
Verification of Language-Based Opacity in Petri Nets Using

Verifier

Yin Tong1, Ziyue Ma1, Zhiwu Li2, Carla Seatzu3 and Alessandro Giua4

Abstract

A system is said to be language opaque if the intruder cannot infer if the generated event sequence belongs to

a secret based on its partial observation. In this paper we address the problem of verifying language-based opacity

in systems modeled by bounded labeled Petri nets. We generalize the notion of language opacity to strict language

opacity to deal with the case where the intruder is only interested in a subset of transitions. Furthermore, we show

that strict language opacity is identical to language opacity for a special class of secrets. A verifier is constructed to

analyze strict language opacity under the assumption that the intruder only cares about observable transitions.

To appear as:

Y. Tong, Z.Y. Ma, Z.W. Li, C. Seatzu, A. Giua, “Verification of Language-Based Opacity in Petri Nets Using

Verifier,” the 2016 American Control Conference (Boston, MA, USA), July 6 - July 8, 2016.

1Yin Tong and Ziyue Ma are with the School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China and also with the

Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy yintong@stu.xidian.edu.cn;

maziyue@gamil.com
2Zhiwu Li is with the Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau and also with the School

of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China zhwli@xidian.edu.cn
3Carla Seatzu is with the Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy

seatzu@diee.unica.it
4Alessandro Giua is with Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, Marseille 13397, France and

also with DIEE, University of Cagliari, Cagliari 09124, Italy alessandro.giua@lsis.org; giua@diee.unica.it

1

I. INTRODUCTION

In recent years opacity has drawn a lot of attention from researchers in the discrete event system (DES) community.

This property characterizes the ability of a system to hide a “secret” from an external observer (called an intruder).

It is assumed that the intruder knows the structure of the system but has only partial observation of the system’s

evolution. Opacity in DESs was firstly formalized by Bryans et al. [1] using Petri nets and then extended to transition

systems [2]. In [3] opacity was defined and investigated in the framework of finite automata.

In DESs, two main types of opacity properties have been defined: state-based opacity and language-based opacity,

where the secret is defined as a set of states and a language, respectively. For state-based opacity properties, many

researchers have considered their verification [4], [5], [6], [7], [8] and enforcement [6], [9], [10], [11], [12]. In

this work, we focus on the verification of language-based opacity in Petri nets. For a thorough and comprehensive

review on opacity in DESs, we refer readers to [5], [13].

Language-based opacity was introduced in [14], [15] in the framework of finite state automata. A system is

language-based opaque with respect to a given secret if no execution leads to an estimate that is completely inside

the secret. Lin [16] defined two language-based opacity properties: strong opacity and weak opacity, and discussed

their analysis. A language is strongly (resp. weakly) opaque if all (resp. some) strings in the language are confused

with some strings in another language. Polynomial algorithms to check weak opacity of an automaton have been

proposed in [17]. On the contrary, providing a polynomial algorithm to check strong opacity is still an open problem.

Petri nets have been proposed as a fundamental model for DES in a wide variety of applications. Many problems

such as supervisory control, fault diagnosis, etc. have been solved using Petri net models, providing efficient and

well founded approaches [18], [19], [20]. In this work we first particularize the notion of language-based opacity

in Petri nets assuming that the intruder cares about the order of all transitions occurrence, and call it language

opacity. However, there exist many practical cases where the intruder only cares about a subset of transitions. As

an example, in a banking environment, the intruder may not care if a customer checks the account but may only

be interested in the withdrawal of money. Motivated by this, we propose a generalization of the language opacity

property and introduce the notion of strict language opacity. In particular, a system is strictly language opaque

if the intruder can never establish if the transitions in which he is interested have fired in some given order (as

described by the secret).

Since the verification of language-based opacity in Petri nets has never been discussed before, the only way to

solve the problem in bounded Petri nets was to construct the reachability graph and apply the approach in [16].

In this work, a finite structure, called verifier is proposed to analyze strict language opacity in bounded Petri nets.

Such an approach works under the assumption that the intruder is interested in the set of observable transitions

and the secret is the set of all firable transition sequences in a bounded labeled Petri net (excluding the empty

string). Given the nets modeling the plant and the secret, the verifier synchronizes the plant and the secret with

respect to observable transitions. It keeps track of both the sequences belonging and those not belonging to the

secret. In particular, thanks to the notion of minimal explanations and basis markings [21], [22], to characterize

2

such sequences there is no need to enumerate all of them. Therefore, the construction of the reachability graph is

avoided. The efficiency and effectiveness of the proposed approach is shown by comparing it with Lin’s method

[16] in Section V.

The rest of this paper is organized as follows. Some basic concepts of automata and Petri nets are recalled

in Section II. Language and strict language opacity are defined in Section III as well as their properties and

relationships. In Section IV, the verifier is introduced to analyze strict language opacity. The advantages of the

verifier based approach with respect to the previous one are highlighted in Section V. Finally, conclusions are

drawn in Section VI, where our directions of research on this topic are pointed out.

II. PRELIMINARIES AND BACKGROUND

In this section we recall the formalism used in the paper and some results on reachability analysis in Petri nets.

For more details, we refer to [22], [23], [24].

