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Abstract

In this paper we propose an effective method based on basis marking analysis to verify the controllabili-

ty of a given language specification in Petri nets. We compute the product, i.e., the concurrent composition,

of the plant and of the specification nets and enumerate a subset of its reachable states, called basis mark-

ings. Each of these basis markings can be classified as controllable or uncontrollable by solving an integer

programming problem. We show that the specification is controllable if and only if no basis marking is

uncontrollable. The method can lead to practically efficient verification because it does not require an

exhaustive enumeration of the state space.
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1 Introduction

Supervisory Control Theory, originated by the work of Ramadge and Wonham [1], is a system theory ap-

proach that provides a unifying framework for the control of Discrete Event Systems (DESs). In this setting,

the control demands are characterized by two types of specifications. A state specification consists in a for-

bidden set of states, while a language specification consists in a forbidden set of event sequences. The control

problem is usually complicated by the presence of uncontrollable events that cannot be disabled by a control

agent, called supervisor, to prevent violating a specification.

In the work of Ramadge and Wonham, finite state automata were used to model the plant, i.e., the system

to be controlled. A state specification can be enforced by preventing the plant to reach the set of weakly

forbidden states, i.e., those states from which a forbidden one can be reached by firing uncontrollable events.

When language specifications are considered, a monolithic supervisor candidate (MSC) is first constructed

as the product1 of the plant and of the automaton generating the language specification. By this approach,

enforcing the original language specification can be transformed into the problem of enforcing a related state

specification in the MSC. In particular if the MSC is controllable, the specification can be used as a supervisor.

If the MSC is not controllable, it can be refined to determine the structure of a minimally restrictive supervisor.

Petri nets extend the class of control problems that can be solved by automata and provide many efficient

and well founded approaches for supervisory control. Several interesting results have been obtained for state

specifications: in this case efficient algorithms exist to compute a controller in the presence of uncontrollable

transitions [3–8]. However, relatively few works have discussed how Petri net models may be efficiently used

to design supervisors for arbitrary language specifications. Although the product of Petri net modules can be

efficiently computed without enumerating its state space [9], there is no efficient general method to determine

the controllability of a given MSC or to refine it. Thus, analyzing and refining a Petri net MSC requires a

brute-force approach to compute its entire reachability graph, and is thus hindered by the well known state

explosion problem.

Recently a state compression approach [10] has been used for state estimation and fault diagnosis in

Petri nets [11]. Here the set of transitions (i.e., events) is partitioned into observable and unobservable ones.

The advantages of this technique is that only part of the reachability space, the so-called basis markings, is

enumerated; all other markings reachable from them firing only unobservable transitions can be characterized

by a linear system.

In this paper we show that the basis marking approach can be generalized to solve other problems in

which the set of transitions can be appropriately partitioned into two disjoint sets. In particular, we use this

approach to verify the controllability of a given language specification by constructing the basis reachability
1Following [2] we use the term product to denote the counterpart on the systems structure (be it an automaton or a Petri net) of the

concurrent composition operator on languages.
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graph (BRG) of a given MSC.

We show that the set of uncontrollable markings of an MSC can always be characterized by a special class

of state specifications called OR-AND GMECs which can be easily enforced by Petri net controllers [12]. This

allows one to partition the set of basis marking into the set of controllable and uncontrollable ones by solving

a series of integer programming problems.

Finally we prove that the MSC (and hence the corresponding specification) is controllable if and only if

all its basis marking are controllable: as a result the exhaustive enumeration of the entire reachability graph

of the MSC can be avoided. Should the MSC fail to be controllable, the basis marking approach can also be

used to efficiently design a supervisor. However, due to space constraints, this problem is not discussed in

this manuscript and will be addressed in the future.

Our approach is presented for nets that satisfy the following assumption: the uncontrollable subnet of

the MSC is acyclic. We observe, however, that this assumption may be relaxed at the cost of increasing the

number of basis markings.

