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Abstract

Timed marked graphs, a special class of Petri nets, are extensively used to model and analyze cyclic manufacturing

systems. Weighted marked graphs are convenient to model automated production systems such as robotic work cells

or embedded systems. The main problem for designers is to find a trade off between minimizing the cost of the

resources and maximizing the system’s throughput. It is possible to apply analytical techniques for the average cycle

time optimization problem of such systems. The problem consists in finding an initial marking to minimize the

average cycle time (i.e., maximize the throughput) while the weighted sum of tokens in places is less than or equal

to a given value.
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I. INTRODUCTION

Timed Petri nets (PNs) are well known as efficient tools for modeling discrete event systems, especially manu-

facturing systems. In this paper, we study a particular class of timed Petri nets called timed weighted marked graphs

(TWMGs). The main feature of this class of nets is that each place has only one input and one output transition.

Moreover, the firing delay of each transition is deterministic.

Timed weighted marked graphs and timed marked graphs (TMGs) find wide applications in manufacturing. They

can model complex assembly lines and solve cyclic scheduling problems. Workshop operations and products are

usually modeled by transitions and tokens, respectively. Between two successive transformations, semi-finished

products have to be stored or moved from a workshop to another. The amount of products, also called Work In

Process (WIP), that have to be stored or moved may have economical consequences. Therefore, the main problem

for designers is to find a proper schedule of WIP that allows the system to reach a given productivity while the

amount of WIP is the smallest.

Teruel et al. proposed several techniques for the analysis of WMGs in [1]. Campos et al. [2] developed methods to

compute the average cycle time of TMGs for a given initial marking. Munier [3] proposed a method to transform a

WMG into an MG under single server semantics hypothesis and Nakamura and Silva [4] discussed the same problem

under infinite server semantics hypothesis. Giua et al. [5] dealt with the firing rate optimization of cyclic timed

event graphs by token allocations and proposed a mixed integer linear programming problem (ILPP) to compute an

optimal solution. However, in the literature, few works are found to deal with the optimization problem of TWMGs.

Sauer [6] proposed a heuristic solution based on an iterative process to solve the marking optimization problem of

TWMGs. He et al. [7] presented a novel heuristic method to deal with the marking optimization problem which

was shown to be more effective than that of Sauer [6]. Benazouz et al. [8] developed an algorithm to minimize the

overall buffer capacities with throughput constraint for TWMGs.

In this paper, we study the cycle time optimization problem of a TWMG, an issue that to the best of our

knowledge has not been addressed in the literature. The problem consists in finding an initial marking to minimize

the average cycle time while the weighted sum of tokens in places is less than or equal to a given value.

This problem has a practical relevance in many applications. As an example, for a manufacturing system operated

with a periodic scheduling the cycle time is the inverse of the throughput. Thus if the cycle time is reduced the

throughput is maximized. In addition, in a Petri net model of a manufacturing system, tokens in the net represent

resources allocated to it such as machines, transportation devices, buffer slots, etc. Thus a bound on the weighted

sum of tokens in the net describes a limited availability of resources or equivalently a limited budget to acquire

them.

The main contributions of the present paper can be summarized as follows:

1) The cycle time optimization problem of TWMGs is originally presented.

2) Periodicity of transformation of TWMGs into TMGs is proposed and the initial marking of a TWMG is

partitioned into several subsets with regard to the periodicity.
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3) Transformation of the cycle time optimization problem of TWMGs into the cycle time optimization problem

of TMGs is developed.

4) An ILPP combined with the results reported in [5] is presented to deal with the cycle time optimization

problem of TMGs.

This paper presents some original technical results and examples of their applications. However, formal proofs

of the results are omitted for lack of space and to make the paper more accessible.

This paper is structured as follows. In the following section, we briefly recall some basic concepts and the main

properties. In Section III, we present the problem statement. In Section IV, we propose an analytical method for

the cycle time optimization problem based on the work in [5]. In Section V, numerical examples are shown to

illustrate the algorithm. Conclusions and future work are finally drawn in Section VI.

