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Abstract

A Petri net system is said to be initial-state opaque if its initial state remains opaque to an external observer

(called an intruder). In other words, the intruder is never able to ascertain that the initial state belongs to a given set

of states (called a secret) based on its observation of the system’s evolution. This paper addresses the problem of

verifying initial-state opacity in discrete event systems (DES) modeled by labeled Petri nets. An efficient approach

to verifying initial-state opacity is proposed based on the notion of basis reachability graph (BRG).
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I. INTRODUCTION

Opacity is an information flow property [1], [2], [3], [4] which relates to the system’s ability to hide a secret

behavior from an intruder [5], [6], [7], [8], [9]. In DES models, the secret is usually defined as a subset of the

state space or a language (subsequent opacity properties are referred to as state-based opacity and language-based

opacity, respectively), and the intruder is modeled as an observer that has full knowledge of the system’s structure

but only has partial observability over the system’s evolution. Based on its observation, the intruder tries to infer

the secret.

Initial-state opacity is a state-based opacity property. A system is said to be initial-state opaque if, given a set of

secret states, by observing the sequence of events generated by the system, the intruder will never be able to infer

that the system’s evolution started from one of the secret states.

In recent years, initial-state opacity has been extensively studied in the framework of automata [8], [10], [11]. It

has been proved that the verification of initial-state opacity is PSPACE-complete [11]. Saboori and Hadjicostis [10],

[11] have shown that by constructing the initial-state estimator for a given nondeterministic finite automaton (NFA),

initial-state opacity can be verified with complexity O(2|X|
2

), where X is the set of states of the automaton. An

initial-state estimator is a deterministic finite automaton (DFA) whose states denote the set of initial states where an

observed word could have started and the current states that it yields. As long as an initial-state estimator is built,

there is no need to reconstruct it when the secret is modified. For a specific secret, verifiers are introduced in [11]

to study initial-state opacity. Instead of precisely estimating the initial state, the verifier only records if a state is

reachable from secret/non-secret states. Therefore, the verification complexity is reduced to O(4|X|). Meanwhile,

Wu and Lafortune [8] propose a more efficient method whose complexity is O(2|X|). They show that the observer

of the reverse automaton can be used to estimate the initial state.

Bryans et al. [4] proved that the verification of initial-state opacity for bounded PNs is decidable when the initial

state is defined as a finite set of initial markings and the secret is a subset of it. However, in PNs the initial-state

opacity problem is very difficult in general, and so far no efficient method has been proposed yet. For bounded

PNs we may construct its reachability graph (RG), which is an automaton, so that the aforementioned approaches

in automata could be applied. Nevertheless, this approach will inevitably suffer from the state explosion problem.

As a compact description of the RG, basis reachability graph (BRG) has been used to solve problems of state

estimation, fault diagnosis [12] and current-state opacity [13]. The advantage of this technique is that only part

of the reachability space, i.e., the set of basis markings (see Section IV.A), has to be enumerated, and all other

reachable markings can be characterized in terms of linear algebra. The BRG of a PN, in general, is smaller than

the RG, but it well characterizes both the reachable markings and the behavior (language) of the corresponding PN.

In this paper, the verification of initial-state opacity in bounded labeled Petri nets is addressed. The secret is

defined as a subset of the reachable markings. A labeled Petri net is initial-state opaque with respect to a secret

if the intruder can never infer that the observed sequence origins from a secret marking. It is known that a net is

initial-state opaque if and only if the language generated from secret markings is a subset of the language generated
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from non-secret markings. Therefore, the initial-state opacity problem in bounded labeled Petri nets is transformed

into the language containment problem in its RG. Considering that the intruder would never distinguish a possible

non-secret marking that is reachable from a secret initial marking by firing only unobservable transitions, we make

the following reasonable assumption: all markings reachable from a secret marking by firing only unobservable

transitions belong to the secret. Under this assumption, we show that initial-state opacity of a bounded net can be

verified by justifying the language containment in the corresponding BRG. Therefore, compared with using RG,

the approach proposed in this work is more efficient in general.