A. Automata

A deterministic finite automaton (DFA) is a 5-tuple A = (X,E, δ, x0, XF), where X is the finite set of states,

E is the alphabet, δ : X × E → X is the (partial) transition function, x0 ∈ X is the initial state, and XF ⊆ X

is the set of final states. The transition function can be extended to δ∗ : X × E∗ → X in the recursive manner:

δ∗(x,we) = δ∗(δ∗(x,w), e) for w ∈ E∗ and e ∈ E. If w = ε, δ∗(x, ε) = x.

The generated language of an automaton A = (X,E, δ, x0, XF) is defined as

L(A) = {w ∈ E∗|∃x ∈ X : δ∗(x0, w) = x}.

The accepted langue of A is defined as

Lm(A) = {w ∈ E∗|∃x ∈ XF : δ∗(x0, w) = x}.

B. Petri Nets

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of m places, graphically represented by

circles; T is a set of n transitions, graphically represented by bars; Pre : P × T → N and Post : P × T → N are

the pre- and post-incidence functions that specify the arcs directed from places to transitions, and vice versa. The

incidence matrix of a net is denoted by C = Post− Pre. A Petri net is said to be acyclic if there are no oriented

cycles.

A marking is a vector M : P → N that assigns to each place a non-negative integer number of tokens, graphically

represented by black dots. The marking of place p is denoted by M(p). A marking is also denoted as M =∑
p∈P M(p) · p. A Petri net system 〈N,M0〉 is a net N with initial marking M0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M+C(·, t).

We denote T (M) = {t ∈ T |M [t〉} the set of transitions enabled at M . We write M [σ〉 to denote that the sequence

of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote that the firing of σ yields M ′. The set of all

3

firable transition sequences in 〈N,M0〉 is denoted as L(N,M0) = {σ ∈ T ∗|M0[σ〉}. Given a sequence σ ∈ T ∗,

the function π : T ∗ → Nn associates with σ the Parikh vector y = π(σ) ∈ Nn, i.e., y(t) = k if transition t appears

k times in σ.

A marking M is reachable in 〈N,M0〉 if there exists a sequence σ such that M0[σ〉M . The set of all markings

reachable from M0 defines the reachability set of 〈N,M0〉, denoted by R(N,M0). A Petri net system is bounded if

there exists a non-negative integer k ∈ N such that for any place p ∈ P and any reachable marking M ∈ R(N,M0),

M(p) ≤ k holds.

A labeled Petri net (LPN) is a 4-tuple G = (N,M0, E, `), where 〈N,M0〉 is a Petri net system, E is the alphabet

(a set of labels) and ` : T → E ∪ {ε} is the labeling function that assigns to each transition t ∈ T either a symbol

from E or the empty word ε. Therefore, the set of transitions can be partitioned into two disjoint sets T = To∪Tu,

where To = {t ∈ T |`(t) ∈ E} is the set of observable transitions and Tu = T \ To = {t ∈ T |`(t) = ε}

is the set of unobservable transitions. We denote Te = {t ∈ T |`(t) = e} the set of transitions labeled with

e ∈ E ∪ {ε} and Te(M) = Te ∩ T (M) the set of transitions enabled at a given marking M and labeled with e.

If there is no unobservable transition and different transitions are labeled with different labels, the LPN is called

free-labeled. The labeling function can be extended to sequences ` : T ∗ → E∗ as `(σt) = `(σ)`(t) with σ ∈ T ∗

and t ∈ T . The generated language of G is L(G) = {w ∈ E∗|∃σ ∈ L(N,M0) : w = `(σ)}. Given a set

T ′ ⊆ T , the natural projection PT ′ : T ∗ → T ′∗ on T ′ is defined as i) PT ′(ε) = ε; ii) for all σ ∈ T ∗ and t ∈ T ,

PT ′(σt) = PT ′(σ)t if t ∈ T ′, and PT ′(σt) = PT ′(σ), otherwise. The inverse projection operator is defined as

P−1T ′ (σ) = {σ′ ∈ T ∗|PT ′(σ′) = PT ′(σ)}. Given a set of sequences B ⊆ T ∗, we denote PT ′(B) =
⋃
σ∈B{PT ′(σ)}

and P−1T ′ (B) = {σ ∈ T ∗ | ∃σ′ ∈ B : PT ′(σ′) = PT ′(σ)}.

Given an LPN G = (N,M0, E, `) and the set of unobservable transitions Tu, the Tu-induced subnet N ′ = (P, T ′,

P re′, Post′) of N , is the net resulting by removing all transitions in T \ Tu from N , where Pre′ and Post′ are

the restriction of Pre, Post to Tu, respectively. The incidence matrix of the Tu-induced subnet is denoted by

Cu = Post′ − Pre′.

C. Some Results on Reachability in Petri Nets

In this subsection we recall some results on computing reachable markings proposed in [22].

Definition 2.1: Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u |M [σ〉M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M and Y (M, t) = {yu ∈ Nnu |∃σ ∈ Σ(M, t) : yu = π(σ)} the set of e-vectors. �

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t. Among all the explanations,

to provide a compact representation of the reachability set we are interested in finding the minimal ones, i.e., the

ones whose firing vector is minimal.