II. BACKGROUND

A. Generalities

We assume that the reader is familiar with the structure, firing rules, and basic properties of PNs (see [9], [10],

and [1]). In this section, we will recall the formalism used in the paper. A place/transition net (P/T net) is a

structure N = (P, T,Pre,Post), where P is a set of n places; T is a set of m transitions; Pre : P × T → N

and Post : P × T → N are the pre- and post-incidence functions that specify the arcs; C = Post− Pre is the

incidence matrix, where N is a set of non-negative integers.

A vector x = (x1, x2, . . . , xm)T ∈ N|T | such that x ̸= 0 and C · x = 0 is a T-semiflow. A vector y =

(y1, y2, . . . , yn)
T ∈ N|P | such that y ̸= 0 and yT · C = 0 is a P-semiflow. The supports of a T-semiflow and a

P-semiflow are defined by ∥x∥={ti ∈ T |xi > 0} and ∥y∥={pi ∈ P |yi > 0}, respectively. A minimal T-semiflow

(P-semiflow) is a T-semiflow ∥x∥ (P-semiflow ∥y∥) that is not a superset of the support of any other T-semiflow

(P-semiflow), and its components are mutually prime.

A marking is a vector M : P → N that assigns to each place of a P/T net a non-negative integer of tokens,

represented by black dots; we denote the marking of place p as M(p). A P/T system or net system ⟨N,M0⟩ is

a net N with an initial marking M0. A transition t is enabled at M if M ≥ Pre(·, t) and an enabled transition

t may fire yielding a marking M ′ with

M ′ = M +C(·, t), (1)

where Pre(·, t) (resp. C(·, t)) denotes the column of the matrix Pre (resp. C) associated with transition t.

A P/T net is said to be ordinary when all of its arc weights are 1′s. A marked graph (also called an event

graph) is an ordinary Petri net such that it satisfies the condition |•p| = |p•| = 1. A weighted marked graph (also

called a weighted event graph) is a net that also satisfies this condition but may not be ordinary, i.e., the weight

associated with each arc is a non-negative integer number.

A net is strongly connected if there exists a directed path from any node in P ∪ T to every other node. Let us

define an elementary circuit γ (or elementary cycle) of a net as a directed path that goes from one node back to
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the same node without passing twice on the same node. In a strongly connected net, it is easy to show that each

node belongs to an elementary circuit, and thus the name cyclic nets are also used to denote this class.

A deterministic timed P/T net is a pair Nδ = (N, δ), where N = (P, T,Pre,Post) is a standard P/T net, and

δ : T → N, called firing delay, assigns a non-negative integer fixed firing duration to each transitions. A transition

with a firing delay equal to 0 is said to be immediate. We consider a single server semantics, i.e., we assume that

each transition can fire only once at each time even its enabling degree is greater than one.

Definition 1: (Campos et al. [2]) Every elementary circuit γ of a WMG is neutral, if the following condition

holds. ∏
p∈γ

Pre(p, p•)

Post(p, •p)
= 1 �

In other words, in a neutral circuit the product of the weights of all pre-arcs is equal to that of all post-arcs. This

means that if the circuit initially contains enough tokens, it is possible to fire all transitions along the path returning

to the same initial marking. It is well known that a WMG whose circuits are all neutral has a unique T-semiflow

x and it contains all transitions in its support [1].

In this paper, we limit our study to strongly connected WMGs in which all circuits are neutral.

Proposition 1: (Benabid-Najjar et al. [11]) A strongly connected WMG in which all circuits are neutral is

bounded, i.e., there exists an integer B such that the marking of any place p is not greater than B at any reachable

marking. �
Given a place pi of a WMG, let tin(pi) (resp., tout(pi)) be its unique input (resp., output) transition as shown in

Fig. 1. We denote w(pi) = Post(pi, t) the weight of its input arc and v(pi) = Pre(pi, t) the weight of its output

arc. Let gcdpi represent the greatest common divisor of the integers w(pi) and v(pi).

i
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t
( )
i

w p ( )
i
p

( )io u t p
t

Fig. 1. A place pi between two transitions tin(pi)
and tout(pi).