II. PRELIMINARIES

A. Automata

A non-deterministic finite-state automaton (NFA) is a 4-tuple A = (X,E,∆, x0), where X is the finite set of

states, E = {a, b, · · · } is the alphabet, ∆ ⊆ X × Eε ×X is the transition relation with Eε = E ∪ {ε}, where ε

is the empty word describing unobservable events, and x0 ∈ X is the initial state. The transition relation specifies

the dynamics of the NFA: if (x, e, x′) ∈ ∆, then from state x the occurrence of event e ∈ Eε yields state x′.

The transition relation can be extended to ∆∗ ⊆ X × E∗ × X: (xj0, w, xjk) ∈ ∆∗ if there exists a sequence of

events and states xj0ej1xj1 · · ·xjk−1ejkxjk such that σ = ej1 . . . ejk generates the word w ∈ E∗, xji ∈ X for

i = 0, 1, . . . , k, and eji ∈ Eε, (xji−1, eji, xji) ∈ ∆ for i = 1, 2, . . . , k. An NFA is denoted as A = (X,E,∆) in

the case where the initial state could be any state from X .

The generated language of an automaton A = (X,E,∆) from a state x ∈ X is defined as

L(A, x) = {w ∈ E∗|∃x′ ∈ X : (x,w, x′) ∈ ∆∗}.

Generally, given a set of states Y ⊆ X , we define L(A, Y ) =
⋃

x∈Y L(A, x) the language generated from the

states in Y .

B. Petri nets

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of m places represented by circles; T is a

set of n transitions represented by bars; Pre : P ×T → N and Post : P ×T → N are the pre- and post-incidence

functions that specify the arcs directed from places to transitions, and vice versa. The incidence matrix of a net is

denoted by C = Post− Pre.

A marking is a vector M : P → N that assigns to each place a non-negative integer number of tokens, represented

by black dots. The marking of place p is denoted by M(p). For economy of space, markings can also be denoted

as M =
∑

p∈P M(p) · p (see Fig.5). A Petri net system 〈N,M0〉 is a net N with initial marking M0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M+C(·, t).

We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote

that the firing of σ yields M ′. Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates with σ

the Parikh vector y = π(σ) ∈ Nn, i.e., y(t) = k if transition t appears k times in σ.
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A marking M is reachable in 〈N,M0〉 if there exists a sequence σ such that M0[σ〉M . The set of all markings

reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted by R(N,M0). A PN system is bounded

if there exists a non-negative integer k ∈ N such that for any place p ∈ P and for any reachable marking

M ∈ R(N,M0), M(p) ≤ k holds.

A labeled Petri net (LPN) is a 4-tuple G = (N,M0, E, `), where 〈N,M0〉 is the PN system, E is the alphabet (a

set of labels) and ` : T → E∪{ε} is the labeling function that assigns to each transition t ∈ T either a symbol from

E or the empty word ε. Therefore, the set of transitions can be partitioned into two disjoint sets T = To∪Tu, where

To = {t ∈ T |`(t) ∈ E} is the set of observable transitions and Tu = {t ∈ T |`(t) = ε} is the set of unobservable

transitions. The labeling function can be extended to firing sequences ` : T ∗ → E∗, i.e., `(σt) = `(σ)`(t) with σ ∈

T ∗ and t ∈ T . The unobservable reach of a marking M is defined as U(M) = {M ′ ∈ Nn|∃σu ∈ T ∗u : M [σu〉M ′},

i.e., the set of markings reachable from M by firing unobservable transitions.

Given an LPN G = (N,M0, E, `) and a marking M ∈ R(N,M0), we define the language generated from M as

L(N,M) = {w ∈ E∗|∃σ ∈ T ∗ : M [σ〉 and `(σ) = w}. The generated language of G is L(N,M0). Furthermore,

given a set of markings Y ⊆ R(N,M0) of G, we define L(N,Y ) =
⋃

M∈Y L(N,M) the language generated from

markings in Y .

Given an LPN G = (N,M0, E, `) and the set of unobservable transitions Tu, the Tu-induced subnet N ′ = (P, T ′,

P re′, Post′) of N , is the net that removes all observable transitions in To, where Pre′ and Post′ are the restriction

of Pre, Post to Tu. The incidence matrix of the Tu-induced subnet is denoted by Cu = Post′ − Pre′.

