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1. INTRODUCTION

In this paper we deal with the problem of distributing evenly a set of indivisible tasks over a network of agents who
have to process them. To keep the presentation general, we consider tasks with different costs and agents with different
execution speeds. This problem, which is denoted as discrete consensus in Franceschelli et al. (2010), is a generalization
of the quantized consensus problem proposed in Kashyap et al. (2007) where, instead, all tasks (or tokens) have equal
weight (or cost) and task execution speed is not considered. Moreover, we say that the assignment is performed on
heterogeneous networks to emphasize the fact that each agent has its own execution speed. Agents are assumed to be
interconnected by bidirectional communication network. Our goal is that of minimizing the execution time of the set
of tasks by the networked system. The assignment is performed according to a novel distributed algorithm based on
gossip-like asynchronous local state updates between the nodes. As a result of the proposed local interaction mechanism,
the achievement of an optimal task assignment is not guaranteed. However, we are able to prove almost sure convergence
in finite time to a bounded set containing optimal solutions. We guarantee that the worst case difference between the
optimal value of the execution time and the performance of the proposed algorithm is bounded by a constant which
does not depend on the network size.

The quantized consensus algorithm in Kashyap et al. (2007) and the discrete consensus algorithm proposed in
Franceschelli et al. (2010) are based on a local balancing rule to redistribute tasks or tokens among selected pairs
of nodes and a so called ”swap” rule which updates the state of the nodes by simply swapping their set of tasks or
tokens. The swap rule is necessary to avoid blocking configurations. It “shakes” the network state to redistribute the
load and allows loads composed by discrete tasks to travel in the network, reaching a situation in which a new balancing
may occur. The study of the convergence time of this process depends upon the meeting time of two random walkers
in a graph and has received a significant attention by Zhu and Mart́ınez (2011); Etesami and Başar (2013); Başar et al.
(2014) among others.

When considering heterogeneous execution speed, methods developed for the homogeneous case may fail to converge
to the desired convergence set. The approach in Franceschelli et al. (2010), which considers heterogeneous execution
speeds, suffers the limitation that each pair of swap domains, namely connected subgraphs induced by nodes with the
same speed, should be connected.

The main contribution of this paper is a novel distributed algorithm which allows to remove the limitation of Franceschelli
et al. (2010) and considers arbitrary topologies modeled by connected undirected graphs with nodes of arbitrary speed.
Furthermore, we characterize the convergence properties of the algorithm in terms of almost sure convergence to a
set of task assignments which well approximate the optimal solution. We prove an absolute performance guarantee by
showing that in the worst case scenario the execution time obtained by the proposed algorithm does not differ from
the optimal one by more than a constant which does not depend on network size. Thus, the proposed approach is well
suited to address the task assignment problem in large networks.

Finally, we propose numerical simulations to characterize the expected convergence time of the proposed algorithm in
line graphs and random graphs and compare it with the performance of the algorithm in Franceschelli et al. (2010). We
conclude the Introduction with a brief overview of the state of the art in this area.

Literature review: One of the first major contributions to the problem of quantized consensus which inspired several
works in the following years, was proposed Kashyap et al. (2007). It consists in a gossip-based algorithm to steer a
set of quantized state variables towards a common value. Gossip-based algorithms have been inspired by Boyd et al.
(2006), among others, which considered a randomized averaging scheme to solve the distributed average problem in
sensor networks. The issue of providing a characterization of the convergence time of quantized consensus algorithms is
investigated in depth in Zhu and Mart́ınez (2011), Lavaei and Murray (2012) and more recently in Etesami and Başar
(2013).

A series of contributions in the framework of discrete consensus have been recently proposed. Apart from Franceschelli
et al. (2010) that has already been recalled in the first part of this section, we want to mention Fanti et al. (2012)
where a discrete consensus algorithm in networks affected by execution feasibility constraints has been considered. In
Fanti et al. (2013) tasks of different cost and type with capacity and feasibility constraints are considered. Furthermore,
authors impose a constraint on the maximum number of tasks executable by individual nodes. Almost sure convergence
to a feasible and time-invariant configuration is proved. However, only preliminary results on the converge time are
proposed. In Gravelle and Martinez (2014) a modification of the quantized consensus algorithm is proposed to solve a
load balancing problem with tasks of identical size and nodes with limited capacity.