Definition 2.2: Given a marking M and an observable transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

4

p1 p2 p3 p5t1(a) t2(ε)

t5(a)

t6(b)

t4(ε) t3(b)

2

2

p1 p2

t1(a)

t3(b)

p4

x0

x1

x2

x3

t1

t3

t1 t3

X 0 0(,{ },)S MM 

x0 1 3 5(,{ },)p p p 

x1 2 2 3 4 5(,{ },{ 2 })p p p p p

x2 1 4 42 2(,{ },{ })p p p p p

x3 42 2 2 5(,{2 },{2 , 2 })p p p p p

Fig. 1. An LPN system whose Tu-induced net is acyclic.

as the set of minimal explanations of t at M and Ymin(M, t) = {yu ∈ Nnu |∃σ ∈ Σmin(M, t) : yu = π(σ)} as the

corresponding set of minimal e-vectors. �

Many approaches can be applied to computing Ymin(M, t). In particular, when the Tu-induced subnet is acyclic

the approach proposed by Cabasino et al. [25] only requires algebraic manipulations. Note that since a given place

may have two or more unobservable input transitions, i.e., the Tu-induced subnet is not backward conflict free, the

set of minimal explanations is not necessarily a singleton.

Proposition 2.3: [22] Let G = (N,M0, E, `) be an LPN whose Tu-induced subnet is acyclic. There exists a

firing sequence σ = σu1ti1 · · ·σuktik such that M0[σu1〉M1[ti1〉M ′1 · · ·Mk−1[σuk〉Mk[tik〉, where σuj ∈ T ∗u and

tij ∈ To, if and only if there exists σ′ = σ′u1ti1 · · ·σ′uktik such that M0[σ′u1〉M̂1[ti1〉M̂ ′1 · · · M̂k−1[σ′uk〉M̂k[tik〉,

where σ′uj ∈ Σmin(M̂j , tij).

In simple words, a sequence σ whose projection on To is ti1ti2 · · · tik is firable if and only if there exists σ′

such that the minimal explanation of each observable transition is not empty. Namely, to check if ∃σ ∈ L(N,M0) :

PTo
(σ) = ti1ti2 · · · tik there is no need to enumerate all σu ∈ T ∗u that enable ti1, ti2, · · · , tik but only the minimal

explanations. Markings M̂ ′j are called basis markings, and the set of basis markings of G is denoted as MB(G).

Clearly,MB(G) ⊆ R(N,M0) and in practical cases the number of basis markings is much smaller than the number

of reachable markings [7], [26].

Example 2.4: Consider the LPN system in Fig. 1. At the initial marking, the minimal explanation of t1 is

Σmin(M0, t1) = {t4}. At marking M with M0[t4t1〉M , transition t3 is enabled, therefore Σmin(M, t3) = {~0}.

Therefore, it holds M0[t4t1〉M [t3〉. It can be computed that there are seven firing sequences: t4t1t3, t4t1t3t2,

t4t1t2t3, t4t1t3t4, t4t1t3t2t4, t4t1t2t3t4, and t4t1t3t4t2, whose projection on To is t1t3. Namely, to prove the

existence of strings whose projection is t1t3 there is no need to exhaustively enumerate them but we simply need

to iteratively compute the minimal explanations. �

III. LANGUAGE-BASED OPACITY AND PROBLEM FORMULATION

The notion of language opacity has originally been defined in automata [14], [15]. In these works a set of event

sequences is defined as the secret, and an automaton is opaque wrt the secret if the intruder cannot establish if

some secret sequences have occurred based on its observation. This notion can be naturally generalized to Petri

5

nets as follows.

Definition 3.1: Let G = (N,M0, E, `) be an LPN and S ⊆ T ∗ be a secret. G is called language opaque wrt S

if ∀σ ∈ S ∩ L(N,M0), there exists σ′ ∈ L(N,M0) \ S such that `(σ) = `(σ′). �

By Definition 3.1, a plant is language opaque wrt a given secret if for any word that can be generated by a

sequence in the secret, there exists another nonsecret sequence generating the same word. This means that an

intruder who knows the system G observes the word w = `(σ) but cannot be certain that a transition sequence

belonging to S has been generated. Clearly, if L(N,M0) ∩ S = ∅, the system is language opaque.

Let us now generalize the notion of language opacity to deal with the case where the intruder is only interested

in a subset of transitions.

Definition 3.2: Given an LPN G = (N,M0, E, `), a set of transitions T̂ ⊆ T , and a set of sequences Ŝ ⊆ T̂ ∗.

G is said to be strictly language opaque wrt to (T̂ , Ŝ) if ∀σ ∈ L(N,M0) such that PT̂ (σ) ∈ Ŝ, there exists

σ′ ∈ L(N,M0) such that `(σ′) = `(σ) and PT̂ (σ′) /∈ Ŝ. �

In words, a system is strictly language opaque wrt (T̂ , Ŝ) if for any observation that can be explained with a

sequence whose projection on T̂ belongs to the secret, there exists another explanation whose projection on T̂ does

not belong to the secret. Obviously, if T̂ = T , strict language opacity is identical to language opacity. Next we

further discuss some properties of strict language opacity.

Proposition 3.3: Let G = (N,M0, E, `) be an LPN, T̂ ′ ⊆ T̂ ⊆ T , and Ŝ ⊆ T̂ ∗ be a secret. If G is strictly

language opaque wrt (T̂ ′, Ŝ′), where Ŝ′ = PT̂ ′(Ŝ), then G is strictly language opaque wrt (T̂ , Ŝ).