This paper is organized in five sections. The notions of labelled Petri nets and product operator are

recalled in Section II. Section III introduces the notions of language specification and the construction of

monolithic supervisor candidate. Section IV introduces the method to construct the BRG followed by the

method to verify the controllability of a specification by analyzing the BRG, while some simulation results

are presented. Conclusions are drawn in Section V.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; n transi-

tions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence functions

that specify the arcs in the net and are represented as matrices in Nm×n (here N= {0,1,2, . . .}). The incidence

matrix of a net is defined by C = Post −Pre ∈ Zm×n (here Z= {0,±1,±2, . . .}).

For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t)> 0} and its set of output

places as t• = {p ∈ P | Post(p, t)> 0}. The notion for •p and p• are analogously defined.

A marking is a vector M : P →N that assigns to each place of a Petri net a non-negative integer number of

tokens, represented by black dots and can also be represented as a m component vector. We denote by M(p)

the marking of place p. A marked net ⟨N,M0⟩ is a net N with an initial marking M0. We denote by R(N,M0)

3



the set of all markings reachable from the initial one. We also use x1 p1 + · · ·+ xn pn to denote the marking

[x1, . . . ,xn]
T for simplicity.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ = M0 +C(·, t).

We write M[σ⟩ to denote that the sequence of transitions σ is enabled at M, and we write M[σ⟩M′ to denote

that the firing of σ yields M′.

The vector yσ is the Parikh vector of σ ∈ T ∗, i.e., yσ (t) = k if transition t occurs k times in σ .

Given a net N = (P,T,Pre,Post) we say that N̂ = (P̂, T̂ , P̂re, P̂ost) is a subnet of N if P̂ ⊂ P, T̂ ⊂ T and

P̂re (resp., P̂ost) is the restriction of Pre (resp., Post) to P̂× T̂ .

2.2 GMECs

A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) where w ∈ Zm and k ∈ N. A GMEC

defines a set of legal markings:

L (w,k) = {M ∈ Nm | wT ·M ≤ k}

An AND-GMEC is a pair (W,k), where W = [w1 · · · ws] ∈ Zm×s and k = [k1 · · · ks]
T ∈ Ns. An AND

GMEC defines a set of legal markings L (W,k) = {M ∈ Nm | WT ·M ≤ k}.

An OR-AND GMEC is a set W = {(W1,k1), . . ., (Wr,kr)}, where each (Wi,ki) is an AND-GMEC for

i = 1, . . . ,r. The OR-AND GMEC W defines a set of legal markings

LW =
r∪

i=1

L (Wi,ki).

2.3 Labelled Petri Nets and Their Products

A labeled Petri net is a four-tuple ⟨N,M0,E, l⟩ where ⟨N,M0⟩ is a marked net, E is an alphabet and l : T → E

is a labeling function that associates a label in E to each transition, i.e., l(t) = e. In this paper we also write

“t(e)” to denote l(t) = e for simplicity.

For σ = t1t2 · · · tx and l(ti) = ei, we define w = l(σ) = l(t1)l(t2) · · · l(tx) = e1e2 · · ·ex. Given an event e ∈ E

(resp., a word w ∈ E∗), we write M[e⟩ (resp., M[w⟩) to denote that there exists t (resp., σ ) such that l(t) = e

and M[t⟩ (resp., l(σ) = w and M[σ⟩).

Given a labeled Petri net G, its language L(G) is the set of strings generated by any firing sequence, i.e.,
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Figure 1: A plant G, a specification H and the MSC J = G||H.

L(G) = {l(σ) | M0[σ⟩}

A labelled Petri net G is deterministic if for all t1, t2 ∈ T, t1 ̸= t2, and for all M ∈ R(N,M0), it holds:

(M[t1⟩∧M[t2⟩)⇒ (l(t1) ̸= l(t2)).