In Franceschelli et al. (2011) a discrete consensus algorithm with improved convergence time with respect to quantized
consensus algorithms is proposed for Hamiltonian graphs. In Franceschelli et al. (2015) the expected convergence time
of discrete and quantized consensus has been improved on arbitrary graphs to O(n)d(G), where n is the number of
nodes and d(G) is the diameter of graph G representing the network topology.

In Franceschelli et al. (2013) the distributed task assignment problem in a network of heterogeneous mobile robots with
heterogeneous tasks is investigated. The authors exploit gossip based local optimizations to both assign tasks located in
a plane and compute optimized routes for robots. Finally, in Chopra and Egerstedt (2014) heterogeneity in multi-robot



systems is investigated as the ability of robots with heterogeneous skill sets to serve spatially and temporally distributed
tasks.

2. PROBLEM STATEMENT

Consider a network of n nodes whose pattern of interconnections can be described by an undirected connected graph
G = (V, E), where V = {1, . . . , n} is the set of nodes and E ⊆ {V × V} is the set of edges. We consider K indivisible
tasks to be assigned to the nodes with execution cost cj ∈ N+, j = 1, . . . ,K associated with each task. We define the
maximal cost cmax = maxj=1,...,K cj , and the average load cave = 1

n

∑
j=1,...,K cj . The tasks assigned to each node can

be specified by n binary vectors yi ∈ {0, 1}K such that yi,j = 1 if the j-th task is assigned to node i, yi,j = 0 otherwise.
The load assigned to node i is cT yi, i.e., it represents the total cost of tasks assigned to it (here c ∈ NK is a vector whose
j-th component is equal to cj). The current task assignment of the network is thus Y = [y1 y2 . . . yn] ∈ {0, 1}K×n. With
each node is associated an execution speed γi and we define the minimal speed γmin = mini=1,...,n γi and the average

speed γave =
1
n

∑
i=1,...,n γi. The execution time of node i is therefore xi =

cT yi

γi
. We define the network execution time

as

F (Y ) = max
i∈V

cT yi
γi

, (1)

i.e., it corresponds to the maximum execution time among all nodes.

Our objective is to minimize the execution time of the network. An optimal assignment Y ∗ can be found as the solution
of the following integer programming problem with binary variables

min F (Y ) = max
i∈V

cT yi
γi

s.t. Y 1n = 1n

yi,j ∈ {0, 1} ∀i ∈ V, j = 1, . . . ,K.

(2)

We denote by 1n a vector of ones with n elements. The constraints Y 1n = 1n imposes that tasks are indivisible and
can be assigned only to one node. For large number of nodes and tasks, the computational complexity of the integer
programming problem (2) can be extremely high. In particular, (2) is a formulation of the makespan minimization
problem on identical parallel machines. The complexity of finding an exact solution to this problem is known to be NP-
hard, see Garey and Johnson (1979) for reference. Furthermore, it requires a centralized coordinator with full knowledge
of the network state and ability to communicate with all the nodes.

In this manuscript, we aim to develop a distributed algorithm which by exploiting only local and asynchronous
interactions between the nodes is able to achieve a task assignment with a guaranteed distance from the optimum.
In particular we consider a target set

Y =

{
Y | F (Y ) ≤ F (Y ∗) +

cmax

γmin

}
. (3)

A solution Y ∈ Y provides an absolute performance guarantee with bounded error which does not depend on the size
of the network, i.e., on the number of nodes. We point out that in the case tasks have unitary cost and nodes have
unitary speed the set in eq. (3) contains the same set of task assignments that correspond to the quantized consensus
state in Kashyap et al. (2007).

3. PROPOSED ALGORITHM

The triple (ĉave,i(t), γ̂ave,i(t),Ki(t)) represents the state of node i at time t, where:

• ĉave,i(t) denotes the current estimate at node i of the average load cave in the network;
• γ̂ave,i(t) denotes the current estimate at node i of the average speed γave in the network;
• Ki(t) = {j | yi,j = 1} denotes the set of indices of tasks currently assigned to node i.