B. Cycle time of a TWMG

The average cycle time χ(M0) of a TWMG system ⟨N,M0⟩ is the average time to fire once the T-semiflow

under the earliest operational model (i.e., transitions are fired as soon as possible). Considering a net consisting

only of one circuit, we define χγ(M0) as the average cycle time of circuit γ.

Let Γ represent the set of elementary circuits of a cyclic TWMG. It is well known that for a TMG the cycle

time of the net is equal to the maximal cycle time over all circuits, i.e., χ(M0) = maxγ∈Γ χγ(M0). This result

does not apply to a TWMG [7], but it holds that the average cycle time of each circuit is smaller than or equal to

the one of the nets, i.e., χ(M0) ≥ maxγ∈Γ χγ(M0).
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The average cycle time of a TMG can be obtained by means of following LPP:

max {yT · Pre · δ|yT ·C = 0,yT ·M0 = 1,y ≥ 0} (2)

where δ ∈ Nm is the vector containing all firing delays of timed transitions (recall that m = |T |).

It is difficult to compute the average cycle time of a TWMG. From [2] a lower bound for the average cycle time

of a live and bounded TWMG system can be computed by solving an LPP. Chao et al. [12] proposed a method to

compute the cycle time of a TWMG but under restrictive conditions at initial marking.

C. Transformation of WMGs

One way to analytically compute the average cycle time of a TWMG is to convert it into an equivalent TMG.

In fact, Munier [3] showed that a TWMG system ⟨N,M⟩ can be transformed into an equivalent TMG system

⟨N̂ ,M̂⟩ which describes the same precedence constraints on the firing of transitions. This implies that the average

cycle time1 of the two systems are identical, i.e., χ(M) = χ̂(M̂).

This equivalent TMG system depends on the initial marking M and the minimal T-semiflow x of the TWMG.

Since it is necessary for us to use this transformation method, we present it in Algorithm 1.

Algorithm 1: Transformation from a TWMG to a TMG

Input: A TWMG system ⟨N,M⟩.

Output: An equivalent TMG system ⟨N̂ ,M̂⟩ such that χ(M) = χ̂(M̂).

1: Compute the minimal T-semiflow x = (x1, x2, . . . , xm)T of net N

2: (Transformation of transitions). Replace each transition ti ∈ T by xi transitions, t1i , t2i , . . ., txi
i , with the same

firing delay of ti. These transitions are connected by an elementary circuit with all weights equal to 1. Add

xi places q1i , q2i , . . ., qxi
i , where qai , ∀a = 1, . . . , xi − 1, is a place connecting transition tai to transition ta+1

i

and qxi
i is a place connecting transition txi

i to t1i . Only place qxi
i contains one token and the other places are

empty, i.e., M̂(qai ) = 0, ∀i = 1, . . . ,m, ∀a = 1, . . . , xi − 1,

M̂(qxi
i ) = 1, ∀i = 1, . . . ,m,

(3)

Thus there exist m mono-marked circuits that are called intra transition sequential systems. They do not depend

on the initial marking.

3: (Transformation of places: case 1). Replace each place pi ∈ P such that w(pi) > v(pi) by ni = xin(pi) places

psi , where for s = 1, . . . , ni: 
as · xout(pi) + bs =

⌊
M(pi)+w(pi)·(s−1)

v(pi)

⌋
+ 1,

bs ∈ {1, . . . , xout(pi)},

as ∈ N,

(4)

1In the following, we will denote by χ(M) the average cycle time of a TWMG system ⟨N,M⟩ and by χ̂(M̂) the average cycle of the

equivalent TMG system ⟨N̂,M̂⟩.
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Place psi connects transition tsin(pi)
to transition tbsout(pi)

and contains as tokens, i.e.,

M̂(psi ) = as. (5)

4: (Transformation of places: case 2). Replace each place pi ∈ P such that w(pi) ≤ v(pi) by ni = xout(pi) places

psi , where for s = 1, . . . , ni: 
cs · xin(pi) + ds =

⌈
s·v(pi)−M(pi)

w(pi)

⌉
,

ds ∈ {1, . . . , xin(pi)},

cs ∈ Z≤0,

(6)

Place psi connects transition tds

in(pi)
to transition tsout(pi)

and contains −cs tokens, i.e.,

M̂(psi ) = −cs. (7)

Note that Eqs. (4) and (6) admit only one solution (as, bs and cs, ds) for each value of s.