The event set E can be partitioned into the sets of controllable events Ec and uncontrollable events Eu.

This also induces a partition of the transition set T into the set of controllable transitions Tc = {t ∈ T | l(t) ∈

Ec} and uncontrollable transitions Tu = T \Tc.

Given two labelled Petri nets G = ⟨N′,M′
0,E

′, l′⟩ and H = ⟨N′′,M′′
0 ,E

′′, l′′⟩, the product of G and H is a

labelled Petri net that fuses the transitions in G and H which share the same label. We give a simple example

to illustrate the product operator in Example 1. More details can be found in the appendix of this paper and

in [9].
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3 Plant, Language Specification, and Monolithic Supervisor Candi-

date

In this section we first review some key notions on supervisory control using Petri nets.

A plant, i.e., a system to be controlled, is a deterministically labeled Petri net G = ⟨N′,M′
0,E

′, l′⟩ with

N′ = ⟨P′,T ′,Pre′,Post ′⟩. Given a plant G, a language specification on its behavior is described by a deter-

ministically labeled net H = ⟨N′′,M′′
0 ,E

′′, l′′⟩ with N′′ = ⟨P′′,T ′′,Pre′′,Post ′′⟩ and E ′′ ⊆ E ′. A specification

H defines a set of legal firing sequences of G given by

Γ(G,H) = {w ∈ L(G) | w↑E ′′ ∈ L(H)} (1)

where w↑E ′′ denotes the natural projection of w on the alphabet E ′′ (i.e., e↑E ′′ is the string obtained by w

removing all events not in E ′′). A monolithic supervisor candidate (MSC) is a labeled Petri net J the product

of G and H, i.e., J = G ∥ H (see Appendix).

Example 1 Consider the Petri nets in Figure 1. The plant G contains two workstations which produce two

types of parts to be assembled. Both workstations have a capacity s. Suppose in G events b,c,e,g are

uncontrollable and events a,d, f are controllable. Now we want to apply a language specification H such

that the production rate of the two stations should not differ too much: in any situations t3(c) should not fire

more than v times than t6( f ), and t6( f ) should not fire more zero times than t3(c). The product of G and H is

the MSC J where uncontrollable transitions Tu = {t2, t3, t5, t7} and controllable transitions Tc = {t1, t4, t6}. �

A specification as well as the MSC may only disable controllable transitions to ensure that the controlled

plant G only generates sequences in Γ(G,H). However, during the evolution of the closed-loop system

there may exist some markings at which an uncontrollable transition in the plant is about to fire, while the

supervisor attempts to prevent it (i.e., the closed-loop control mode collapses at this moment). Typically to

verify the controllability of H the MSC J has to be necessarily constructed and analyzed, since the language

of J represents the set of legal words that G can generate. The specification H is uncontrollable if there exist

some markings in the reachability set of J at which some uncontrollable transition is enabled in G but is

not enabled in J (which implies it is not enabled in H). These markings are called strongly uncontrollable

markings:

Definition 1 Given an MSC J = G||H, its strongly uncontrollable marking set is:

U = {M ∈ Nm | ∃eu ∈ Eu,M↑G[eu⟩∧¬M↑H [eu⟩} (2)

6



�

For simplicity, in the sequel we use the term “uncontrollable” for “strongly uncontrollable”.

Definition 2 Given an MSC J = G||H, its weakly uncontrollable marking set is:

W = {M ∈ Nm | ∃σu ∈ T ∗
u ,M[σu⟩M̂ ∈ U }

�

Definition 3 Given an MSC J = G||H, its controllable marking set is defined as C = Nm \W . �

We note that Definition 1 is equivalent to the definition of uncontrollable markings in [13]. From the

definitions we immediately have W ⊇ U .

Definition 4 An MSC J = G||H is controllable (as well as H) if RJ(N,M0)∩U = /0. Otherwise J (as well as

H) is uncontrollable. �

Theorem 1 [9, 13] The controllability of H as well as J is decidable.