The first two components of the state are called local estimation variables while the last one is the task assignment.

We consider a gossip model of communication between agents, driven by a random edge selection process, described
in Algorithm 1 (Heterogeneous Discrete Consensus). At each iteration an arbitrary edge (i, j) is selected, and nodes i
and j communicate to update their state. First, the two nodes execute an averaging of the local estimation variables.
In addition they execute the Balancing Rule described in Algorithm 2 to update their task assignment. We make the
following common assumption concerning the network and the edge selection process.

Assumption 3.1. The underlying undirected graph is connected and at each iteration all arcs have a non-null lower
bounded probability of being selected. ⋄

Note that in the following when it is not necessary we will omit the argument t: the current state will be denoted by
(ĉave,i, γ̂ave,i,Ki), while the updated state at each iteration will be denoted by (ĉ+ave,i, γ̂

+
ave,i,K

+
i ).



To simplify the presentation of our algorithms, we also denote the execution time of a node i with task assignment Ki

as: xi(Ki) =
1
γi

∑
r∈Ki

cr.

Algorithm 1: Heterogeneous Discrete Consensus (HDC)

Input : Sets Ki(0), for i ∈ V (initial assignment of tasks to nodes).
Output: Sets Ki,∞, for i ∈ V (final assignment of tasks to nodes).
1 - Initialize: For i ∈ V, let

γ̂ave,i(0) = γi and ĉave,i(0) =
∑

r∈Ki(0)

cr.

2 - while NOT stop criterion do
3 - A random edge (i, j) is selected according to a given stochastic selection process.
4 - Update the local estimation variables according to

ĉ+ave,i =
1
2 (ĉave,i + ĉave,j)

ĉ+ave,j =
1
2 (ĉave,i + ĉave,j)

γ̂+
ave,i =

1
2 (γ̂ave,i + γ̂ave,j)

γ̂+
ave,j =

1
2 (γ̂ave,i + γ̂ave,j)

(4)

and let x̂ave,i = ĉ+ave,i/γ̂
+
ave,i.

5 - Update the task assignment of nodes i and j according to

(K+
i ,K

+
j ) = Balancing rule(Ki,Kj , γi, γj , x̂ave,i)

as described in Algorithm 2.

We now discuss separately the two types of updates executed by Algorithm 1. The stopping condition will be discussed
later.

Update of the local estimation variables. These variables are initialized, respectively, with the node initial load and with
the node speed. The evolution of these two variables, that does not depend on the current task assignments, follows the
well known gossip averaging algorithm whose properties have been investigated in Boyd et al. (2006). The computed
value x̂ave,i = ĉave,i/γ̂ave,i is the estimate of the average execution time assuming it may be possible to assign to
each node a fraction of total load in the network proportional to its speed (but this may not be possible due the task
discretization).

Update of the task assignments. The task assignments of communicating nodes are updated as described in Algorithm 2.
Initially (step 2) a simple heuristic is used to average the load of two nodes incident on the selected edge. This heuristic
is a modification of the very well known algorithm for the 2-machine N job problem by Johnson (1954) and is completed
in a number of steps proportional to the number of tasks contained in node i and j. Variations of this greedy and widely
known heuristics have been investigated in the context of load distribution between two parallel machines and is a
polynomial time approximation of the 2-partitioning problem (Babel et al. (1998)). This rule computes two updated
assignments K+

i , K
+
j . If the new assignments do not yield a smaller local execution time we revert to the original

assignments (step 3). However, in such a case we also check if the maximum local execution time exceeds the estimated
average time by a quantity greater than cmax/γmin + ε/2 (step 4): if this is true we move one random task from one
node to the other one to shake the network configuration and avoid being stuck in local minima. Here ε is a designer
parameter that will discussed in the following section. Note also that we assume the exact value of cmax and γmin to be
known to all nodes: if these parameters are not available, it is possible to estimate them with max-consensus algorithms
such as those developed by He et al. (2014).

