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Abstract

In this paper we propose a novel approach to perform codiagnosability analysis of bounded Petri nets with arbitrary labeling
functions. In more detail, a set of sites observe the system evolution, each one with its own observation mask. Sites do
not exchange information with each other but communicate with a coordinator. The coordinator is able to detect a fault if
and only if at least one site is able to do that. The proposed approach is based on a necessary and sufficient condition for
codiagnosability, namely the absence of sequences that are “ambiguous” with respect to all sites and whose length may grow
indefinitely after the occurrence of some fault (i.e., sequences of infinite length that could be observed either in the presence
of a fault and with no fault). The novelties of the approach consist in using the notion of basis markings to avoid exhaustive
enumeration of the set of reachable markings, and in the construction of an automaton, called Verifier, that enables to detect
the presence of ambiguous sequences.
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1 Introduction

In the fault detection framework two different problems need to be solved: the problem of diagnosis and
the problem of diagnosability. Solving a diagnosability problem consists in determining if, once a fault has
occurred, the occurrence of the fault can be detected in a finite number of steps. In the past few decades,
the diagnosability problem has been extensively studied in a centralized setting [2, 5, 8–10, 14, 17–19].
Since most large complex systems are physically distributed, centralized fault diagnosis methods may not
be appropriate in practice, and decentralized diagnosis techniques are needed. In recent years, a series of
decentralized approaches have been developed both in automata and Petri nets frameworks [1,3, 6, 7,11,
13,16].

Debouk et al. [6] propose a coordinated decentralized architecture consisting of local sites communicating
with a coordinator that is responsible for diagnosing the failures occurring in the system. The definition of
diagnosability, which was originally introduced in [14] for centralized systems, is extended to the proposed
decentralized architecture. Three protocols that realize the proposed architecture are specified, and their
diagnostic properties are analyzed.

The notion of codiagnosability has been first introduced in [13] under the assumption that all local
diagnosers do not communicate with each other and only send information to a coordinator. Algorithms
with polynomial complexity in the size of the automaton and the nonfaulty specification are provided for
verifying codiagnosability and computing the bound in the delay of diagnosis.

Due to the intuitive graphical representation and powerful algebraic formulation, Petri nets have been
recently used in decentralized diagnosis. Cabasino et al. [3] present a procedure to analyze the diagnos-
ability of a Petri net system in a decentralized framework. They first prove that the absence of failure
ambiguous sequences is a necessary and sufficient condition for codiagnosability, and give a procedure to
verify the absence of such kind of sequences for both bounded and unbounded Petri net systems. The
verification is based on the analysis of the reachability/coverability graph of a particular Petri net called
Modified Verifier Net, which is an extension of the Verifier Net introduced in [2] to analyze diagnosability
in a centralized setting. However, the number of reachable markings may increase exponentially with the
size of the net (structure and number of tokens in the initial marking) thus such an approach could be
unfeasible in practical situations.

To address the state explosion problem, this paper uses the notion of basis marking [4] to analyze codi-
agnosability, thus avoiding exhaustive enumeration of the state space. An automaton called Verifier is
constructed making the parallel composition of ν + 1 graphs whose number of nodes is a subset of the
set of reachable markings, where ν is the number of local sites. The Verifier enables us to detect faulty
sequences that lead to the same observation of non-faulty sequences with respect to all sites. If such
sequences may have infinite length after the fault, then the system is not codiagnosable. Such sequences
correspond to special cycles, called F-cycles, in the Verifier. Thus the problem of codiagnosability analysis
is reduced to the problem of looking for F-cycles in the Verifier.

2 Background on labeled Petri nets

In this section, basic definitions of Petri nets are reviewed. For more details we refer the reader to [5]
and [12].

A Petri net (PN) is a 4-tuple N = (P, T, F,W ), where P and T are finite, non-empty, and disjoint sets,
F ⊆ (P × T ) ∪ (T × P ) is called the flow relation of the net, W is a mapping that assigns a weight to
an arc: W (x, y) > 0 iff (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T . The incidence matrix
[N ] of N is a |P | × |T | integer matrix with [N ](p, t) = W (t, p) − W (p, t). Let x ∈ P ∪ T be a node of
net N . The preset of x is defined as •x = {y ∈ P ∪ T |(y, x) ∈ F} while the postset of x is defined as
x• = {y ∈ P ∪ T |(x, y) ∈ F}.