Theorem 2 [9, 14] Given an uncontrollable bounded J = ⟨N,M0⟩ = G||H, it is always possible to find an

OR-AND GMEC W such that LW = C .

From these two theorems, the controllability of a specification H (and of the MSC J) with respect to a

plant G is always decidable. However, to verify the controllability of H is not easy. A straightforward method

is to enumerate all reachable markings of the MSC (i.e., R(N,M0)) to check if there exist any uncontrollable

markings. However, even in a medium-sized system it may be impossible to construct its reachability graph

due to the state explosion, and the complexity of such a controller may be up to O(R(N,M0)) [9].

On the other hand, before the end of this section we propose an important result. The following theorem

shows that a strongly uncontrollable marking set U of a monolithic supervisor candidate J can always be

characterized by an OR-AND GMEC. Therefore checking if some markings in U are reachable from a given

marking can be done by solving an integer programming problem. On this result we built the efficient method

presented in the next section to solve the controllability checking problem. The method is based on the basis

reachability graph analysis, without enumerating the whole state space of J.

Theorem 3 Given a plant G and a language specification H, there always exists an OR-AND W on J = G||H

such that LW = U .
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Figure 2: Illustration for Example 2.

Proof: According to Eq. (2), for any uncontrollable marking M ∈ U , there exists an uncontrollable

event eu such that: M↑P′ [eu⟩,¬M↑P′′ [eu⟩. Therefore for a certain event eu ∈ Eu, we can write a corresponding

U (eu) (which is a subset of U ) as:

∃t : l(t) = eu,∀p ∈ (•t ∩P′),M(p)≥ Pre(p, t)

∀t : l(t) = eu,∃p ∈ (•t ∩P′′),M(p)≤ Pre(p, t)−1
(3)

The set U (eu) contains markings at which eu is enabled in J↑G but not enabled enabled J↑H . This set

can always be characterized by an OR-AND GMEC W (eu) (see Example 2). Therefore the set U can be

written as U =
∪

eu∈Eu U (eu), and there always exists a W =
∨

eu∈Eu W (eu), which can always be equivalently

transformed into a standard OR-AND form. �

Example 2 Consider the labelled Petri net in Figure 2 as a part of an MSC, in which p1, p2, p4 ∈ P′ (i.e.,

belong to G) and p3, p5, p6 ∈ P′′ (i.e., belong to H). For event a, the uncontrollable marking set U (a) can be

characterized by the following linear inequalities:

 [(M(p1)≥ 1)∧ (M(p2)≥ 1)∨ (M(p4)≥ 1)]

∧ [(M(p3)≤ 0)∧ ((M(p5)≤ 0)∨ (M(p6)≤ 0))]
(4)

which can be automatedly transformed into its equivalent standard disjunctive normal form:

∨



(M(p1)≥ 1)∧ (M(p2)≥ 1)∧(M(p3)≤ 1)

∧ (M(p5)≤ 1)

(M(p1)≥ 1)∧ (M(p2)≥ 1)∧(M(p3)≤ 1)

∧ (M(p6)≤ 1)

(M(p4)≥ 1)∧ (M(p3)≤ 1)∧(M(p5)≤ 1)

(M(p4)≥ 1)∧ (M(p3)≤ 1)∧(M(p6)≤ 1)

(5)

To verify if such an OR-AND GMEC is feasible, one could either solve an IPP for each conjunctive parts or

use the method in [15] to convert it into an equivalent conjunction linear integer constraints in polynomial

time. �
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4 Verifying Controllability by Basis Marking Analysis

In the work of Cabasino et al. [10, 11], a compact way to represent the reachability set of a Petri net is pro-

posed to solve the diagnosis problems. The transition set T is partitioned into the observable transition set To

and the unobservable transition set Tuo, since solving a diagnosis problem requires to reconstruct the firing se-

quences of the unobservable transitions from the observable firings. In [10,11] only a subset of the reachable

markings, called basis markings, are computed, and a non-deterministic finite state automaton called basis

reachability graph (BRG) is constructed. All non-basis markings and the unobservable firing sequences can

be characterized by the expansion of a set of linear equalities depending on those basis markings.