Stopping condition.

The stopping criterion of the proposed algorithm is straightforward: when all nodes have an accurate estimation x̂ave,i

and a local execution time below the estimated threshold x̂ave,i +
cmax

γmin
+ ε

2 , then task exchanges do not occur anymore.

In this preliminary paper we do not discuss how to stop the edge selection process once a satisfactory task assignment
has been achieved, we aim to address this problem in future work. We point out that the current literature on quantized
consensus algorithms does not consider a stop criterion.

4. CONVERGENCE PROPERTIES

To study the convergence properties of the proposed algorithm, we first provide a lower bound to the optimal value
F (Y ∗) of the execution time.

Proposition 4.1. A lower bound on the optimal value of the objective function of Problem (2) is:
cave
γave

≤ F (Y ∗). (5)



Algorithm 2: Balancing rule

Input : Ki, Kj , γi, γj , x̂ave,i (current node task assignments, node speeds and estimated average execution time)
Output: K+

i , K
+
j (updated node task assignments)

1 - Initialize: Let K = Ki ∪ Kj , let K+
i := ∅ and K+

j := ∅.
2 - while K ≠ ∅ do

let δ := argmaxj∈Kcj ;

if xi(K+
i ) + cδ/γi ≤ xj(K+

j ) + cδ/γj then

let K+
i := K+

i ∪ {δ}, K+
j := K+

j ;

else
let K+

i := K+
i , K+

j := K+
j ∪ {δ}.

(assign task δ so as to minimally increase the maximal execution time of the two nodes) K := K \ {δ}.
3 - if max(xi(K+

i ), xj(K+
j )) ≥ max(xi(Ki), xj(Kj)) then

K+
i := Ki, K+

j := Kj ;

(the heuristic did not find a more balanced assignment and we revert to original one)

4 - if max(xi(Ki), xj(Kj)) > x̂ave,i +
cmax

γmin
+

ε

2
then

Choose at random a task δ ∈ Ki ∪ Kj .
if δ ∈ Ki then

K+
i = Ki \ {δ}, K+

j = Kj ∪ {δ}
else

K+
i = Ki ∪ {δ}, K+

j = Kj \ {δ}
(move one random task from one node to the other one)

return Sets K+
i and K+

j .

Proof: Consider a relaxed optimization problem where tasks are infinitely divisible so that each node has
the same execution time. Then

∑
j∈Vi

cj = xoptγi for all i ∈ V . Therefore, summing up on all nodes it holds∑
i∈V

∑
j∈Vi

cj =
∑

i∈V xoptγi, thus xopt =

∑K

j=1
cj∑n

i=1
γi
. By multiplying and dividing by n we can write equivalently

xopt =
cave

γave
. �

Inspired by the previous result, we define a parameterized relaxed target set of task assignments:

Ȳε =

{
Y | F (Y ) ≤ cave

γave
+

cmax

γmin
+ ε

}
. (6)

It is obvious that Ȳε ⊆ Ȳε′ for ε ≤ ε′.

From Proposition 4.1 derives the following result.

Corollary 4.2. For ε = 0 the relaxed target set is contained in the target set (3), i.e., Ȳ0 ⊆ Y. ⋄

Given a task assignment Y we now introduce a new performance index J(Y ) = (F (Y ), nmax(Y )) consisting of two
terms. The first term F (Y ) is the network execution time, while the second one nmax(Y ) denotes the set of nodes that
have maximal execution time given Y . We impose a lexicographic ordering on the performance index, i.e., J(Y ′) < J(Y )
if either F (Y ′) < F (Y ) or F (Y ′) = F (Y ) and nmax(Y

′) < nmax(Y ).

Proposition 4.3. Given a task assignment Y ̸∈ Ȳε there exists a new assignment Y ′ with J(Y ′) < J(Y ) that is identical
to Y except for the transfer of one task from node i0 with maximal execution time to another node ik.