Proof: This is proved by showing that if G is not strictly language opaque wrt (T̂ , Ŝ) then G is not strictly

language opaque wrt (T̂ ′, Ŝ′). Given a transition sequence σ ∈ L(N,M0), the set of transition sequences having

the same observation with σ is denoted as Σ = {σ′ ∈ L(N,M0)|`(σ′) = `(σ)}. Since G is not strictly language

opaque wrt (T̂ , Ŝ), there exists σ ∈ L(N,M0) such that PT̂ (σ) ∈ Ŝ and ∀σ′ ∈ Σ, PT̂ (σ′) ∈ Ŝ holds. While

projecting σ and σ′ on T̂ ′, it holds PT̂ ′(PT̂ (σ)) ∈ Ŝ′ and PT̂ ′(PT̂ (σ′)) ∈ Ŝ′. Since T̂ ′ ⊆ T̂ , PT̂ ′(PT̂ (σ)) = PT̂ ′(σ)

and PT̂ ′(PT̂ (σ′)) = PT̂ ′(σ′) hold. Thus, for σ ∈ L(N,M0) such that PT̂ ′(σ) ∈ Ŝ′, PT̂ ′(σ′) ∈ Ŝ′ holds for all

σ′ ∈ Σ, i.e., G is not strictly language opaque wrt (T̂ ′, Ŝ′).

Proposition 3.3 provides a semi-decision procedure (only sufficient) to verify strict language opacity wrt (T̂ , Ŝ).

More precisely, one can choose a subset T̂ ′ of T̂ and verify strict language opacity wrt (T̂ ′, Ŝ′). Note that as

aforementioned, if T̂ = T , strict language opacity is identical to language opacity. Therefore, language opacity wrt

a given secret S ⊆ T ∗ can be sufficiently decided by verifying the strict language opacity property wrt a set T̂ ⊆ T

and PT̂ (S). In the following example, it is shown that the converse of Proposition 3.3 may not hold. Namely, it

may occur that even if a system is strictly language opaque wrt (T̂ , Ŝ), it may not be strictly language opaque wrt

(T̂ ′, Ŝ′).

Example 3.4: Consider again the LPN in Fig. 1. Let T̂ = T and Ŝ = {t4t1, t5}. The net system is strictly

language opaque wrt (T̂ , Ŝ) (equivalently, G is language opaque wrt Ŝ), since there exists σ = t4t1t2 such that

PT̂ (σ) /∈ Ŝ and `(t4t1t2) = `(t4t1) = `(t5) = a. Let T̂ ′ = {t1, t5} ⊂ T̂ . The system is not strictly language

opaque wrt (T̂ ′, Ŝ′), where Ŝ′ = PT̂ ′(Ŝ) = {t1, t5}, since there does not exist a sequence generating a but whose

6

projection on T̂ ′ is not in Ŝ′. �

In the supervisory control, the normality [27] property of a language is introduced. Herein this notion is slightly

extended as follows.

Definition 3.5: Let G be an LPN and T̂ ⊆ T be a subset of transitions. A language S ⊆ T ∗ is said to be normal

wrt (L(N,M0), PT̂) if

L(N,M0) ∩ S = L(N,M0) ∩ P−1
T̂

(PT̂ (S)).

�

A language S is normal wrt a given language L(N,M0) and the natural projection PT̂ if its intersection with

L(N,M0) is the largest sublanguage of L(N,M0) whose projection is PT̂ (S).

Proposition 3.6: Let G = (N,M0, E, `) be an LPN, T̂ ⊆ T be a subset of T , S ⊆ T ∗ be a secret. G is strictly

language opaque wrt (T̂ , Ŝ), where Ŝ = PT̂ (S), if and only if G is language opaque wrt P−1
T̂

(PT̂ (S)).

Proof: (⇒) Follows from Proposition 3.3.

(⇐) Given a transition sequence σ ∈ L(N,M0), the set of transition sequences having the same observation with

σ is denoted as Σ = {σ′ ∈ L(N,M0)|`(σ′) = `(σ)}. Assume that G is not strictly language opaque wrt (T̂ , Ŝ),

therefore there exists a sequence σ ∈ L(N,M0) such that PT̂ (σ) ∈ Ŝ and ∀σ′ ∈ Σ, it holds PT̂ (σ′) ∈ Ŝ. Since

Ŝ = PT̂ (S), σ ∈ L(N,M0) ∩ P−1
T̂

(PT̂ (S)) and σ′ ∈ L(N,M0) ∩ P−1
T̂

(PT̂ (S)) hold. Thus, G is not language

opaque wrt P−1
T̂

(PT̂ (S)).

Proposition 3.6 shows that strict language opacity wrt (T̂ , Ŝ) is identical to language opacity wrt P−1
T̂

(PT̂ (S)).

Corollary 3.7: Let G = (N,M0, E, `) be an LPN and T̂ ⊆ T . Let S ⊆ T ∗ be a secret that is normal wrt

(L(N,M0), PT̂) and Ŝ = PT̂ (S). G is strict language opaque wrt (T̂ , Ŝ) if and only if G is language opaque wrt

S.

Proof: According to Definition 3.1, given a secret S ⊆ T ∗, G is language opaque wrt S is identical to G is

language opaque wrt S∩L(N,M0). By Proposition 3.6, G is strictly language opaque wrt (T̂ , Ŝ) if and only if G is

language opaque wrt L(N,M0)∩P−1
T̂

(PT̂ (S)). Since S is normal, i.e., L(N,M0)∩S = L(N,M0)∩P−1
T̂

(PT̂ (S)),

G is strictly language opaque wrt (T̂ , Ŝ) if and only if G is language opaque wrt S.