Up to now, the BRG approach has only been used to solve diagnosability problems and the related opacity

problems [16, 17]. However, we point out that this basis marking analysis can be efficiently generalized. In

general, the BRG-based approach can be applied if (1) the firing information of a certain set of transitions,

say Tx ⊆ T , can be abstracted with respect to the problem we study, and (2) the subnet of Tx (i.e., Tx =

(P,Tx,Prex,Postx) where Prex and Postx are Pre and Post matrices reduced to P×Tx, respectively) is acyclic.

For instance, in the original diagnosability issue the transition set T is partitioned into observable transitions

To and unobservable transitions Tuo, the firing of the latter can be abstracted. Here we partition T into

controllable transitions Tc and uncontrollable ones Tu.

Definition 5 Given a marking M and a controllable transition t : l(t) ∈ Ec, we define

Σ(M, t) = {σ ∈ T ∗
u | M[σ⟩Mx,Mx ≥ Pre(·, t)}

the set of explanations of t at M, and we define Y (M, t) = {yσ | σ ∈ Σ(M, t)} the set of explanation vectors,

i.e., to enable t some σ ∈ Σ(M, t) must fire. �

Definition 6 Given a marking M and a controllable transition t : l(t) ∈ E, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | @σ ′ ∈ Σ(M, t) : yσ ′ � yσ}

the set of minimal explanations of t at M, and we define Ymin(M, t) = {yσ | σ ∈ Σmin(M, t)} the corresponding

set of minimal explanation vectors. �

The definitions of explanations and explanation vectors here are different from their definitions first pro-

posed in [10, 11], in which the transitions are classified as observable/unobservable. By using the method

in [11] to compute Ymin(M, t) only algebraic manipulations are required. We also note that typically there

exists more than one minimal explanation in Σmin(M, t).
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In the following we present an algorithm to construct the Basis Reachability Graph (BRG) of a given

Petri net. Although we also use the name BRG for consistency, we note that the BRG we constructe here

is not exactly the same as that in [10], in which many definitions are tailored to reconstruct the firings of

unobservable transitions for diagnosability problems.

Algorithm 1 BRG for Controllability
Input: A bounded labelled net G = (N,M0,E, l)
Output: The BRG BG = (M ,E,∆,M0)

1: M := {M0} and assign no tag to M0;
2: while state with no tag exist, do
3: select a state M ∈ M with no tag;
4: for all t such that l(t) ∈ Ec and Ymin(M, t) ̸= /0, do
5: for all yu ∈ Ymin(M, t), do
6: M̂ := M+C ·yu +C(·, tu);
7: If @M̂ ∈ M , then M := M ∪{M̂} and assign no tag to M̂;
8: ∆ := ∆∪ (M, l(t),M̂);
9: end for

10: tag the node M as “old”;
11: end for
12: end while
13: Remove all tags.

Definition 7 Give a bounded labelled net J = (N,M0,E, l), its basis reachability graph (BRG) is a non-

deterministic finite state automaton BJ output by Algorithm 1. The BRG BJ is a four-tuple (M ,E,∆,M0),

where:

• M is the state set containing a group of markings, these markings are called basis markings;

• ∆ ⊆ (M ×E ×M ) is the transition relation;

• E and M0 are the alphabet and the initial marking of J, respectively.