Proof: If Y ̸∈ Ȳε then maxi∈V xi >
cave

γave
+ cmax

γmin
+ ε. This implies that there exists at least one node j such that

xj <
cave

γave
. Therefore, if the number of nodes with execution time equal to xi is greater than one, we can move one task

from node i and put it in node j to lower this number by one. If only one node holds the maximum execution time xi

then moving a task from node i to node j lowers the maximum execution time, thus proving the statement. �

Note that in the previous proposition the new configuration Y ′ may not be reachable from Y in a single gossip iteration
because node i0 and ik need not be connected by an edge.

Let us first discuss the evolution of local estimation variables ĉave,i(t) and γ̂ave,i(t) initialized, respectively, with the
node initial load and with the node speed. Their evolution follows (as we have already mentioned) the gossip averaging
algorithm in Boyd et al. (2006). Under the stated Assumption 3.1 it has been proved that they asymptotically converge
to consensus on the average of the initial values, i.e., for i = 1, . . . , n:



limt→∞ ĉave,i(t) =
1
n

∑n
i=1 ĉave,i(0) =

1
n

∑K
j=1 cj = cave,

limt→∞ γ̂ave,i(t) =
1
n

∑n
i=1 γ̂ave,i(0) =

1
n

∑n
i=1 γi = γave.

Note that convergence also has the following monotonicity property: if for a given time t it holds maxi∈V |ĉave,i(t) −
cave| ≤ δ and maxi∈V |γ̂ave,i(t)−γave| ≤ δ, then for all t′ > t it holds maxi∈V |ĉave,i(t′)−cave| ≤ δ and maxi∈V |γ̂ave,i(t′)−
γave| ≤ δ. On the basis of these known results we can state the following monotonicity property for the variable
x̂ave,i = ĉave,i/γ̂ave,i.

Proposition 4.4. If at time t maxi∈V |ĉave,i(t)− cave| ≤ δ and maxi∈V |γ̂ave,i(t)− γave| ≤ δ, with 0 < δ < γave then

for all t′ > t maxi∈V

∣∣∣x̂ave,i(t
′)− cave

γave

∣∣∣ ≤ (γave+cave)δ
γave(γave−δ) .

Proof: It can be proved by noticing that∣∣∣x̂ave,i(t
′)− cave

γave

∣∣∣ ≤ cave+δ
γave−δ − cave

γave
. �

We can finally state the following results.

Proposition 4.5. Given a task assignment Y ̸∈ Ȳε under Algorithm 1 if in the remaining evolution |x̂ave,i −
cave/γave| ≤ ε/2 for all i ∈ V, it is always possible to reach an assignment Y ′ with J(Y ′) < J(Y ) in a finite number of
iterations α < 2d, where d is the network diameter.

Proof: We provide only a proof sketch due to space constraints. We note that if an improvement of the objective
function is possible, then it eventually occurs in a finite number of steps because nodes with loads exceeding the
considered threshold swap tasks randomly. This random swap allows some tasks to execute a random walk in the graph
and eventually find a node which allows a reduction in value of the objective function. �

Based on the previous proposition we characterize the following property of set Y .

Corollary 4.6. Given a task assignment Y ̸∈ Ȳε under Algorithm 1 if in the future evolution |x̂ave,i− cave/γave| ≤ ε/2
for all i ∈ V , it is always possible to reach an assignment Y ′ ∈ Ȳε in a finite number of iterations, i.e., the task assignment
set is Ȳε is always reachable. ⋄

Finally we prove that set Ȳ0 is invariant if the local estimate variables are sufficiently precise.

Proposition 4.7. Given a task assignment Y ∈ Ȳ0 assume that in the future evolution holds |x̂ave,i − cave/γave| ≤ ε/2
for all i ∈ V. If Y ′ is the new assignment determined by Algorithm 1 it holds Y ′ ∈ Ȳ0.

Proof: To prove the result, it is sufficient to prove that in the execution of the Balancing Rule step 4 is never
executed. In fact for any two nodes i and j it holds:

max(xi, xj) = F (Y ) ≤ cave

γave
+ cmax

γmin
≤ x̂ave,i +

cmax

γmin
+ ε

2

�

The next proposition shows that any improvement of the objective function F (Y ) is lower bounded.

