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Abstract

Timed Petri nets have proven to be suitable for modelling and analyzing embedded systems, assembly lines, and

streaming applications. In this paper, a sub class of timed Petri net called timed weighted marked graphs (TWMGs)

are studied. Stationary throughput analysis of these TWMGs is an important step for checking stationary stationary

throughput requirements of concurrent real-time applications and finding the best schedules. We proposed some

properties of TWMGs which is useful for designers or engineers to study the stationary throughput and solve the

scheduling problem for practical usage.
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I. INTRODUCTION

Performance control or performance evaluation of manufacturing systems or embedded systems pose difficult

issues because their representation deals with continuous and discrete models. Timed Petri nets (PNs) are well

known as efficient tools for modeling discrete event systems and analysis performance of concurrent systems [1].

Timed weighted marked graphs and timed marked graphs (TMGs) find wide applications in streaming applications

and manufacturing systems [9], [6]. They can model embedded systems and capture the active entities of the process.

Process and buffers are usually modeled by transitions and places, respectively. Tokens model data transferred from

a process to another. When modelling manufacturing systems, transitions and tokens represent workshop operations

and products, respectively. Synchronous Data-Flow Graphs (SDFGs) are a well known formalism to model embedded

applications which is equivalent to TWMGs [5]. The transmission of datas and the storage of buffers may incur

economical consequence. Thus, it becomes very important to minimize the number of buffers and maximize the

stationary throughput of the system. In the framework of TWMGs, this problem is equivalent to the minimization

of the total number of tokens and maximization of the stationary stationary throughput of transitions.

The initial distributed state problem for TWMGs are studied in [13] and [12] which consider a trade off between

the stationary throughput and resources used. However, the proposed algorithms are non-polynomial and cannot

ensure an optimal solution. The existence of a polynomial solution for the optimization problem of a TWMG is

still an open problem. The capacity of any place is proportional to the space used to store data and the problem

of minimizing place capacities in order to enforce liveness is studied in [11]. The existence and computation of an

optimal periodic schedule of a TWMG is discussed in [6]. Stationary throughput analysis for TWMGs are studied

in [8] and [10]. However, both of them fail to present efficient algorithms to compute the stationary throughput for

TWMGs.

The stationary throughput of a TMG can be easily analyzed by studying each elementary circuit of the system: as

an example, the stationary throughput of a TMG is equal to the cycle time of its slowest circuit. On the contrary, for

a TWMG the analysis is more complex and it is not sufficient to study each single circuit. This is well known and

there exists some examples of this type for TWMGs under single server semantics [7] (under single server semantics

services in a transition are provided sequentially, i.e., there is no self-concurrency). The objective of this paper is

to show some examples that pertain to TWMGs under infinite server semantics (the degree of self-concurrency

of each transition is infinite). Under an infinite server semantics the number of concurrent servers is equal to the

enabling degree of the transition. Note that infinite server semantics is more general than single server (or in general

k server) semantics. In fact, single (resp., k) server semantics can be simulated by just adding to each transition

a self-loop place with one (resp., k) tokens. We study the relationship between stationary throughput and resource

distribution from the structural point of view. Some important properties are presented to show how the stationary

throughput is influenced by different resource distributions. These results are useful to further study the initial state

assignment problem which is very important for the design of many discrete event dynamic systems.

This paper is structured as follows. In the following section, we briefly recall some basic concepts and the
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main properties of TWMGs. In Section III, we discuss the stationary throughput of a TWMG under infinite server

semantics and present some important properties concerning the analysis of stationary throughput of a TWMG.

Conclusions are finally drawn in Section IV.

II. BACKGROUND

A. Generalities

We assume that the reader is familiar with the structure, firing rules, and basic properties of PNs (see [4]).

In this section, we will recall the formalism used in the paper. A place/transition net (P/T net) is a structure

N = (P, T,Pre,Post), where P is a set of n places; T is a set of m transitions; Pre : P × T → N and

Post : P × T → N are the pre- and post-incidence functions that specify the arcs; C = Post − Pre is the

incidence matrix, where N is a set of non-negative integers.