�

Example 3 (Ex. 1 Continued) Consider the MSC J in Figure 1 which is the product of G and H with s = 2

and v = 1. This MSC has 67 reachable markings. It is too large and we do not present it. By applying

Algorithm 1 we obtain its BRG in Figure 3 which only contains 14 basis markings in M . �

By the construction procedure in Algorithm 1, one can verify that (M1[e⟩M2)⇒ ((M1, l(t),M2) ∈ ∆. An

important property of the basis marking set M is:

Theorem 4 Given a labelled net J = (N,M0,E, l) in which the uncontrollable subnet is acyclic: (1) for any

M ∈ R(N,M0), there exists an Mb ∈M such that Mb+C ·yσu = M, where σu ∈ T ∗
u ; (2) for any basis marking

Mb ∈ M and any marking M such that Mb +C · yσu = M, it holds M ∈ R(N,M0).
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Figure 3: The BRG BJ of the MSC J in Figure 1. This BRG contains 14 basis markings while the reachability
graph of J has 67 markings. Shaded markings are uncontrollable basis markings.

Proof: This theorem follows from a theorem in [10] (in which it is Theorem 3.8), by changing observ-

able/unobservable transitions as controllable/uncontrollable ones. �

By Theorem 4, any reachable marking must be reachable from some basis marking in M by firing only

uncontrollable transitions, and vice versa.

Definition 8 Given an MSC J = G||H, a basis marking Mb ∈ M is call an uncontrollable basis marking if

Mb ∈ W . �

The following proposition can be used to determine if a basis marking is uncontrollable. We note that

since there always exists an OR-AND GMEC W such that LW = U by Theorem 3, the first constraint in (6)

can be given as a set of ≤ inequalities.

Proposition 1 Given an MSC J = G||H, a basis marking Mb ∈ W if and only if the following integer pro-

gramming problem (IPP) has a feasible solution:


min 1T · yu

s.t. Mb +C · yu ∈ U

yu ≥ 0

(6)

Proof: If the IPP (6) has a feasible solution yu, since Tu-induced subnet is acyclic, there must exist a

σu ∈ T ∗
u whose Parikh vector is yu and Mb[σu⟩Mx ∈ U . Therefore Mb ∈ W . On the other hand, if Mb ∈ W ,

from the definition of weakly controllability there exists Mx ∈ U and Mx is reachable from Mb by firing

σu ∈ Tu, therefore the IPP has a feasible solution. �
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Now we present the main result of this section.

Theorem 5 Given a plant G, a specification H and the MSC J = (N,M0,E, l) such that J = G||H and the

uncontrollable subnet is acyclic. H (as well as J) is controllable if and only if all basis markings are control-

lable.

Proof: (If) Suppose there exists M ∈ RJ(N,M0)∩U , i.e. J is uncontrollable. By Theorem 4 part 1,

there must exist a basis marking Mb such that Mb +C · yσu = M. Since the uncontrollable subnet is acyclic,

M is reachable from Mb. This indicates that Mb ∈ W .

(Only If) Since M ⊆ RJ(N,M0), if there exists Mb ∈ W , obviously RJ(N,M0)∩W ̸= /0. �

By Theorem 5, to verify the controllability of J, instead of checking all reachable markings in the reach-

ability graph, we only need to verify if all the basis markings are controllable. Now we can present an

algorithm to determine the controllability of a give MSC J.

Algorithm 2 Determine the Controllability of an MSC
Input: A bounded plant G, a bounded specification H
Output: YES (controllable)/NO (uncontrollable)

1: Compute J = G||H,
2: Compute W according to Theorem 3,
3: Compute the BRG BJ of J by Algorithm 1,
4: for all Mb in M , do
5: if IPP (6) has a feasible solution, then
6: Tag Mb as “Uncontrollable”;
7: else
8: Tag Mb as “Controllable”;
9: end if

10: end for
11: if Mb ∈ M with “Uncontrollable” tag exists, then
12: Output NO and Exit;
13: else
14: Output YES and Exit.
15: end if

In Algorithm 2 for a given MSC J we construct its BRG BJ and then verify that from each basis marking

if some uncontrollable marking in U is reachable by solving an IPP. If there exists some basis marking in M

from which some uncontrollable markings in U can be reached, it implies that the MSC may evolve to such

uncontrollable markings so that the specification H is uncontrollable. Otherwise H is controllable.

