i) * S.

Since e is disabled at x by the supervisor, δs(y, e) is not defined in Sup, where y = δs(y0, ws) and ws = PS(σ). Let

δm(m0, ws) = m and δm(m, e) = m′, where δm is the transition function of the observer Ps = (M,ES , δm,m0).

Since δs(y, e) is not defined in Sup, by Algorithm 2, m′ ∈ Ŷ1 ∪ Ŷ2. By Algorithm 1, ∀q = (CI , CS) ∈ m, the

following conditions hold:

• sets CS are equal to CS(ws), and

• set CI = CI(wis) * S, where wis = PI(σs) and σs ∈ L(G) is a sequence such that PS(σs) = ws.

By the assumption that the occurrence of e at x does not violate opacity, we have ∀q′ = (C ′I , C
′
S) ∈ m′, C ′I =

CI(wise) * S, (i.e., q′ /∈ Q̂), and ∀σu ∈ E∗uc, CI(wisePI(σu)) * S. Namely, m′ /∈ Ŷ1 ∪ Ŷ2, which leads to a

contradiction.

Example 4.5: Consider again the problem in Example 4.1. According to the result in Example 3.4, Q̂ = {q5}.

The observer Ps for the supervisor is shown in Fig. 5(a). Therefore, Ŷ1 = {m2} and Ŷ2 = ∅. Using Algorithm 2,

the obtained supervisor is shown in Fig. 5(b). If the supervisor observes nothing, all events are enabled by the

supervisor. However, when the supervisor observes ws = b, the set of events allowed by the supervisor is {a, b, d},

i.e., c is disabled by the supervisor. �

C. Computational complexity analysis

According to the previous analysis, in the worst case the number of states of the PO is 22|X|, therefore, due to the

determinization of the PO (namely the construction of the observer), the complexity of Algorithm 2 is O(222|X|
). If
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EI ⊆ ES or ES ⊆ EI holds, the proposed approach has the same complexity as the one in [13], [14] has. On the

contrary, if neither EI ⊆ ES nor ES ⊆ EI holds, as discussed at the beginning of Section IV-B, the supervisory

synthesis problem considered in the paper cannot be solved using the approaches in [13], [14].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to solve the problem of current-state opacity enforcement in discrete

event systems using finite automata. By constructing the parallel observer (PO), the states that will violate current-

state opacity were characterized. Based on the PO, current-state opacity can be checked and a synthesis algorithm was

provided to design the maximally permissive supervisor, without assuming the existence of containment relationships

between the sets of events observable by the intruder and the supervisor. We also point out that the proposed

approach can be extended to Petri nets, a model that is more powerful than finite automata. Moreover, some

structural properties of Petri nets may be used to further reduce the computational complexity, which leads our

future research.
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