A marking m of a PN N is a mapping from P to N = 0, 1, 2, ...: m(p) denotes the number of tokens in
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place p. (N,m0) denotes a PN system with an initial marking m0.

A transition t is enabled at a marking m if ∀p ∈ •t,m(p) ≥ W (p, t). This fact is denoted by m[t⟩ while
m[σ⟩ is used to denote that the transition sequence σ = t1t2...tk is enabled at m. The Parikh vector of
σ is denoted by π(σ). The set of all sequences that are enabled at the initial marking m0 is denoted by
L(N,m0), i.e., L(N,m0) = {σ ∈ T ∗|m0[σ⟩}. We write t ∈ σ to denote that a transition t is contained in
σ, T ′ ∩σ ̸= ∅ to denote that there is at least one transition in T ′ contained in σ and T ′ ∩σ = ∅ to denote
that there is no transition in T ′ contained in σ, where T ′ is a set of transitions.

Firing t yields a new marking m′ such that ∀p ∈ P,m′(p) = m(p)+ [N ](p, t), which is denoted by m[t⟩m′.
Marking m′′ is said to be reachable from m if there exists a transition sequence σ such that m[σ⟩m′′.
The set of markings reachable from m in N is called the reachability set of (N,m) and is denoted by
R(N,m).

A PN is said to be bounded if there exists a positive constant k such that ∀p ∈ P , m(p) ≤ k, where
m ∈ R(N,m0). It is unbounded if it is not bounded.

Given a PN system (N,m0), a transition t ∈ T is live under m0 if ∀m ∈ R(N,m0), ∃m′ ∈ R(N,m), m′[t⟩.
A PN system (N,m0) is: live if ∀t ∈ T , t is live under m0; dead under m0 if @t ∈ T , m0[t⟩; deadlock-free
if ∀m ∈ R(N,m0), ∃t ∈ T , m[t⟩.

Given a PN N = (P, T, F,W ) and a set T ′ ⊆ T of transitions, we define T ′-induced subnet of N the
new PN N ′ = (P, T ′, F ′,W ), where F ′ is the restriction of F to (P × T ′) ∪ (T ′ × P ). The net N ′ can be
obtained from N by removing all transitions in T \ T ′.

A Petri net with no directed circuits is said to be acyclic.

A labeled PN system is a triple (N,m0,L), where (N,m0) is a PN system, L is a labeling function
L : T → A ∪ {ε} that assigns to each transition in T either a symbol from a given alphabet A or the
empty sequence ε.

We use Tu to denote the set of transitions whose labels are ε, and To to denote the set of transitions
whose labels are the symbols in A. Tu and To are called the set of unobservable and observable transitions,
respectively. [N ]u (or [N ]o) is used to denote the restriction of the incidence matrix [N ] to Tu (or To).
Given σ ∈ T ∗, we denote Pu(σ) (or Po(σ)) the projection of σ over Tu (or To).

The labeling function is extended to define the projection operator L : T ∗ → A∗ as follows:

1) L(t) = l for some l ∈ A, if t ∈ To;

2) L(t) = ε, if t ∈ Tu; and

3) L(σt) = L(σ)L(t), if σ ∈ T ∗ ∧ t ∈ T .

Moreover, L−1(w) is used to denote the set of all transition sequences consistent with w ∈ L∗, i.e.,
L−1(w) = {σ ∈ L(N,m0)|L(σ) = w}. Using the extended labeling function, the language of transition
labels is therefore denoted by L(L(N,m0)).

Let K ⊆ T ∗ be a language, we use K/σ to denote the post-language of K after σ, i.e., K/σ = {σ′ ∈
T ∗| σσ′ ∈ K}.

3 Problem statement

The unobservable transition set is partitioned as Tu = Tf ∪ Treg, where Tf is the set of fault transitions
and Treg is the set of unobservable but regular transitions. We use [N ]reg to denote the restriction of the
incidence matrix to Treg. The fault transition set Tf is partitioned into r different subsets T i

f that model
different fault classes, where i = 1, 2, ..., r.
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The PN is monitored by a set J = {1, 2, ..., ν} of sites. Each site knows the structure of the net and
observes the evolution of the system by its own mask. Sites may send information to a coordinator but
do not communicate with the other sites. In particular we assume that the coordinator follows protocol 3
in [6], i.e., a fault in a given class is diagnosed if and only if at least one local site detects its occurrence.