Example 4 (Ex. 3 Continued) Consider again the MSC J = G||H in Figure 1 with s = 2,v = 1 and its BRG

in Figure 3. The uncontrollable marking set U can be written as: (M(p3)≥ 1)∧ (M(p9) = 0). By applying

12



Algorithm 2, for each basis marking Mb in M we solve the following IPP:

min 1T · yu

s.t. Mb(p3)+C(p3, ·) · yu ≥ 1

Mb(p9)+C(p9, ·) · yu = 0

Mb +C · yu ≥ 0

yu ≥ 0

(7)

We find that there are three basis markings (located in shaded boxes) for which (6) has feasible solutions.

From Theorem 5 it indicates that H is uncontrollable. For instance, for M̃b = 2p2 +2p5 + p9 the correspond-

ing IPP has a feasible solution yu that is: yu(t2) = 2,yu(t3) = 1,yu(t1) = yu(t4) = yu(t5) = yu(t6) = yu(t7) = 0,

and there exists a reachable marking M = M̂b +C · yu = p3 + p4 +2p5 + p10 which is reachable and in U .

On the other hand, consider a new specification H̄ with s = 2,v = 2. The new MSC J̄ will have the same

structure as J in Figure 1 except s = 2,v = 2. The resulting BRG B̄J is isomorphic to the one in Figure 3 but

there will be one more token in p9 for all basis markings in M̄ . For the limit of space we do not present a

figure to show this. One can verify that by Algorithm 2 for all basis markings in M̄ the IPP (6) does not have

a feasible solution. Therefore the new specification H̄ with v = 2 is controllable. �

Let us briefly discuss the complexity of the BRG-based method. In the worst case the BRG may have the

same size as its reachability graph, i.e., |M |= |R(N,M0)|. However, in most cases the BRG is much smaller

than the reachability graph, i.e., |M | ≪ |R(N,M0)|. Therefore Algorithm 2 can be used to efficiently check

the controllability of a language specification in Petri nets, as shown in the following example.

Example 5 (Ex. 4 Continued) Still consider the MSC J = G||H in Figure 1. For different parameters s and

v the performances of the classical reachability graph analysis and our approach by Algorithm 2 are listed

in Table 1. The simulation is done on a workstation with Core-II 2.2G CPU, using the standard Matlab

toolboxes.

From Tabel 1 one can see that with the increase of s and v, the size of the reachability graph (|R(N,M0)|)

grows much faster than that of the BRG (|M |). Hence the reachability-graph-based algorithm takes a much

longer time to determine the controllability of J than using Algorithm 2. Moreover, when s,v > 8 the reacha-

bility graph analysis is not possible to be applied, while the BRG apporach, i.e., Algorithm 2, is capable for

even larger systems (for s = v = 30 the cardinality of R(N,M0) is approximately 109). �

At the end of this section we want to make two comments concerning our approach.

First, this approach is presented for nets that satisfy the following assumption: the uncontrollable subnet
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Table 1: Performance of Algorithm 2.

s v |R(N,M0)| Time(s)1 |M | Time(s) Result2

2 1 67 < 1 14 < 1 No
2 2 73 < 1 14 < 1 Yes
4 3 783 7 55 < 1 No
4 4 798 7 55 < 1 Yes
6 5 4298 273 140 < 1 No
6 6 4326 251 140 < 1 Yes
8 7 16026 3816 285 2 No
8 8 16071 4123 285 2 Yes
10 9 - o.t. 506 4 No
10 10 - o.t. 506 4 Yes
20 19 - o.t. 3311 97 No
20 20 - o.t. 3311 91 Yes
30 29 - o.t. 10416 830 No
30 30 - o.t. 10416 774 Yes