The structure of the equivalent TMG (i.e., the arcs connecting places and transitions) depends on the initial

marking M of the TWMG. However, this dependence is periodic as shown in the following proposition.

Proposition 2: Consider a TWMG N with minimal T-semiflow x = (x1, x2, . . . , xm)T and two possible initial

markings M1 and M2. Let ⟨N̂1,M̂1⟩ (resp., ⟨N̂2,M̂2⟩) be the equivalent TMG obtained by Algorithm 1 with input

⟨N,M1⟩ (resp., ⟨N,M2⟩).

If for a place pi ∈ P

M2(pi) = M1(pi) + ξ · v(pi) · xout(pi) with ξ ∈ N,

then the structure corresponding to pi in N̂1 and N̂2 is the same and the markings of the transformed places psi

corresponding to pi in Eqs. (5) and (7) satisfy

M̂2(p
s
i ) = M̂1(p

s
i ) + ξ. (8)

The previous result implies that the structure corresponding to place pi in the equivalent TMG is periodic wrt

M(pi) and the period ϕi is equal to v(pi) · xout(pi) (or w(pi) · xin(pi)).

The size of the equivalent TMG is O(|x|1)2. Theoretically |x|1 can grow exponentially independently with respect

to the net size. However, one finds that in practical examples, this is a quite reasonable number.

We give an example in Fig. 2 and display the equivalent TMG with an initial marking M = (0, 0, 4)T in Fig. 3.

There are totally four transitions and seven places. From Proposition 2, we can compute the period of each place

ϕ1 = 2, ϕ2 = 2 and ϕ3 = 4. For the marking M ′ = (2ξ1, 2ξ2, 4ξ3)
T , one can easily check that the structure of

equivalent TMG is identical with Fig. 3 while the marking of each equivalent places are M̂ ′(p11) = ξ1, M̂ ′(p12) = ξ2

and M̂ ′(p13) = ξ3.

2|x|1 denotes the 1-norm of T-semiflow x.
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Fig. 2. TWMG of Example 1.
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Fig. 3. TMG equivalent to the TWMG in Fig. 2 for initial marking M0 = (0, 0, 4)T .

III. PROBLEM STATEMENT

In this paper, the cycle time optimization problem of a TWMG is considered. We aim to find an initial marking

M at which the weighted sum of tokens in places is less than or equal to a given value. Among all feasible

solutions, we look for those that minimize the average cycle time, i.e., maximize the throughput.

In other words we look for an initial marking M that provides the optimal solution of the following problem:min χ(M)

s.t. yT ·M ≤ f

(9)

where

• χ(M) is the average cycle time of the TWMG with initial marking M .

• yT = (y1, . . . , yn) is a P-semiflow. In general, we choose the P-semiflow equal to the sum of all minimal P-

semiflows.

• f is a given positive real number, representing the maximal available resources that can be used.

We choose y as a P-semiflow since the value of yT · M for every reachable marking M ′ ∈ R(N,M) is

an invariant. In terms of manufacturing systems, this value corresponds to the cost of the resources that remains

constant as the production process proceeds.

Proposition 3: (Teruel et al. [1]) A TWMG is live iff each elementary circuit is live. �
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Teruel et al. [1] proposed a sufficient condition for the liveness of a weighted circuit. They defined a marking

MD = (v(p1)− 1, v(p2)− 1, . . . , v(pn)− 1)T and a weighted function W (M) = yT ·M of marking M .