The set of transitions that are observable (or unobservable) for site j ∈ J is denoted by To,j ⊆ To (or
Tu,j ⊆ T ). The alphabet of the j-th site is denoted Aj , and

Lj(t) =

{
L(t), if L(t) ∈ Aj

ε, otherwise
(1)

is the labeling function associated with the j-th site. Given a transition sequence σ ∈ L(N,m0), wj =
Lj(σ) is used to denote the sequence of labels in Aj associated with σ by the j-th site.

We make the following assumptions that are commonly adopted in the field of decentralized diagnosability.

A1) The PN system is deadlock-free after the occurrence of any fault;

A2) The PN system is diagnosable in a centralized setting;

A3) The PN system net is bounded;

A4) The Tu,j-induced subnet is acyclic for any j ∈ J .

We use Ψ(T i
f ) to denote the set of all sequences in L(N,m0) that end with a transition in T i

f .

Definition 1 Let (N,m0,L) be a labeled PN system that is deadlock-free after the occurrence of any fault
tf ∈ Tf . Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. The labeled PN
system (N,m0,L) is codiagnosable wrt the i-th fault class T i

f if

∀s ∈ Ψ(T i
f ), ∃K ∈ N, ∀σ ∈ L(N,m0)/s, |σ| ≥ K ⇒ ∃j ∈ J ,∀σ′ ∈ L−1

j (Lj(sσ)), T
i
f ∩ σ′ ̸= ∅.

The labeled PN system (N,m0,L) is codiagnosable if it is codiagnosable wrt all fault classes.

In simple words, (N,m0,L) is codiagnosable wrt T i
f if, once a fault in T i

f has occurred, there exists at
least one site that detects it within a finite delay.

Let us now recall the definition of failure ambiguous sequence first proposed in the Petri net framework
by Cabasino et al. in [3].

Definition 2 Consider a labeled PN system (N,m0,L) whose labeling function L is defined over an
alphabet A. Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. A sequence σ ∈ T ∗

such that T i
f ∩ σ ̸= ∅ is said to be failure ambiguous wrt T i

f if there exist ν sequences σ1, σ2, ..., σν ∈ T ∗,
not necessarily distinct, such that

(1) ∀σ′ ∈ L−1(L(σ)), T i
f ∩ σ′ ̸= ∅; and

(2) T i
f ∩ σj = ∅ and Lj(σ) = Lj(σj), j = 1, 2, ..., ν.

In other words, a sequence σ containing some fault transitions in T i
f is failure ambiguous wrt T i

f if σ is
not ambiguous for the centralized diagnoser but it is ambiguous for all sites.

Example 1 Consider the labeled PN system (N,m0,L) in Fig. 1, where To = {t3, t6, t10}, Tu = {t1, t2, t4, t5, t7−
t9}, Tf = {t9}, m0 = [k 0 0 0 0 0 0 0]T , and k is a positive constant. The labeling function is defined
as follows: L(t3) = a, L(t6) = b and L(t10) = c. Assume that the PN is monitored by two local sites
whose alphabets are equal to A1 = {a, c} and A2 = {b, c}, respectively. The sequence σ = t7t8t9t10 is
failure ambiguous wrt Tf . In fact, L−1(L(σ)) = {t7t8t9t10} and there exist two sequence σ1 = t4t5t6t10
and σ2 = t1t2t3t10 such that L1(σ) = L1(σ1) = c and L2(σ) = L2(σ2) = c.
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Fig. 1. A Labeled PN system (N,m0,L).

Theorem 1 Consider a labeled PN system (N,m0,L) whose labeling function L is defined over an al-
phabet A. Assume that (N,m0,L) is monitored by a set J = {1, 2, ..., ν} of local sites. The system is
codiagnosable iff there do not exist failure ambiguous sequences that are arbitrarily long after the occur-
rence of any fault in T i

f , for i = 1, . . . , r.

4 Extended Basis Reachability Graph

In this section we first introduce a particular graph, called Extended Basis Reachability Graph. Then, we
prove some properties that are the starting point for the proposed approach of codiagnosability analysis.