A vector x = (x1, x2, . . . , xm)T ∈ N|T | such that x ̸= 0 and C · x = 0 is a T-semiflow. A vector y =

(y1, y2, . . . , yn)
T ∈ N|P | such that y ̸= 0 and yT · C = 0 is a P-semiflow. The supports of a T-semiflow and a

P-semiflow are defined by ∥x∥={ti ∈ T |xi > 0} and ∥y∥={pi ∈ P |yi > 0}, respectively. A minimal T-semiflow

(P-semiflow) is a T-semiflow ∥x∥ (P-semiflow ∥y∥) that is not a superset of the support of any other T-semiflow

(P-semiflow), and its components are mutually prime.

A marking is a vector M : P → N that assigns to each place of a P/T net a non-negative integer of tokens; we

denote the marking of place p as M(p). A P/T system or net system ⟨N,M0⟩ is a net N with an initial marking

M0.

A P/T net is said to be ordinary when all of its arc weights are equal to one. A marked graph (also called

an event graph) is an ordinary Petri net such that each place has exactly one input and one output transition. A

weighted marked graph (also called a weighted event graph) is a net that also satisfies this structural condition but

may not be ordinary, i.e., the weight associated with each arc is a non-negative integer number.

A net is strongly connected or cyclic if there exists a directed path from any node in P ∪T to every other node.

Let us define an elementary circuit γ (or elementary cycle) of a net as a directed path that goes from one node

back to the same node without passing twice on the same node.

Given a place p of a WMG, we denote Post(p, t) the weight of its unique input arc and Pre(p, t) the weight

of its unique output arc. The gain G(γ) [3] of every circuit γ of a TWMG is

G(γ) =
∏
p∈γ

ν(pi)

w(pi)
.

A TWMG is live if every circuit has a gain not less than one. Intuitively, if G(γ) < 1 (resp. G(γ) < 1), the whole

number of tokens in circuit γ will go to zero (resp. infinity). In the most of previous works, people tents to study

the case when G(γ) = 1 and the TWMG will be bounded. Any TWMG which satisfies this condition is said to be

neutral. It is well known that a neutral TWMG has a unique minimal T-semiflow x which contains all transitions

in its support [3]. In this paper, we limit our study to strongly connected and neutral TWMGs.
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B. Dynamic behavior

A deterministic timed P/T net is a pair Nδ = (N, δ), where N = (P, T,Pre,Post) is a standard P/T net,

and δ : T → N, called firing delay, assigns a non-negative integer fixed firing duration to each transitions [2].

A transition ti is enabled at Mj if Mj ≥ Pre(·, ti) and an enabled transition t may fire yielding a marking

M ′ with

M ′ = Mj +C(·, ti), (1)

where Pre(·, ti) (resp. C(·, ti)) denotes the column of the matrix Pre (resp. C) associated with transition ti.

The state of a TWMG is defined not only by the marking, as for P/T nets, but also by the clocks associated

with transitions. The enabling degree of t enabled at a marking Mj denoted by αi(j) is the biggest integer number

k such that

Mj ≥ k · Pre(·, ti). (2)

In this paper, we consider the so-called infinite server semantics [2], i.e., we assume that the degree of self-

concurrency of each transition is infinite.

Under infinite server semantics, at each time instant τj the number of clocks oi associated with a transition ti is

equal to its current enabling degree, i.e., oi = {oi,1, . . . , oi,αi(j)}; this number changes with the enabling degree,

thus it can change each time the net evolves from one marking to another one, namely, each time that a transition

fires. If transition ti is not enabled at marking Mj , it has no clock. Assuming that o∗i = min{oi,1, . . . , oi,αi(j)} and

letting o∗ = mini=1,...,m{o∗i } be the minimum among the values of the clocks o∗i . At the time instant τj+1 = τj+o∗,

transitions whose clocks are equal to o∗ fire yielding a new marking as in Eq. (1).

C. Stationary throughput and resources used

The stationary throughput β(M) of a TWMG system ⟨N,M⟩ is the average frequency to fire once the minimal

T-semiflow under the as soon as possible (ASAP) execution, i.e., transitions are fired as soon as possible.