In general, language opacity wrt S ⊆ T ∗ (that is identical to strict language opacity wrt (T, S)) does not imply

strict language opacity wrt (T̂ , PT̂ (S)) if T̂ ⊆ T (see Proposition 3.3). However, by Corollary 3.7, such an

implication holds if S is normal wrt (L(N,M0),PT̂). In other words, given an arbitrary set Ŝ ⊆ T̂ ∗, verifying strict

language opacity wrt (Ŝ, T̂) can be reduced to verifying language opacity wrt P−1
T̂

(Ŝ). Thus, the complexity of

verifying strict language opacity would not be better than that of verifying language opacity. Furthermore, in the

remaining sections of the paper we show that under proper assumptions, verification of strict language opacity is

of lower complexity.

Corollary 3.7 also implies that if a secret S ⊆ T ∗ has the normality property, i.e., there exists a subset T̂ ⊆ T

such that S is normal wrt (L(N,M0), T̂), language opacity wrt S can be verified by strict language opacity wrt

(PT̂ (S), PT̂). However, given a secret S ⊆ T ∗, finding a set T̂ that guarantees its normality is still an open problem.

Therefore, the remaining of the paper is focused on verifying strict language opacity.

7

p1 p2 p3 p4t1(a) t2(ε)

t5(a)

t6(b)

t4(ε) t3(b)

2

2

p1 p2

t1(a)

t3(b)

p5

Fig. 2. An LPN that models the secret.

At the end of this section we formalize the problem addressed in the rest of the work. We first introduce the

following assumptions:

A1) The Tu-induced subnet of G is acyclic.

A2) The set of transitions of which the intruder cares is the set of observable transitions, i.e., T̂ = To.

A3) The secret is the set of all firable transition sequences in a bounded labeled Petri net system whose set of

transitions is To, but excluding ε.

These assumptions would bring some properties on which we could build our algorithm for verifying strict

language opacity. In practice, the computational load can be greatly reduced as shown in Section IV, since by

Assumptions A1 and A2 the order of the unobservable transitions can be abstracted using minimal explanations

and basis markings. Note that there is no assumption on the labeling function of the system. Namely, the same

label (including ε) can be assigned to different transitions. Assumption A3 indicates that the secret can be described

by the generated language of a bounded free-labeled Petri net but excluding the empty word. If ε is in the secret,

the system is not strictly language opaque since initially it is at the state in which no observable transition has

fired and the intruder can conclude that without ambiguity. It is true that only a special class of secrets satisfy

Assumption A3 and thus the application of the proposed approach is not general. However, Assumption 3 leads to

a computationally efficient verification procedure. Moreover, in practice we believe that these assumptions, even if

quite restrictive, allow to represent some real problems.

We denote GS = (NS ,MS
0 , T

S , `S), where TS ⊆ To, the labeled Petri net describing the secret, i.e., S =

L(N,M0) \ {ε}. The labeling function of GS is identical to that of G, i.e., given a transition t ∈ TS , `S(t) = `(t).

The problem is stated as follows.

Problem Statement: Given a bounded LPN G and a Petri net GS describing the secret So ∈ T ∗o satisfying

Assumptions A1 to A3, determine whether G is strictly language opaque wrt (To, So) or not.

In the next section we propose a method based on a structure called verifier to solve the above problem.

IV. VERIFICATION OF STRICT LANGUAGE OPACITY

In this section we introduce a structure, called verifier, to efficiently verify strict language opacity.

If the plant G and the net GS describing the secret are bounded, the verifier is a DFA, denoted as V =

(X,TS , δ, x0). A state x ∈ X of V is a 3-tuple (MS ,MG,M), where MS is a marking of GS , MG and

8

M are subsets of basis markings in G, i.e., MS ∈ R(NS ,MS
0), MG ⊆ MB(G) and M ⊆ MB(G). The i-th

element (for i = 1, 2, 3) of x is denoted as x(i). The set of events is the set of transitions of GS . The initial state

of the verifier is x0 = (MS
0 , {M0}, ∅). Algorithm 1 illustrates the construction of the verifier.

Given a state x in the verifier such that δ∗(x0, σ) = x, x(1) is the marking in GS reachable from MS
0 by firing

σ, i.e., MS
0 [σ〉x(1); x(2) is the set of basis markings in G that are reachable by firing a transition sequence σ′ that

has σ as its projection on To, i.e., PTo(σ′) = σ; finally x(3) is the set of basis markings in G that are reachable by

firing a transition sequence σ′′ whose projection on To is different from σ but generates the same observation, i.e.,

PTo
(σ′′) 6= σ and `(σ′′) = `(σ). More precisely, given two states x1 = (MS

1 ,MG
1 ,M1), x2 = (MS

2 ,MG
2 ,M2)

and an event t ∈ TS of V , δ∗(x1, t) = x2 implies that MS
2 is the marking reachable from MS

1 by firing t in

GS (Step 6), MG
2 is the set of basis markings reachable from markings in MG

1 by firing t and the corresponding

minimal explanations in G (Steps 7 to 12), and M2 is the union of two sets: the set of markings reachable from

markings in MG
1 by firing transitions in t′ ∈ Te \ TSe (x(1)) and the corresponding minimal explanations (Steps 17

to 24) in G, and the set of markings reachable from M1 by firing transitions in Te and the corresponding minimal

explanations (Steps 25 to 32) in G, where e = `(t) and TSe (x(1)) is the set of transitions labeled with e and enabled

at marking x(1) in GS . If such a transition t is never enabled in G, then a new node would not be created (Steps 13

to 15).