For the sake of simplicity, in the rest of the paper we assume that there is a single fault class Tf . In the
following section it is clearly discussed how to deal with the case of several fault classes.

Definition 3 Given a marking m and an observable transition t, the set of explanations of t at m is
denoted by

Σ(m, t) = {σ ∈ T ∗
u |m[σ > m′,m′[t >},

and the set of e-vectors is denoted by

Y (m, t) = π(Σ(m, t)).

Definition 4 Given a marking m and an observable transition t, the set of minimal explanations of t
at m is denoted by

Σmin(m, t) = {σ ∈ Σ(m, t)|@σ′ ∈ Σ(m, t) : π(σ′) � π(σ)},

and the set of minimal e-vectors is denoted by

Ymin(m, t) = π(Σmin(m, t)).

Definition 5 Let (N,m0,L) be a labeled PN system and w ∈ L∗ be an observation, where N = (P, T, F,W )
and T = To ∪ Tu. The set of pairs (σo ∈ T ∗

o with L(σo) = w and the justification) is denoted by

Ĵ (w) = {(σo, σu), σo ∈ T ∗
o ,L(σo) = w, σu ∈ T ∗

u |

[∃σ ∈ L−1(w) : σo = Po(σ), σu = Pu(σ)]

∧[@σ′ ∈ L−1(w) : σo = Po(σ
′), σ′

u = Pu(σ
′)

∧π(σ′
u) � π(σu)]},

and the set of pairs (σo ∈ T ∗
o with L(σo) = w and the j-vector) is denoted by

Ŷmin(m0, w) = {(σo, y), σo ∈ T ∗
o ,L(σo) = w, y ∈ N|Tu||∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}.
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Definition 6 Let (N,m0,L) be a labeled PN system, w ∈ L∗ be an observation and Ĵ (w) be a set of
pairs. The set of basis markings of w is denoted by

Mb(w) = {m ∈ N|P ||m = m0 + [N ]u · π(σu) + [N ]o · π(σo), (σo, σu) ∈ Ĵ (w)},

and the set of all basis markings are denoted by Mb, i.e.,

Mb =
∪

w∈L∗
Mb(w).

In simple words, a basis marking is a marking that can be reached from the initial marking firing a
sequence of transitions that is consistent with the observation and a sequence of unobservable transitions,
interleaved with the previous sequence, whose firing is strictly necessary to enable it (in the sense that
its firing vector is minimal) [4]. The set of basis markings is a subset (usually a strict subset) of the set
of reachable markings. Therefore, if the net is bounded, the set of basis markings is finite.

In [5] it has been proved that when performing centralized diagnosability, it is useful to compute basis
markings assuming that fault transitions are observable.

Definition 7 An extended basis marking (EBM) is a basis marking computed assuming that all transi-
tions in Tf are observable. The set of all EBMs is denoted by Me.

The set Me can be computed by restricting the minimal explanations to the set of regular unobservable
transitions Treg. In the following, we denote Y reg

min(m, t) the set of minimal e-vectors restricted to Treg.
The set Y reg

min(m, t) can be computed using Algorithm 4.4 in [4].

Example 2 Let us consider the labeled PN system in Fig. 1 previously introduced in Example 1. The set
of EBMs is {mi|mi = [k − i 0 0 0 0 0 0 i]T , i = 0, 1, ..., k}.

Let us now define a graph whose nodes are uniquely associated with EBMs and edges are labeled with
either observable transitions (and their labels) or with fault transitions.

Definition 8 Let (N,m0,L) be a labeled PN system, Tf be the set of fault transitions and Me be the
set of EBMs. The Extended Basis Reachability Graph (EBRG) is a (non-deterministic) finite state
automaton Ge = (Me, E,∆,m0), where Me is the set of states; E ⊆ (To × A) ∪ Tf is the set of event
labels; ∆ ⊆ Me×E×Me is the transition relation; and m0 is the initial state. In particular, (m, e,m′) ∈ ∆
where e = t(a) ∈ To×A or e = t ∈ Tf , if and only if ∃y ∈ Y reg

min(m, t) and m′ = m+ [N ]reg · y+ [N ](·, t).