The ASAP execution of a live and strongly connected TWMG with integer delays is ultimately repetitive following

an execution pattern. The period of the pattern is τ and the number of firings of every transition within a period is

f (the periodicity). The number of firings of transition ti within the steady period is fi.

Definition 1: Let ti ∈ T be an arbitrary transition of a TWMG with the minimal T-semiflow x. The stationary

throughput of the TWMG is

β(M) =
fi

xi · τ
. (3)

Note that the value of stationary throughput does not depend on the considered transition. It has been shown in [8]

that the stationary throughput of a TWMG can be computed by transforming it into an equivalent timed marked

graph (TMG). However, this transformation called expansion, cannot produce efficient algorithms in an industrial

context.
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The resources used R(M) of a TWMG (or a TMG) system ⟨N,M⟩ is represented by a linear combination of

tokens which is an invariant linear criteria

R(M) = yT ·M , (4)

where y = (y1, . . . , yn)
T is a non-negative weight vector. In most of previous works, y is chosen as a sum of all

minimal P-semiflows, i.e., y =
∑

γ∈Γ yγ . This is due to the fact that the value of yT ·M does not change with

the evolution of the system. In terms of manufacturing domain, this value corresponds to the fact that resources

remain constant as the production process proceeds.

III. PROPERTIES OF STATIONARY THROUGHPUT FOR TWMGS

This section is devoted to illustrate how the initial distribution of tokens affects the stationary throughput of a

TWMG under infinite server semantics. We will show that some important results that hold in the case of TMGs

may not hold for this class of nets.

A. Stationary throughput analysis

Let Γ represent the set of elementary circuits of a cyclic TWMG and define βγ(M0) as the stationary throughput

of circuit γ. It is well known that for a TMG the cycle time of the net is equal to the minimal stationary throughput

over all circuits, i.e.,

β(M0) = min
γ∈Γ

βγ(M0). (5)

Property 1: The stationary throughput of a cyclic TWMG system ⟨N,M0⟩ is lower than or equal to the minimal

stationary throughput among all circuits, i.e.,

β(M0) ≤ min
γ∈Γ

βγ(M0). (6)

It is obvious that the stationary throughput of a cyclic manufacturing system can not be faster than the slowest

stationary throughput among all circuits and at most is equal to the slowest one. The following example shows that

the stationary throughput of the system can smaller than that of the slowest circuit.

Example 1: Let us consider a cyclic painting process. Machine MA1 takes one unit of raw material and produces

six semi-finished products PR1 which needs to be painted. Machine MA2 takes four liters of raw pigment and

produces three bags of paint PR2 (the volume of each is 4/3 liters). Then, Machine MA3 takes one bag of paint

PR2 and four items of semi-finished product PR1 and executes the painting process. Finally, a batch transportation

device removes six painted product from the workshop and brings one unit of raw material to machine MA1 and

two liters of raw pigment to machine MA2, respectively.

This automated cyclic painting process is modelled by a net with four timed transitions: each transition corresponds

to a different operation. The TWMG model is depicted by Fig. 1 and Table I shows the physical meaning of each

transition.

There are two elementary circuits, γ1 = p4t1p1t3p3t4 and γ1 = p5t2p2t3p3t4, corresponding to the manufacturing

process of PR1 and PR2, respectively. The minimal P-semiflow of γ1 is y1 = (1, 0, 1, 6, 0)T and while the minimal
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TABLE I

PHYSICAL MEANING OF EACH TRANSITION.

Transitions t1 t2 t3 t4

Operations MA1 MA2 MA3 transport

Execution times 1 2 7 3

 

!
!

!"

#

 

t1 !"

t3 !"

t2 !"

t4 !"

p5

p4p1

p2

p3

Fig. 1. TWMG model of Example 1.

P-semiflow of γ2 is y2 = (0, 4, 1, 0, 3)T . Thus, we consider a weight vector y = y1 + y2 = (1, 4, 2, 6, 3)T . The

physical meaning of the weighted vector y is that six items of semi-finished product in p1 are produced from one

item of raw material in p4 and three packaged paints in p1 are produced from four items of raw dyestuff in p5,

while four items of painted products in p3 are manufactured by using four items from p1 and one item from p2.