The main idea behind Algorithm 1 is to compute a sort of parallel composition between GS and G, where

synchronization is performed wrt To. As a result, the generated language of V is equal to PTo(L(N,M0)) ∩

L(NS ,MS
0). Moreover, this enables one to understand if to a transition sequence in the secret it corresponds a

transition sequence in the system such that its projection on To is not in the secret, and it generates the same

observation. The properties of the verifier are formally presented as follows.

Proposition 4.1: Let G = (N,M0, E, `) be an LPN satisfying Assumption A1, and GS = (NS ,MS
0 , T

S , `S)

be the LPN describing the secret and satisfying Assumptions A2 and A3. Let V = (X,TS , δ, x0) be the verifier

constructed by using Algorithm 1. Given a state x ∈ X and σ ∈ L(V) such that δ∗(x0, σ) = x, the following

implication holds:

x(2) 6= ∅ ⇔ ∃σ′ ∈ L(N,M0) : PTo(σ′) = σ.

Proof: Let δ∗(x0, σ) = x and σ = ti1ti2 · · · tik ∈ (TS)∗. According to Algorithm 1, x(2) is the set of markings

reachable from M0 by firing the sequence σ̂ = σu1ti1σu2ti2 · · ·σuktik in G, where σuj is a minimal explanation

of tij . Therefore, PTo(σ̂) = σ. By Proposition 2.3, a sequence σ′ = σ′u1ti1σ
′
u2ti2 · · ·σ′uktik such that M0[σ′〉 and

PTo
(σ′) = PTo

(σ̂) exists (where σ′ui ∈ T ∗u) if and only if x(2) 6= ∅.

Proposition 4.2: Let G = (N,M0, E, `) be an LPN satisfying Assumption A1, and GS = (NS ,MS
0 , T

S , `S) be

the LPN describing the secret So and satisfying Assumptions A2 and A3. Let V = (X,TS , δ, x0) be the verifier

constructed by using Algorithm 1. Given a state x ∈ X \{x0} and σ ∈ L(V) such that δ∗(x0, σ) = x, the following

implication holds:

x(3) 6= ∅ ⇔ ∃σ′ ∈ L(N,M0) : PTo
(σ′) /∈ So ∧ `(σ′) = `(σ).

Proof: This is proven by induction.

9

Algorithm 1 Construction of the verifier
Input: A bounded labeled Petri net G = (N,M0, E, `) and a bounded LPN GS = (NS ,MS

0 , E, `).

Output: Verifier V = (X,TS , δ, x0)

1: x0 := (MS
0 , {M0}, ∅);

2: X := {x0};

3: for all x ∈ X with no tag, do

4: for all t ∈ TS(x(1)), do

5: MG := ∅, M := ∅;

6: MS := x(1) + CS(·, t);

7: for all M ∈ x(2) do

8: for all yu ∈ Ymin(M, t) do

9: M ′ := M + Cu · yu + C(·, t);

10: MG :=MG ∪ {M ′};

11: end for

12: end for

13: if MG = ∅, then

14: Break;

15: end if

16: e := `(t);

17: for all M ∈ x(2), do

18: for all t′ ∈ Te \ TSe (x(1)), do

19: for all yu ∈ Ymin(M, t′), do

20: M ′ := M + Cu · yu + C(·, t′)

21: M :=M∪ {M ′};

22: end for

23: end for

24: end for

25: for all M ∈ x(3), do

26: for all t′ ∈ Te, do

27: for all yu ∈ Ymin(M, t′), do

28: M ′ := M + Cu · yu + C(·, t′);

29: M :=M∪ {M ′};

30: end for

31: end for

32: end for

33: if (MS ,MG,M) /∈ X , then

34: X := X ∪ {(MS ,MG,M)};

35: δ(x, t) := (x, t, (MS ,MG,M));

36: end if

37: end for

38: tag x “checked”;

39: end for

10

p1 p2 p3 p5t1(a) t2(ε)

t5(a)

t6(b)

t4(ε) t3(b)

2

2

p1 p2

t1(a)

t3(b)

p4

x0

x1

t1

t3

X (, ,)S GM  

x0 1 3 4(,{ },)p p p 

x1 2 2 3 4 5(,{ },{ 2 })p p p p p

x2 1 4 2 1 442(,{ },{ , })p p p p p p p

x3 2 2 2 5 2 44(,{2 },{2 , 2 , })p p p p p p p

2'S

2S

1S

2'S

2S

1S

L(G)

*T

*
IT

,I supS

IS

S

*T

*
IT

S

IS

S 'S
*'T

x3

x4

t3 t1

x2

t1

x0

x1

t1

t3

x3 x4
t3

x2

t1

x5

x6

t1

t1t3

Fig. 3. The verifier constructed in Example 4.4.

(Basis step) For σ ∈ L(V) with length 1. Let δ∗(x0, t) = x and e = `(t). Since x0(3) = ∅, if and only if x(3) 6= ∅,

there exists a sequence σut′ such that M0[σut
′〉M ∈ x(3), where t′ ∈ Te \ TSe (x(2)), and σu ∈ Σmin(M0, t

′).

Namely, PTo(σut
′) /∈ So and `(t′) = `(t).

(Inductive step) Assume that for σk ∈ L(V) with length k, the result is valid. We prove that it is also true for

σk+1 ∈ L(V) with length k + 1. Let σk+1 = σkt and e = `(t).