Proposition 4: ([1]) If W (M) > W (MD), then the weighted circuit is live. �
Proposition 5: Problem (9) has a finite solution if f ≥ f∗, where

f∗ = min yT ·M

s.t. yT
γ ·M > W (Mγ

D), ∀γ ∈ Γ �

Sauer [6] proved that the lower bound of the cycle time is

χ′ = max{xi · δi, ti ∈ T} (10)

where x is the minimal T-semiflow.

IV. CYCLE TIME OPTIMIZATION FOR TWMG: A MIXED ILPP SOLUTION

A. General idea

Giua et. al. [5] showed that for a TMG the solution3 of problem (9) can be computed by solving the following

ILPP: 
max β

s.t. C ·α− Pre · δ · β +M ≥ 0

A ·M ≤ b

(11)

with variables M ∈ Nn, β ∈ R+ and α ∈ Rm. A ∈ Zs×n and b ∈ Zs being known. It provides the optimal

solution M and the corresponding maximal throughput β (i.e., the inverse of cycle time 1/χ(M)), and α has no

physical meaning.

For TWMGs one way to find the optimal solution of the optimization problem (9) is to enumerate all possible

equivalent TMGs and adopt ILPP (11) for each of them to find a marking which has the maximal throughput.

However, there are two main problems.

• The number of TMG structures equivalent to a TWMG may be very large. This issue is addressed in Section

IV-B.

• We have to add in Eq. (11) a series of constraints to make sure the marking M̂ that we find for a given net

structure N̂ is consistent with the marking M . We discuss this issue in Section IV-C.

3The ILPP in Eq. (11) provides a solution under the assumption of infinite server semantics, but of course it can also be used under single

server semantics (the assumption we consider in this paper).
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B. Reduction of equivalent TMG structures

According to Proposition 2, for each place pi ∈ P of a TWMG system ⟨N,M⟩, the structure corresponding to

place pi in the equivalent TMG is periodic with respect to M(pi) and the period is ϕi. Thus, we should compute

the equivalent structures for initial marking M(pi) = 0, 1, . . . , ϕi − 1.

We note that the set of possible markings of place pi can be partitioned into ϕi subsets such that

N =

ϕi−1∪
ki=0

Mki
pi
, where Mki

pi
= {ki + ξ · ϕi|ξ ∈ N} (12)

and all makings of pi in the same partition Mki
pi

correspond to the same equivalent structure.

For each place pi ∈ P , we define Ni = {0, . . . , ϕi−1}. Then the set of markings of a TWMG can be partitioned

into several subsets

Nn =
∪

(k1,...,kn)∈N1×···×Nn

Mk1
p1

×Mk2
p2

× . . .×Mkn
pn
. (13)

For each vector k = (k1, . . . , kn) ∈ N1 × · · · × Nn corresponding to partition Mk1
p1

×Mk2
p2

× . . . ×Mkn
pn

, the

equivalent TMGs for all markings in this partition are the same. The total number of such structures (i.e., partitions)

is

Φ =
∏
pi∈P

ϕi. (14)

Note that the number of equivalent structures given by Eq. (14) is very large. We look for more efficient solutions

that only require to consider a subset of these structures (i.e., partitions). To reach this goal, the following result is

useful.

Lemma 1: (Marchetti and Munier [13]) For a WMG, the initial marking M(pi) of any place pi can be replaced

by M⋆(pi) =
⌊
M(pi)
gcdpi

⌋
· gcdpi

tokens without any influence on the precedence constraints induced by pi. �
From Lemma 1, when looking for an optimal solution of Eq. (9), we may restrict our analysis to the markings

that belong to a restricted number of partitions where the token content of each place pi is a multiple of gcdpi .

Hence the number of meaningful subsets in Eq. (12) can be reduced as follows:
ϕi

gcdpi
−1∪

ki=0

M̄ki
pi

⊆ N,

M̄ki
pi

= {ki · gcdpi + ξ · ϕi|ξ ∈ N}.