III. INITIAL-STATE OPACITY IN PETRI NETS

A. Initial-state opacity

Definition 3.1: Given an LPN G = (N,M0, E, `), a secret is a set of reachable markings S ⊆ R(N,M0). A

marking M ∈ S is said to be a secret marking. Markings in S = R(N,M0) \ S are non-secret markings. �

Definition 3.2: Let G = (N,M0, E, `) be an LPN and S ⊆ R(N,M0) be a secret. G is said to be initial-state

opaque wrt S if

∀M ∈ S, ∀w ∈ L(N,M) ∃M ′ ∈ S : w ∈ L(N,M ′). �

In simple words, a PN is initial-state opaque if for any word w that can be observed starting from some secret

markings in S, there always exists (at least) one non-secret marking from which w could also be generated so that

the intruder cannot establish if the system started its evolution from a secret or a non-secret marking.

B. Verification of initial-state opacity using RG

Based on the given secret, we define the secret language and the non-secret language.

Definition 3.3: Given an LPN G = (N,M0, E, `) and a secret S ⊆ R(N,M0), its secret language is defined as

L(N,S) =
⋃

M∈S
L(N,M),

4



and its non-secret language is defined as

L(N,S) =
⋃

M∈S

L(N,M).

�

Lemma 3.4: Let G = (N,M0, E, `) be an LPN and S be a secret. G is initial-state opaque wrt S if and only if

L(N,S) ⊆ L(N,S). �

Proof: Follows from Definitions 3.2 and 3.3.

Lemma 3.4 shows that an LPN is opaque with respect to a given secret if and only if its secret language is a

subset of the non-secret language. As a result, the initial-state opacity problem in PNs is equivalent to the language

containment problem. Therefore, in the case of bounded nets, by constructing the RG, all methods of verifying

language containment in automata can be applied to solving the opacity problem. The complexity of checking

language containment of two NFA having the same number of states is O(4|X|), where X is the set of states [14].

Therefore, the size of the RG greatly affects the efficiency of verifying initial-state opacity in bounded PNs.

IV. VERIFYING INITIAL-STATE OPACITY USING BRG

To the best of our knowledge, no alternative method to the one in Section III-B has been proposed to verify initial-

state opacity in bounded PNs. However, such an approach suffers from the well-known state explosion problem,

since the RG needs to be constructed. To overcome the potential state explosion problem, we propose a new method

based on BRG analysis.

A. Basis reachability graph

In the work of Cabasino et al. [12], [15], a compact way to represent the reachability set of a PN is proposed

to solve the fault diagnosis problem. Under the assumption that the Tu-induced subnet is acyclic, only part of the

reachable markings of the PN, called basis markings, are computed, while, all non-basis markings are characterized

by a set of linear equations associated with each basis marking. Using the notion of basis markings, the basis

reachability graph (BRG) is defined. It is an NFA in which each state corresponds to a basis marking and all events

are observable. The BRG well preserves the information on the reachability set, as well as on the evolution of the

PN, while its structure is usually much more compact than the RG and the state explosion problem may often be

avoided. The BRG as proposed in [12], [15] also includes some diagnosis information, which are redundant for

opacity verification. Herein we redefine the BRG neglecting such information. Before providing the algorithm for

its construction, let us recall some key definitions [12].

Definition 4.1: Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u |M [σ〉M ′,M ′ ≥ Pre(·, t)}

the set of explanations of t at M . �

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t. Among all the explanations, we

are interested in finding the minimal ones, i.e., the ones whose firing vector is minimal.
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Definition 4.2: Given a marking M and an observable transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

the set of minimal explanations of t at M and Ymin(M, t) = {yu ∈ Nnu |∃σ ∈ Σmin(M, t) : yu = π(σ)} the

corresponding set of minimal e-vectors. �

Algorithm 1 constructs the BRG without diagnoser’s states. We denote the BRG as an NFA B = (MB , E,∆),

where MB is the set of basis markings of the LPN, and all events are observable. The transition relation ∆ ⊆

MB ×E ×MB is determined by the following rule. From a marking M if there is an observable transition t for

which an explanation exists, i.e., Σ(M, t) 6= ∅, and the firing of t and one of its minimal explanations lead to M ′,

then an edge from state M to state M ′ labeled by `(t) is added in the BRG, i.e., (M, `(t),M ′) ∈ ∆.

Algorithm 1 Construction of the BRG
Input: A bounded LPN G = (N,M0, E, `) whose Tu-induced subnet is acyclic.