Consider δ∗(x0, σk) = x1 and δ∗(x1, t) = x2. According to Algorithm 1 and Proposition 2.3, x2(3) 6= ∅ if and

only if one of the following conditions holds:

1) there exists M ∈ x1(2) such that M [σut
′〉, where t′ ∈ Te \ TSe (x1(1)) and σu ∈ Σmin(M, t′);

2) there exists M ∈ x1(3) such that M [σut
′〉, where t′ ∈ Te and σu ∈ Σmin(M, t′).

Assume condition 1) holds. Since x1(2) 6= ∅, by Proposition 4.1, there exists σ ∈ L(N,M0) such that PTo(σ) =

σk and M0[σ〉M . Since t′ ∈ Te \ TSe (x1(1)), PTo(σσut
′) /∈ So but `(σσut′) = `(σk+1).

Assume condition 2) holds. Since x1(3) 6= ∅, there exists σ ∈ L(N,M0) such that PTo
(σ) /∈ So and M0[σ〉M .

Therefore, PTo
(σσut

′) /∈ So but `(σσut′) = `(σk+1). Thus, this concludes the proof.

Theorem 4.3: Let G = (N,M0, E, `) be an LPN satisfying Assumption A1, and GS = (NS ,MS
0 , T

S , `S) be

the LPN describing the secret So and satisfying Assumptions A2 and A3. Let V = (X,TS , δ, x0) be the verifier

constructed by using Algorithm 1. G is strictly language opaque wrt (To, So), if and only if ∀x ∈ X \ {x0},

x(3) 6= ∅ holds.

Proof: Follows from Propositions 4.1 and 4.2.

Example 4.4: Consider the LPN in Fig. 1 modeling the plant, and the LPN in Fig. 2 describing the secret

So = {t1, (t1t3)n, (t1t3)nt1} with n = 1, 2, 3, By Algorithm 1, the verifier is constructed in Fig. 3. Table I

presents the state space of the verifier. By Theorem 4.3, since in no state of the verifier the third entry is empty,

the LPN is strictly language opaque wrt (To, So). �

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we compare the computational complexity (with respect to the number of states) of the proposed

approach with a previous approach in the literature.

11

TABLE I

STATES OF THE VERIFIER

X (MS ,MG,M)

x0 (p1, {p3 + p4}, ∅)

x1 (p2, {p3 + p2}, {2p5 + p4})

x2 (p1, {p4 + p2}, {p1 + p4})

x3 (p2, {2p2}, {p4 + 2p5, p2 + p4})

x4 (p1, {p2 + p4}, {p4 + p1, 2p4})

x5 (p2, {2p2}, {p4 + p2})

x6 (p1, {p2 + p4}, {2p4})

Let ns, nb and nr be the number of reachable markings of GS , basis markings of G and reachable markings of

G, respectively. The number of states of the verifier V constructed by Algorithm 1 is bounded by

XV = ns × 2nb × 2nb . (1)

The notion of basis markings enables one to avoid enumerating all transition sequences whose projection on To

does not belong or belongs to the secret. Since nb ≤ nr and in many cases nb is much smaller than nr as shown

in [7], [26], using basis markings provides significant advantages.

Let us compare the proposed approach with other methods in the literature. As pointed out in Section I, there is

no method for language-based opacity analysis in Petri nets. However, some approaches in the automata framework

can be used. More precisely, based on Proposition 3.6, given an arbitrary secret, the problem of verifying strict

language opacity wrt (T̂ , Ŝ) can be reduced to verifying language opacity wrt P−1
T̂

(Ŝ). Therefore, the method of

verifying language opacity in [16] can also be used to verify strict language opacity in Petri nets. Note that an

LPN G is said to be language opaque wrt a secret S is equivalent to saying L(N,M0) is language opaque wrt S

in the automata formalism. In such a case, the reachability graph of the net should be constructed and used as the

automaton model. Given two automata A and AS whose number of states are n1 and n2, respectively, let B be the

automaton constructed to verify if Lm(A) is language opaque wrt Lm(AS). The number of states of B is

XB = 2n1×n2 × 2n1 . (2)

Let A and AS be the reachability graphs of G and GS , respectively, Lm(A) = L(N,M0), and Lm(AS) =

L(NS ,MS
0) \ {ε} = So. To construct the automaton whose accepted language is P−1To

(So), one just needs to add

self loops of transitions in T \ To on each state. We still denote AS the obtained automaton to avoid introducing

further notation. Namely, verifying if G is strictly language opaque wrt (To, So) is reduced to verifying if Lm(A)

is language opaque wrt Lm(AS). By eq. (2), the number of states of automaton B is

XB = 2nr×ns × 2nr . (3)

Compared with eq. (1), the proposed approach is shown to be more efficient. We also point out that in practice for

large-sized bounded Petri nets reachability sets may not be computable even if they are finite [7], [26] due to the

12

state explosion problem. However, to construct the verifier there is no need to compute all reachable markings but

a subset of basis markings.