(15)

We define N̄i = {0, . . . , ϕi

gcdpi
− 1} and the set of markings of a TWMG in Eq. (13) can be redefined as

Mopt =
∪

(k1,...,kn)∈N ′
1×···×N ′

n

M̄k1
p1

× M̄k2
p2

× . . .× M̄kn
pn

⊆ Nn (16)

where the number of partitions is reduced to

Φ̄ =
∏
pi∈P

ϕi

gcdpi

. (17)
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In the following, for the sake of simplicity, we rename the partitions defined in Eq. (16) and write

Mopt =

Φ̄∪
j=1

Mj . (18)

Let us see the example in Fig. 2. We have gcdp1 = 1, gcdp2 = 1, gcdp3 = 4, ϕ1 = 2, ϕ2 = 2, and ϕ3 = 4. The

number of partitions is Φ = 16, while the number of meaningful partitions is Φ̄ = 4 which is reduced significantly.

C. The mixed ILPP solution for TWMGs

We now show how it is possible to solve the optimization problem (9) assuming that the unknown initial marking

M of the TWMG belongs to a generic partition

Mj = M̄k1
p1

× M̄k2
p2

× . . .× M̄kn
pn
. (19)

In this case, due to the special equivalent structure of a marking M ∈ Mj in Eq. (15), problem (9) can be rewritten

as 

min χ(M)

s.t. yT ·M ≤ f,

M(pi) = ki · gcdpi + ξ(pi) · ϕi, ∀pi ∈ P,

ξ(pi) ∈ N,

(20)

For each place pi with an initial marking

M(pi) = ki · gcdpi , ki = 0, . . . ,
ϕi

gcdpi

− 1, (21)

we compute

• The equivalent structure of place pi, i.e., places p1i , . . . , p
ni
i .

• The initial markings correspond to Eq. (21), i.e., M̂(p1i ) = µki(p
1
i ), . . . , M̂(pni

i ) = µki(p
ni
i ).

Thus for each partition Mj given in Eq. (19), we can compute the equivalent net structure N̂j , incidence matrix

Ĉj and pre-incidence ˆPrej .

Proposition 6: For each partition Mj in Eq. (19), we consider the following ILPP

max βj

s.t. Ĉj · α̂j − ˆPrej · δ̂j · βj + M̂j ≥ 0, (a)

yT ·Mj ≤ f, (b)

Mj(pi) = ki · gcdpi + ξj(pi) · ϕi, ∀pi ∈ P, (c)

M̂j(p
s
i ) = µki(p

s
i ) + ξj(pi), s = 1, . . . , ni, (d)

M̂j(q
a
i ) = 0, ∀i = 1, . . . ,m, ∀a = 1, . . . , xi − 1, (e)

M̂j(q
xi
i ) = 1, ∀i = 1, . . . ,m, (f)

ξj(pi) ∈ N, (g)

(22)
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and let (β∗
j ,M

∗
j ,M̂

∗
j , α̂

∗
j , ξ

∗
j ) be the optimal solution. Thus M∗

j is also the optimal solution of problem (9) restricted

to partition Mj . �
It is obvious that if we compute Eq. (22) for all Φ̄ partitions, we can find the maximal throughput β̃ = max

j=1,...,Φ̄
β∗
j

and the corresponding marking M̃ . The optimal solution of problem (9) are M = M̃ and χ(M) = 1/β̃.

As we can see Example 1 in Fig. 2, the markings of the TWMG can be partitioned into four subsets: M1 =

(2ξ1(p1), 2ξ1(p2), 4ξ1(p3))
T , M2 = (1+2ξ2(p1), 2ξ2(p2), 4ξ2(p3))

T , M3 = (2ξ3(p1), 1+2ξ3(p2), 4ξ3(p3))
T , and

M4 = (1 + 2ξ4(p1), 1 + 2ξ4(p2), 4ξ4(p3))
T .