Thus, the resources used ratio for each place is equal to y.

Assuming the initial marking of the TWMG is M0 = (2, 1, 22, 0, 0)T , the stationary throughput of the system

is shown in Table ??. The resources used for γ1 and γ2 are 24 and 26 and the stationary throughput of the two

circuits are 0.182 and 0.167. Nevertheless, we find that the stationary throughput of the system is equal to 0.13

which is smaller than the minimal one of the two circuits, i.e.,

0.13 < min{0.182, 0.167}

Property 2: The stationary throughput of two TWMG systems ⟨N,M0⟩ and ⟨N,M1⟩ with same net structure

can be different even all the stationary throughput of their circuits are identical, i.e.,

β(M0) ̸= β(M1),

βγ(M0) = βγ(M1), ∀γ ∈ Γ.
(7)

We prove this property by showing the following example.

Example 2: Let us consider the TWMG model depicted in Fig. 1 and assume the initial marking M1 = (0, 0, 24, 0, 0)T .

Table II shows the stationary throughput analysis of marking M1. One may find that for marking M1 the stationary

throughput of each circuit is identical with marking M0 while the stationary throughput of the system is greater

than that of M0.
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TABLE II

STATIONARY THROUGHPUT ANALYSIS OF THE PRODUCTION LINE.

Marking βγ1 βγ2 β Rγ1 Rγ2 R

M0 = (2, 1, 22, 0, 0)T 0.182 0.167 0.13 24 26 50

M1 = (0, 0, 24, 0, 0)T 0.182 0.167 0.167 24 24 48

B. Discussion

From Example 2, we find that the total number of resources used for marking M1 is 48 which is smaller than

that of M0, while the stationary throughput of system is greater than that of M0. This has practical significance

for the stationary throughput optimization problem which consists in finding an initial marking to maximize the

stationary throughput of the system with a bounded resources. It means that marking M1 is better than M0 because

it has a smaller resources used. In the following, we will further discuss this problem.

We study the TWMG systems ⟨N,M0⟩ and ⟨N,M1⟩ by analyzing the two circuits. Figs. 2 and Fig. 3 show the

marking distribution of γ1 and γ1 associate to M0 and M1. We have Mγ1

0 = (0, 0, 24, 0, 0), Mγ2

0 = (0, 0, 24, 0, 0),

Mγ1

1 = (2, 0, 22, 0, 0), and Mγ2

1 = (1, 0, 22, 0, 0).
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Fig. 2. The marking of each circuit under M0.
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Fig. 3. The marking of each circuit under M1.

For M0
γ1 , we can firing transitions t4t1t3t3 in order and obtain a new marking (0, 0, 24, 0, 0)T which is identical

to marking Mγ1

1 , namely, Mγ1

1 ∈ R(N,Mγ0

0 ). For Mγ2

0 , transition t3 can be fired which results in a new marking

(0, 0, 26, 0, 0)T and this new marking has more tokens in p3 than marking Mγ1

1 . Thus, it seems that the stationary

throughput of marking M0 should not be smaller than that of marking M1, which is contrary to the result shown

in Table II. The fact is that for the TWMG system t3 is not enabled because M0(p1) < Pre(p1, t1). Thus, two

tokens in p1 and one token in p2 will be trapped, i.e., cannot be used for the system at marking M0, while no
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tokens are trapped at marking Mγ1

1 . This is mainly due to the synchronization of the two circuits. Each of them

becomes mutually constrained and results in a lower stationary throughput of the system.

The existing solutions in [12] and [13] to solve the optimization problem of a TWMG are non-polynomial and

the optimal solution for this problem is a challenging problem from a theoretical as well as from practical point

of view. Properties 1 and 2 provide some practical significance to study the stationary throughput analysis and the

optimization problem for a TWMG.

IV. CONCLUSION

In this paper, we discuss the stationary behavior of manufacturing systems in timed discrete event systems

framework. We provide some results for the stationary throughput analysis of TWMGs under infinite server semantics

and show that these results may be useful for the optimization problem for manufacturing systems.
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