Note that a similar graph, called Modified Basis Reachability Graph (MBRG) has been proposed in [5] to
perform centralized diagnosis. In the MBRG, as well as in the EBRG, a different node is associated with
each extended basis marking and edges are labeled either with an observable transition (and its label)
or with a fault transition. However, the MBRG contains some information on nodes and edges that are
omitted in the EBRG. This implies that the number of edges of the EBRG is a subset of the number of
edges of the MBRG. In more detail, if there exist two minimal explanations of a given transition that
lead to the same extended basis marking, in the MBRG two different edges are associated with it, while
only one edge appears in the EBRG.

Algorithm 1 summarizes the main steps for the construction of the EBRG.

Algorithm 1: [EBRG construction]

Input: A labeled PN system (N,m0,L).

Output: The EBRG Ge.

1. Let m0 be the initial node.
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Fig. 2. a) Ge: EBRG of (N,m0,L), b) G1
e: Nonfailure-EBRG wrt site 1, and c) G2

e: Nonfailure-EBRG wrt site 2.

2. While nodes with no tag exist

2.1. select a node m with no tag,

2.2. for all t ∈ To ∪ Tf , do

2.2.1. if Y reg
min(m, t) ̸= ∅, then

• for all y ∈ Y reg
min(m, t), do

• let m′ = m+ [N ]reg · y + [N ](·, t),

• if @ a node m′, then

• add a node m′,

• if t ∈ To ∧ @ an arc t(e) from m to m′, where

e = L(t), then

• add an arc t(e) from m to m′,

• if t ∈ Tf ∧ @ an arc t from m to m′, then

• add an arc t from m to m′,

2.3. tag the node m “old”.

3. Remove all tags.

Example 3 Consider again the labeled PN system in Example 1. The EBRG Ge is shown in Fig. 2a,
where {mi|mi = [k − i 0 0 0 0 0 0 i]T , i = 0, 1, ..., k}.

Property 1 Let (N,m0,L) be a labeled PN system, Ge be its EBRG and L(Ge) be the language generated
by Ge. It holds that

ρ(L(N,m0)) = L(Ge)
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where ρ(L(N,m0)) is the projection of L(N,m0) over To ∪ {Tf}.

Proof. See [Arxiv paper].

In words, the above property claims that set of transition sequences in L(Ge) coincides with the projection
of L(N,m0) over the set To ∪ Tf .

5 Verifier

In this section, we show that the codiagnosability of a bounded PN can be verified by analyzing a special
automaton called Verifier. For the sake of simplicity, and without loss of generality, we assume that the
PN is monitored by only two local sites.

In the following we denote by (N ′,m0,L′) the T ′-induced subnet of (N,m0,L), where T ′ = T \ Tf , i.e.,
(N ′,m0,L′) is the nonfailure subnet of (N,m0,L). Therefore, L(N ′,m0) is the language formed with all
sequences of L(N,m0) that do not contain faults, and L′ is equal to L restricted to T \ Tf .

Definition 9 Let (N,m0,L) be a labeled PN system and (N ′,m0,L′) be its nonfailure subnet. The
nonfailure-EBRG wrt site j, denoted by Gj

e = (M j , Ej ,∆j ,m0), is the EBRG of (N ′,m0,L′) construct-
ed under the assumption that the set of observable transitions is equal to To,j, and all transitions in
T ′ \ To,j = T \ Tf \ To,j are unobservable.

Obviously, Gj
e can be computed using Algorithm 1 assuming that the set of observable transitions is equal

to the set of transitions observable by the j-th site, namely To,j , and restricting minimal explanations to
the set T ′ \ To,j = T \ Tf \ To,j .

Example 4 Consider again the Petri net in Example 1. The nonfailure-EBRGs G1
e and G2

e are shown
in Figs. 2b and 2c, respectively, where {mi|mi = [k − i 0 0 0 0 0 0 i]T , i = 0, 1, ..., k}.

Property 2 Let (N,m0,L) be a labeled PN system, Gj
e be its nonfailure-EBRG wrt site j and L(Gj

e) be
the language generated by Gj

e. It holds that
ρj(L(N

′,m0)) = L(Gj
e)

where ρj(L(N
′,m0)) is the projection of L(N ′,m0) over To,j.

Proof. See [Arxiv paper].