For TMG system ⟨N̂1,M̂1⟩ equivalent to TWMG system ⟨N,M1⟩, we adopt Eq. (22) and obtain the following

equation 

max β1

s.t. Ĉ1 · α̂1 − ˆPre1 · δ̂1 · β1 + M̂1 ≥ 0,

yT ·M1 ≤ f,

M1 = (2ξ1(p1), 2ξ1(p2), 4ξ1(p3))
T ,

M̂1(p
1
1) = ξ1(p1), M̂1(p

1
2) = ξ1(p2), M̂1(p

1
3) = ξ1(p3),

M̂1(q
1
1) = 1, M̂1(q

1
2) = 0, M̂1(q

2
2) = 1, M̂1(q

2
2) = 1.

(23)

Proposition 7: Any marking M that produces a cycle time χ(M) = χ′ as defined in Eq. (10) and satisfies

yT ·M ≤ f is an optimal solution. �
From theoretical point of view, we should compute the markings for all Φ̄ partitions. However, in practical

if we find a marking M whose average cycle time converges to the lower bound, there is no need to do more

computations. According to Proposition 7, we can conclude that marking M is one of the optimal solutions.

V. NUMERICAL RESULTS

We consider the first example in Fig. 2. Let f=6 be the available resources and all the optimal solutions for each

equivalent TMG system ⟨N̂j ,M̂j⟩ (j = 1, . . . , 4) are computed by Eq. (22), i.e.,

M1 = (2, 0, 0)T , χ(M1) = 11

M2 = (3, 0, 0)T , χ(M2) = 9

M3 = (2, 1, 0)T , χ(M3) = 9

M4 = (1, 1, 0)T , χ(M4) = 11

(24)

Then the optimal solution is M = (3, 0, 0)T or M = (2, 1, 0)T and the minimal average cycle time of the TWMG

system is χ(M) = 9.

Let us consider another example in Fig. 4. The minimal T-semiflows is x = (1, 3, 1, 1)T , while the minimal

P-semiflows are y1 = (1, 0, 6, 1, 0)T and y2 = (0, 2, 2, 0, 1)T . Therefore, we choose the P-semiflow y = y1 +

y2 = (1, 2, 8, 1, 1)T . We have ϕ1 = 6, ϕ2 = 1, ϕ3 = 1, ϕ4 = 6, ϕ5 = 2, gcdp1 = 2, gcdp2 = 1, gcdp3 = 1,

gcdp4 = 2, and gcdp5 = 2. The markings of the TWMG are partitioned into Φ̄ = 9 subsets.
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Fig. 4. TWMG of Example 2.
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Fig. 5. Equivalent TMG for initial marking M = (6, 1, 1, 0, 0)T .

The equivalent TMG for M = (6, 1, 1, 0, 0)T is depicted in Fig. 5. We can observe from Table I that the cycle

time χ(M) is equal to the lower bound.

TABLE I

THE SOLUTION OF EXAMPLE 1.

M β χ(M) χ′ yT ·M f

(6, 1, 1, 0, 0) 0.083 12 12 16 20

VI. CONCLUSION

This paper deals with the cycle time optimization problem of deterministic TWMGs. The problem consists in

finding an initial marking to minimize the average cycle time while the weighted sum of tokens in places is less

than or equal to a given value. We transform a TWMG into several equivalent TMGs and adopt a mixed ILPP

solution from the study in [5] to compute a proper initial marking. The conversion of the obtained marking for the

equivalent TMG to a marking associated with the TWMG is presented. We show that the proposed method can

always find an optimal solution.

Future work will pertain to the cycle time optimization problem of TWMGs under infinite server semantics which

is a more general case.

12



REFERENCES

[1] E. Teruel, P. Chrzastowski-Wachtel, J.M. Colom and M. Silva. On Weighted T-Systems. Application and Theory of Petri Nets, LNCS, 616:

348–367, 1992.

[2] J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds of Petri nets with unique consistent firing count vector. IEEE

Trans. on Software Engineering, 17(2): 117–125, 1991.

[3] A. Munier. Régime asymptotique optimal d’un graphe d’événements temporisé généralisé : Application à un problème d’assemblage. APII,
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