Moreover, as pointed out in the discussion about Proposition 3.3, language opacity can be semi-decided by strict

language opacity. Therefore, compared with the automaton-based approach, using the proposed approach to verify

language opacity is more efficient. Note that given an arbitrary secret S ⊆ T ∗, its projection on To may not be

a prefix-closed bounded free-labeled Petri net language, i.e., Assumption A3 may not be satisfied. Therefore, the

proposed approach cannot be used. However, for bounded LPNs the previous method provides a necessary and

sufficient condition of language opacity wrt a given secret which is a regular language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new language-based opacity property is introduced. More precisely, strict language opacity

is defined. A novel approach to verifying strict language opacity of bounded Petri nets is developed under the

assumption that the set of transitions in which the intruder is interested is identical to the set of observable transitions

and the secret is a prefix-closed bounded free-labeled Petri net language. For Petri nets whose unobservable subnet

is acyclic, the strict language opacity property can be decided by just constructing an appropriate automaton, called

verifier. Since a complete enumeration of possible firing sequences is avoided by using minimal explanations, the

proposed approach is of lower complexity than the previous approaches.

Our future research is to extend such results to strict language opacity where the intruder cares of an arbitrary

set of transitions and characterize a class of language whose projection on a given set is prefix-closed.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61374068,

61472295, the Recruitment Program of Global Experts, the Science and Technology Development Fund, MSAR,

under Grant No. 066/2013/A2.

REFERENCES

[1] J.W. Bryans, M. Koutny, and P.Y. Ryan. Modelling opacity using Petri nets. Electronic Notes in Theoretical Computer Science, 121:101–

115, 2005.

[2] J.W. Bryans, M. Koutny, L. Mazaré, and P.Y. Ryan. Opacity generalised to transition systems. International Journal of Information

Security, 7(6):421–435, 2008.

[3] A. Saboori and C.N. Hadjicostis. Notions of security and opacity in discrete event systems. In 46th IEEE Conference on Decision and

Control, pages 5056–5061. IEEE, 2007.

[4] A. Saboori and C.N. Hadjicostis. Verification of initial-state opacity in security applications of discrete event systems. Information Sciences,

246:115–132, 2013.

[5] Y.C. Wu and S. Lafortune. Comparative analysis of related notions of opacity in centralized and coordinated architectures. Discrete Event

Dynamic Systems, 23(3):307–339, 2013.

[6] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design,

40(1):88–115, 2012.

[7] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Verification of current-state opacity using Petri nets. In 2015 American Control Conference, pages

1935–1940, July 2015.

13

[8] Y. Tong, Z.W. Li, C. Seatzu, and A. Giua. Verification of initial-state opacity in Petri nets. In 2015 54th IEEE Conference on Decision

and Control, pages 344–349, Dec 2015.

[9] Y.C. Wu and S. Lafortune. Synthesis of insertion functions for enforcement of opacity security properties. Automatica, 50(5):1336–1348,

2014.

[10] J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for opacity. IEEE Transactions on Automatic Control, 55(5):1089–1100,

2010.

[11] A. Saboori and C. N. Hadjicostis. Opacity-enforcing supervisory strategies via state estimator constructions. Automatic Control, IEEE

Transactions on, 57(5):1155–1165, 2012.

[12] X. Yin and S. Lafortune. A new approach for synthesizing opacity-enforcing supervisors for partially-observed discrete-event systems. In

American Control Conference (ACC), 2015, pages 377–383, July 2015.

[13] R. Jacob, J. Lesage, and J. Faure. Opacity of discrete event systems: models, validation and quantification. In 5th International Workshop

on Dependable Control of Discrete Systems, 2015.

[14] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau. Concurrent secrets. Discrete Event Dynamic Systems,

17(4):425–446, 2007.

[15] J. Dubreil, P. Darondeau, and H. Marchand. Opacity enforcing control synthesis. In 9th International Workshop on Discrete Event Systems,

pages 28–35. IEEE, 2008.

[16] F. Lin. Opacity of discrete event systems and its applications. Automatica, 47(3):496–503, 2011.

[17] B. Zhang, S.L. Shu, and F. Lin. Polynomial algorithms to check opacity in discrete event systems. In 24th Chinese Control and Decision

Conference, pages 763–769. IEEE, 2012.

[18] Z. Ma, Z.W. Li, and A. Giua. Design of optimal petri net controllers for disjunctive generalized mutual exclusion constraints. IEEE

Transactions on Automatic Control, 60(7):1774–1785, July 2015.

[19] Y.F. Chen, Z.W. Li, K. Barkaoui, and A. Giua. On the enforcement of a class of nonlinear constraints on petri nets. Automatica, 55:116–124,

2015.

[20] M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of discrete-event systems using labeled petri nets. IEEE Transactions on Automation

Science and Engineering, 11(1):144–153, Jan 2014.

[21] A. Giua, C. Seatzu, and D. Corona. Marking estimation of Petri nets with silent transitions. IEEE Transactions on Automatic Control,

52(9):1695–1699, Sept 2007.

[22] M.P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica,

46(9):1531–1539, 2010.

[23] T. Murata. Petri nets: Properties, analysis and applications. Procedings of the IEEE, 77(4):541–580, April 1989.

[24] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems. Springer, 2008.

[25] M.P. Cabasino, A. Giua, M. Pocci, and C. Seatzu. Discrete event diagnosis using labeled Petri nets. An application to manufacturing

systems. Control Engineering Practice, 19(9):989–1001, 2011.

[26] M.P. Cabasino, A. Giua, L. Marcias, and C. Seatzu. A comparison among tools for the diagnosability of discrete event systems. In 2012

IEEE International Conference on Automation Science and Engineering, pages 218–223. IEEE, 2012.

[27] F. Lin and W.M. Wonham. On observability of discrete-event systems. Information sciences, 44(3):173–198, 1988.

14