We now introduce a (non-deterministic) finite state automaton, called Verifier, that is defined as the
parallel composition of the EBRG of a given labeled PN system and the nonfailure-EBRGs G1

e and G2
e

of the two sites that monitor it, where synchronization is performed on the set of labels A. We denote it
V = (MV , EV ,∆V ,mV

0 ) and compute it using the following algorithm.

Algorithm 2: [Construction of the Verifier]

Input: Ge, G
1
e and G2

e.

Output: The Verifier V = (MV , EV ,∆V ,mV
0 ).

1. Let MV = M × {F,N} ×M1 ×M2.

2. Let EV = (To ∪ Tf ∪ {ε})× (To,1 ∪ {ε})× (To,2 ∪ {ε}).

3. Let mV
0 = (m0, N ;m0;m0).

4. ∆V ⊆ MV × EV ×MV is defined as follows:

• ((m, l;m1,m2), tεε, (m
′,F;m1;m2)) ∈ ∆V if

8
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Fig. 3. The Verifier of the PN system in Example 1.

· t ∈ Tf and (m, t,m′) ∈ ∆.
• ((m, l;m1,m2), tt1t2, (m

′, l;m′
1;m

′
2)) ∈ ∆V if

· t ∈ To,1 ∩ To,2, (m, t,m′) ∈ ∆, (m1, t1,m
′
1) ∈ ∆1, (m2, t2,m

′
2) ∈ ∆2, L1(t) = L1(t1) and L2(t) =

L2(t2).
• ((m, l;m1,m2), tt1ε, (m

′, l;m′
1;m2)) ∈ ∆V if

· t ∈ To,1 \ To,2, (m, t,m′) ∈ ∆, (m1, t1,m
′
1) ∈ ∆1 and L1(t) = L1(t1).

• ((m, l;m1,m2), tεt2, (m
′, l;m1;m

′
2)) ∈ ∆V if

· t ∈ To,2 \ To,1, (m, t,m′) ∈ ∆, (m2, t2,m
′
2) ∈ ∆2 and L2(t) = L2(t2).

5. Trim the automaton V = (MV , EV ,∆V ,mV
0 ) by removing the states that are not reachable from the

initial state mV
0 and all their input and output edges.

By construction, the Verifier captures a triple of sequences (σ, σ1, σ2) satisfying the following conditions:
σ ∈ L(Ge), σ1 ∈ L(G1

e), σ2 ∈ L(G2
e), L1(σ) = L1(σ1), and L2(σ) = L2(σ2). N(resp., F) indicates that σ

does not(resp., does) include a fault in Tf .

A state (m, l;m1;m2) in the Verifier is called an l-state. For example, the initial state mV
0 is an N-state.

A cycle in the Verifier is called an l-cycle if each state in the cycle is an l-state.

Example 5 Let us consider again the PN system in Example 1. Fig. 3 shows a part of the Verifier. The
cycle ((m1,F;m1;m1), t10t10t10, (m1,F;m1;m1)) is an F-cycle.

Now, since sequences in L(Ge) also include faults, while sequences in L(Gj
e)’s do not, looking at sequences

in the Verifier, we could establish if there exists any faulty sequence in L(Ge) whose observable projection
in all sites could be explained without the firing of any fault. This is formalized in the following result
part a).

Property 3 Let (N,m0,L) be a labeled PN system with EBRG Ge. Let G
1
e and G2

e be the nonfailure-
ERBGs wrt site 1 and site 2. The Verifier V constructed using Algorithm 2 has the following properties.

a) The language of V is:

L(V ) = { (σ, σ1, σ2) | ∃σ̄, σ̄1, σ̄2 ∈ L(N,M0)

σ ∈ ρ(σ̄), σ1 ∈ ρ1(σ̄1), σ2 ∈ ρ2(σ̄2),

L1(σ̄) = L1(σ̄1), L2(σ̄) = L2(σ̄2),

σ̄1 ∩ Tf = σ̄2 ∩ Tf = ∅}
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b) If state (m, l;m1;m2) is reached in V from the initial state with a sequence (σ, σ1, σ2), then

l =

{
N iff (∀σ̄ ∈ ρ−1(σ)), σ̄ ∩ Tf = ∅
F iff (∀σ̄ ∈ ρ−1(σ)), σ̄ ∩ Tf ̸= ∅

Proof. See [Arxiv paper].

In the following, we use mV
0

(σ,σ1,σ2)−−−−−−→ mV ′
to denote that state mV ′

is reached in V from mV
0 with a

sequence (σ, σ1, σ2).