Output: The BRG B = (MB , E,∆)

1: Let MB = {M0} and assign no tag to M0;

2: while states with no tag exist, do

3: select a state M ∈MB with no tag;

4: for all t s.t. `(t) ∈ E and Ymin(M, t) 6= ∅, do

5: for all yu ∈ Ymin(M, t), do

6: M ′ := M + Cu · yu + C(·, t);

7: if M ′ /∈MB , then

8: MB :=MB ∪ {M ′};

9: assign no tag to M ′;

10: end if

11: ∆ = ∆ ∪ {(M, `(t),M ′)};

12: end for

13: end for

14: tag node M as “old”;

15: end while

16: Remove all tags.

Given a word w ∈ L(B,M0), based on Algorithm 1, if (M0, w,M) ∈ ∆∗ then M is the marking reached

from M0 by firing an observable sequence σo that produces w and eventually interleaved with some unobservable

transitions whose firing is necessary to enable σo. Therefore, MB ⊆ R(N,M0).

Notice that to apply BRG, two assumptions are made:

A1) the LPN G is bounded, and
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Fig. 1. An LPN whose Tu-induced subnet is acyclic..

A2) the Tu-induced subnet of G is acyclic.

Assumption A1) makes sure that the number of basis markings is finite so that Algorithm 1 can halt, and Assumption

A2) is a common technical assumption when partial observation problems, e.g., fault diagnosis or observability, are

considered. It allows to use the state equation to characterize the set of markings reached from a basis marking

firing unobservable transitions.

Theorem 4.3: [12] Let G = (N,M0, E, `) be an LPN whose Tu-induced subnet is acyclic and MB be the set

of basis markings. A marking M is reachable if and only if there exists a basis marking Mb ∈ MB such that

M ∈ U(Mb).

Theorem 4.3 shows that for any reachable marking M , we can always find a basis marking from which M can

be reached by firing unobservable transitions. On the other hand, given a basis marking Mb, if M is reachable

from Mb by firing unobservable transitions, it is also reachable from M0. Note that the if statement is true, even

if Assumption A2) is removed.

As a result of Theorem 4.3, considering the Tu-induced subnet is acyclic a marking is reachable from M0 if

and only if there exists a basis marking Mb such that M = Mb + Cu · yu allows a non-negative integer solution

yu ∈ Nnu .

Proposition 4.4: Let G = (N,M0, E, `) be a bounded LPN, and B = (MB , E,∆) be its BRG. Given a basis

marking Mb ∈MB and a marking M ∈ U(Mb) with M 6= Mb, we have L(N,U(Mb)) = L(B,Mb), and L(N,M) ⊆

L(B,Mb).

Proof: Since Mb ∈ U(Mb), L(N,U(Mb)) = L(N,Mb). Therefore, L(N,U(Mb)) = L(B,Mb). Moreover, as

M ∈ U(Mb), L(N,M) ⊆ L(N,U(Mb)) holds, i.e., L(N,M) ⊆ L(B,Mb).

According to Proposition 4.4, the BRG of a PN describes the language generated from reachable markings as

well. If a word can be generated from a reachable marking, there must exist a basis marking from which the word

can also be generated. In addition, the language generated from a state Mb in the BRG is a superset of the language

generated from the marking M ∈ U(Mb) with M 6= Mb.

Example 4.5: Let us consider the LPN in Fig. 1. Transitions t1 and t3 are observable. The labels assigned to them

are a and b, respectively. For this net, there are 10 reachable markings and its RG is shown in Fig. 2. However, there
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Fig. 3. The BRG of the LPN in Fig. 1.

are only 5 basis markingsMB = {M0, . . . ,M4}, and the corresponding BRG is shown in Fig. 3. It holds U(M0) =

{M0,M5,M8}, U(M1) = {M1,M5,M6,M7,M8}, U(M2) = {M2,M8}, U(M3) = {M0,M3,M5,M8,M9} and

U(M4) = {M2,M4,M8}. Finally, Proposition 4.4 can be easily verified. �

B. Reduction to the language containment on the BRG

In this section we show that, when a certain assumption on the secret is satisfied, the language containment

problem between the secret and non-secret languages can be reduced to the corresponding problem of the language

generated in the BRG. Namely, initial-state opacity of an bounded LPN can be verified by just analyzing the BRG.