1We define overtime (o.t.) if the Matlab program does not halt within 8 hours.
2“Yes” and “No” indicate that the language specification (i.e., the corresponding MSC) is controllable and
uncontrollable, respectively.

of the MSC is acyclic. However, we are also working at removing this assumption. In fact, if the uncontrol-

lable subnet is not acyclic, we consider a new partition T = T ′
u ∪T ′

c where T ′
u ⊂ Tu — this means that some

uncontrollable transitions that create cycles in the uncontrollable nets are now treated as controllable so that

the T ′
u-induced subnet is acyclic. In such a case a modified BRG can be constructed and all the above results

holds. However, in such a case the number of basis markings will increase. The scalability of this approach

is an open issue for our future research.

Second, in the supervisory control framework, if H is uncontrollable, then J must be further refined to

determine a supervisor. Typically this step requires reachability graph. However, the BRG can be used to

design an on-line supervisor, since the BRG the transition function ∆ contains all controllable transitions.

5 Conclusion

In this paper an effective method based on basis marking analysis to determine and enhance the controllability

of a given language specification is proposed. By constructing the basis reachability graph, the controllability

of the given specification can be verified by solving a series of integer programming problems.
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Appendix

Definition 9 (Concurrent composition of languages) Given two languages L1 ⊆ E∗
1 , L2 ⊆ E∗

2 and E = E1∪

E2, their concurrent composition is the language L:

L = L1||L2 = {w ∈ E∗ | w↑E1 ∈ L1,w↑E1 ∈ L2}.

This operator has a counterpart on the transition structure of Petri nets. In fact, given two labelled Petri

nets G′, G′′, the following algorithm constructs their product G = G′ ∥ G′′. The net G generates the language

L(G) = L(G′)||L(G′′) concurrent composition of the languages of G′ and G′′.

Here λ denotes the empty sequence and is used to denote that a transition in G′ (resp., G′′) is not syn-

chronized with a transition in G′′ (resp., G′). The transitions of the form (t ′,λ ) or (λ , t ′′) are usually simply

denoted t ′ or t ′′. If for a plant transition t ′ there exists only one (t ′, ·) in G, (t ′, ·) is also denoted as t ′ for

simplicity.
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Algorithm 3 Product of G′ and G′′

Input: G′ = (N′,M′
0,E

′, l′),G′′ = (N′′,M′′
0 ,E

′′, l′′)
Output: G = (N,M0,E, l) such that L(G) = L(G′)||L(G′′)

1: Let P = P′∪P′′;
2: Let T = {(t ′, t ′′) | t ′ ∈ T ′, t ′′ ∈ T ′′, l′(t ′) = l′′(t ′′)}

∪{(t ′,λ ) | t ′ ∈ T ′, (̸ ∃t ′′ ∈ T ′′)l′(t ′) = l′′(t ′′)}
∪{(λ , t ′′) | t ′′ ∈ T ′′, (̸ ∃t ′ ∈ T ′)l′(t ′) = l′′(t ′′)}

(8)

3: Let Pre(p, t) = 
Pre′(p, t ′) if p ∈ P′, t ′ ̸= λ , t = (t ′, t ′′)
Pre′′(p, t ′′) if p ∈ P′′, t ′′ ̸= λ , t = (t ′, t ′′)
0 otherwise

(9)

4: Let Post(p, t) = 
Post ′(p, t ′) if p ∈ P′, t ′ ̸= λ , t = (t ′, t ′′)
Post ′′(p, t ′′) if p ∈ P′′, t ′′ ̸= λ , t = (t ′, t ′′)
0 otherwise

(10)

5: Let E = E ′∪E ′′;
6: Let l((t ′, t ′′)) = l′(t ′) if t ′ ̸= λ , else l((t ′, t ′′)) = l′′(t ′′);
7: Let M0 = (M′

0,M
′′
0 ).
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