Theorem 2 Let V = (MV , EV ,∆V ,mV
0 ) be the Verifier of a given PN system constructed by Algorithm

2. The net has failure ambiguous sequences of arbitrary length after the occurrence of some fault in Tf

iff V contains F-cycles.

Proof. Consider an evolution of V such that

mV
0

(σ′,σ′
1,σ

′
2)−−−−−−→ mV ′ (t′,t′1,t

′
2)−−−−−→ mV

where mV ′
is an N-state and mV is an F-state. Hence there exists a sequence σ̄′ ∈ ρ−1(σ′t′) that ends with

a fault by Property 3. By assumption A1 this sequence can be continued indefinitely and by assumption
A2 there exists an integer K > 0 such that all continuations of length greater than or equal to |σ̄′| +K
can be correctly diagnosed in a centralized setting.

This means that all sequences in the set

A(σ̄′) = {σ̄ = σ̄′σ̄′′ | |σ̄′′| ≥ K, (ρ(σ̄), ρ1(σ̄), ρ2(σ̄)) ∈ L(V )}

are failure ambiguous, since they can be correctly diagnosed as faulty in a centralized setting but can be
explained by nonfaulty sequences by the two sites. Additionally for any such sequence σ̄, the sequence
(ρ(σ̄), ρ1(σ̄), ρ2(σ̄)) drives the Verifier to an F-state by Property 3.

Now, there exist failure ambiguous sequences of arbitrary length after the fault, if and only if there exists a
sequence σ̄′ of the net that ends with a fault and is such that A(σ̄′) is an infinite set. From this set we can
extract an infinite increasing sequence σ̄0, σ̄1 = σ̄0t̄1, σ̄2 = σ̄0t̄1t̄2, . . .. Obviously the chain of states of
the Verifier reached by sequences (ρ(σ̄0), ρ1(σ̄0), ρ2(σ̄0)), (ρ(σ̄1), ρ1(σ̄1), ρ2(σ̄1)), (ρ(σ̄2), ρ1(σ̄2), ρ2(σ̄2)),
. . . belongs to an infinite path of F-states by assumption A4. Since the set of states of V is finite by
assumption A3, this is possible if and only if there exists an F-cycle.

Corollary 1 A labeled PN system (N,m0,L) monitored by two local sites is codiagnosable iff its Verifier
has no F-cycles.

Proof. Straightforward from Theorems 1 and 2.

Example 6 Let us consider again Example 5. According to Corollary 1, we conclude that the PN system
is not codiagnosable since there exists an F-cycle in the Verifier.

In the discussion so far, we only considered one fault class. In the case of r fault classes we need to
construct r different Verifiers, one for each fault class. When verifying the codiagnosability wrt a given
fault class T i

f , all fault transitions in Tf \ T i
f should be considered as regular unobservable transitions.

We conclude this section with a brief discussion on the complexity of our method. The size of the state
space of the EBRG, in the worst case, is equal to that of the reachability graph. However, the EBRG has
significantly fewer states than the reachability graph in most cases. For example, the number of reachable
markings of the PN in Example 1 is (8+k−1

k ), while the number of states in the EBRGs is k + 1.

Let x be the number of nodes in Ge, i.e., x = |Me|. Assume that the PN system is monitored by ν local
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sites and has r fault classes. According to Algorithm 2, the number of nodes and edges in the Verifier
are at most equal to 2xν+1 and 2xν+1 × |T |ν+1, respectively. Moreover, we need to check all cycles in
the Verifier. This can be computed by Tarjan’s strongly connected components algorithm [15], whose
complexity is linear in the sum of the number of nodes and arcs in the Verifier, i.e., O((x × |T |)ν+1).
Hence, the overall complexity is O((x× |T |)ν+1 × r).

6 Conclusions

This paper proposes a new approach to verify codiagnosability of labeled bounded Petri nets. It is based on
the result that a necessary and sufficient condition for codiagnosability is the absence of failure ambiguous
sequences that are arbitrarily long after the occurrence of any fault. An automaton, called Verifier, is
constructed to detect the presence of such kind of sequences. The main feature of the proposed method
is that it uses the notion of basis markings thus avoiding exhaustive enumeration of the state space.
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