Definition 4.6: Let G = (N,M0, E, `) be an LPN, MB be the set of basis markings, and S be a secret. The

secret basis marking set SB is defined as SB =MB ∩ S, and the non-secret basis marking set SB is defined as

SB =MB ∩ S. �
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Fig. 4. An LPN that is initial-state opaque wrt S = {M0,M2}.

Given an LPN G = (N,M0, E, `), its BRG B and the secret S, it always holds L(B, SB) ⊆ L(N,S) and

L(B, SB) ⊆ L(N,S), since SB ⊆ S and SB ⊆ S. Therefore, L(B, SB) ⊆ L(B, SB) does not necessarily indicate

that L(N,S) ⊆ L(N,S), or vice versa. In other words, by just constructing the BRG, initial-state opacity of the

LPN cannot be decided for arbitrary secrets. In the rest of this paper we make the following additional assumption:

A3) ∀M ∈ S, @t ∈ Tu : M [t〉M ′ and M ′ /∈ S.

In other words, for all secret markings there does not exist an unobservable transition that leads to a non-secret one.

This is equivalent to assuming that all markings in the unobservable reach of a secret marking belong to the secret.

Note that this assumption can be relaxed by considering all unobservable transitions violating Assumption A3) as

observable and then constructing the modified BRG (see [16]). However, the number of states in the modified BRG

will increase.

We now prove that if Assumptions A1) to A3) are satisfied, the non-secret language of a net coincides with the

non-secret language of its BRG.

Proposition 4.7: Let G = (N,M0, E, `) be an LPN and S be a secret, which satisfy Assumptions A1) to A3).

Let B be the BRG and MB be the set of basis markings of G, then we have

L(B, SB) = L(N,S).

Proof: We provide a sketch of the complete proof that can be found in [17]. The ⊆ containment is trivial

since SB ⊆ S. Now we prove ⊇ also holds: if a word is generated from a nonsecret marking, there always exists

a nonsecret basis marking from which the word can be generated (otherwise Assumption A3 will be contradicted).

Note that for the secret language it does not necessarily hold that L(B, SB) = L(N,S).

Example 4.8: Let us consider the LPN in Fig. 4. Let S = {M0,M2} that satisfies Assumption A3). Based on the

BRG in Fig. 5(b), we have SB = {M0} and L(N,SB) = {ε, anb|n ≥ 1}. However, L(N,S) = {ε, anb|n ≥ 0},

i.e., L(N,SB) ( L(N,S). �

However, the following proposition shows that under Assumptions A1) to A3) the language containment between

secret and non-secret languages can be verified by just analyzing the BRG.

Proposition 4.9: Let G = (N,M0, E, `) be an LPN and S be a secret, which satisfy Assumptions A1) to A3).
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Fig. 5. The RG (a) and the BRG (b) of the LPN in Fig. 4.

Let B be the BRG and MB be the set of basis markings of G. It holds

L(B, SB) ⊆ L(B, SB)⇔ L(N,S) ⊆ L(N,S).

Proof: We provide a sketch of the complete proof that can be found in [17]. According to Propositions 4.4 and

4.7, we just need to prove L(N,SB) ⊆ L(N,S)⇔ L(N,S) ⊆ L(N,S). The ⇐ part is trivial since L(N,SB) ⊆

L(N,S). Now we prove⇒ part also holds. Since for all secret markings M that are not basis markings there exists

a secret basis marking Mb such that M is reachable from Mb by firing unobservable transitions, words generated

from M can be also generated from Mb, i.e., L(N,S \ SB) ⊆ L(N,SB) ⊆ L(N,S).

Therefore, under Assumptions A1) to A3), instead of analyzing the RG, we could verify the language containment

in the BRG to check if a given LPN is opaque wrt a secret.

Corollary 4.10: Let G = (N,M0, E, `) be an LPN and S be a secret, which satisfy Assumptions A1) to A3).

Let B be the BRG and MB be the set of basis markings. G is initial-state opaque wrt S if and only L(B, SB) ⊆

L(B, SB).

Proof: It follows from Lemma 3.4 and Proposition 4.9.

In other words, Corollary 4.10 proves that the initial-state opacity problem in PNs is equivalent to the language

containment problem in the corresponding BRG.

C. Verification of initial-state opacity

In this section we first briefly recall a technique that is used to verify initial-state opacity in automata [8]. Based

on the result in the previous section, we show that by applying the technique to the BRG of an LPN, initial-state

opacity of the LPN can be effectively verified.

In [8] an automaton called an initial-state estimator is proposed based on the reverse automaton. Given an

automaton A without specifying its initial state, the corresponding initial-state estimator Ae is the observer of its

reverse automaton Ar, i.e., the automaton is obtained by revising all arcs in A. In Ae, the state reached by a word

w is the set of states from which the word w′ can be generated in A, where w′ is the reverse of w.
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0 1

2

3

a

a

b

ε

ε

b
0 1

2

3

a

a

b

ε

ε

b

0,1,
2,3

0,2 1,3

0 1

a

a

b

b

b

b
aaa

b

(a)

0 1

2

3

a

a

b

ε

ε

b
0 1

2

3

a

a

b

ε

ε

b

0,1,
2,3

0,2 1,3

0 1

a

a

b

b

b

b
aaa

b

(b)

Fig. 7. The reverse automaton (a) and the initial-state estimator (b) of the automaton in Fig. 6.

Example 4.11: Let us consider the automaton A in Fig. 6 presented in [10]. Its reverse automaton Ar and the

corresponding observer Ae, i.e., the initial-state estimator, are shown in Figs. 7(a) and 7(b), respectively. Let w = ab.

In the estimator, the reached state is {1}, which implies that the set of states that can generate w′ = ba in A is

{1}.

Theorem 4.12: [8] Let A = (X,E,∆) be an automaton and Ae = (X , E,∆e,X0) be the corresponding initial-

state estimator. Given a set of states Y ⊆ X , we have L(A, Y ) ⊆ L(A, Y ) if and only if ∀Xe ∈ X , Xe * Y ,

where Y = X \ Y .

In other words, to verify the language containment the observer of the reverse automaton needs to be constructed.

The verification of the language containment L(A, Y ) ⊆ L(A, Y ) has a complexity of O(2|X|). Furthermore,

according to Lemma 3.4, initial-state opacity in bounded PNs can be verified by applying Theorem 4.12 to the RG.

Therefore, the complexity of verifying initial-state opacity in bounded PNs is O(2|R(N,M0)|). However, if the PN
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Fig. 8. The initial-state estimator of the BRG in Fig. 3.

and the secret satisfy Assumptions A1) to A3), Theorem 4.12 can be directly applied on BRG.

Corollary 4.13: Let G = (N,M0, E, `) be an LPN, S be a secret that satisfy Assumptions A1) to A3), B be the

BRG of G,MB be the set of basis markings, and Be = (X , E,∆e,X0) be the corresponding initial-state estimator

of B. LPN G is initial-state opaque wrt S if and only if ∀Xe ∈ X , Xe * SB , where SB =MB ∩ S.

Proof: Follows from Corollary 4.10 and Theorem 4.12.

Therefore, the complexity of using BRG to verify initial-state opacity is O(2|MB |). In general, given a bounded

PN, it is |MB | ≤ |R(N,M0)|, therefore, the efficiency of using BRG to verify opacity will not be worse than that

of using RG. In particular, when unobservable transitions are considered, the BRG will be smaller than the RG.

Moreover, exhaustive enumeration is not needed to compute the BRG. Therefore, BRG brings big advantages over

RG for verifying initial-state opacity.

Example 4.14: Consider again the LPN in Fig. 1. The initial-state estimator of its BRG is shown in Fig. 8. Let

S = {M0,M2,M5,M8,M9}, then SB = {M0,M2} and SB = {M1,M3,M4}. According to Corollary 4.13, G is

initial-state opaque wrt S, since no state of the estimator either coincides with SB or is strictly contained in it.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose an efficient approach to verifying initial-state opacity in bounded Petri nets. We proved

that under an acceptable assumption on the secret, the verification of initial-state opacity can be transformed into a

language containment problem in the basis reachability graph (BRG). Therefore, initial-state opacity can be verified

using BRG analysis rather than reachability graph analysis, which provides advantages in terms of computational

complexity.

Our future research will be focused on relaxing the assumption on the secret and extend the use of the BRG to

the language-based opacity analysis.
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