Proposition 4.8. Given a task assignment Y ∈ Ȳ0 let Y ′ be a new assignment determined by Algorithm 1. If
F (Y ′) < F (Y ), then F (Y ′) ≤ F (Y ) − cmin

ϱ , where ϱ is the maximum least common multiplier (lcm) among the

pairs γi, γj for (i, j) ∈ E.

Proof: We omit the proof of this statement due to space constraints. �

We can finally characterize the convergence property of Algorithm 1 as follows.

Theorem 4.9. The task assignment Y updated iteratively through Algorithm 1 with 0 < ε < cmin

ϱ converges almost

surely in finite time to set Y defined in (3), i.e.,

Pr (∃τ : Y (τ ′) ∈ Y), ∀τ ′ ≥ τ) = 1.

Proof: We just provide a sketch of the proof based on the intermediate results previously collected. First, since
ε < cmin

ϱ , it is possible to show using Proposition 4.8 that Ȳε = Ȳ0.

Also we observe that given the convergence property of the local estimated variables, we can be sure that there exists

a finite time t such that for all t′ > t holds maxi∈V

∣∣∣x̂ave,i(t
′)− cave

γave

∣∣∣ ≤ ε
2 .

This means that after t, starting from any configuration Y set Ȳ0 = Ȳε is reachable in a finite number of iterations by
Corollary 4.6. Also this set is invariant by Proposition 4.7. Finally, from the fact that the target set Y is contained in
Ȳ0, the result follows. �

5. NUMERICAL SIMULATIONS

In this section we corroborate the theoretical characterization of the convergence properties of Algorithm 1 with
numerical simulations. First, we compare the proposed algorithm with the algorithm proposed in Franceschelli et al.
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Fig. 1. Comparison of the evolution of the network maximum execution time according to Algorithm 1 (thick black
line) and the Discrete Consensus Algorithm in Franceschelli et al. (2010) (blue line) in a line network of 30 nodes.
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Fig. 2. Evolution of the estimated lower bound on the optimal execution time F (Y ∗) computed as
ĉave,i

γ̂ave,i
by each node.

(2010). We considered a network represented by a line graph composed by 30 nodes, each with an execution speed
chosen uniformly at random in the interval [1, 3]. We considered a set of K = 180 tasks to be distributed among the
nodes, each with a cost chosen uniformly at random in the interval [1, 10].

We simulated the Discrete Consensus Algorithm (DCA) in Franceschelli et al. (2010) and the Heterogeneous Discrete
Consensus (HDC) algorithm proposed in this paper with the same set of random initial conditions and with the same
sequence of random edge selections. In these simulations we chose parameter ε = 10−3 < cmin

ϱ = 0.11.

In Figure 1 we show a direct comparison between the simulations of the evolution of the maximum execution time
during the execution of the DCA and HDC algorithm. It can be seen that the execution time of DCA is non-increasing
but since the network does not satisfy the condition of fully connected ”swap domains” (Franceschelli et al. (2010)) it
can not be guaranteed that the final task assignment is close to the optimal solution. On the contrary, in the chosen
example the worst case performance may differ from the optimal value of the execution time by a quantity proportional
to the number of nodes. The evolution of the HDC algorithm does not monotonically decrease because to overcome
blocking configurations of tasks some of them are moved at random. Once each node estimates sufficiently well the
lower bound to the optimal value of the objective function then after a sufficiently long time a task assignment in set
Y is reached and the local interactions stop. It can be seen that Algorithm 1 outperforms the algorithm proposed in
Franceschelli et al. (2010).

In Figure 2 we show the evolution of variables x̂ave,i, which evolve according to the gossip algorithm presented in Boyd
et al. (2006). It can be noticed that despite Algorithm 1 involves quantized and randomized dynamics, its simulated
convergence rate does not appear to be significantly different from the simple averaging gossip algorithm in Boyd et al.
(2006). Finally, to corroborate our theoretical results we propose a set of numerical simulations to evaluate the expected
convergence time of the proposed algorithm. In particular, in Figure 3 it is shown how the average convergence time of
10 simulations varies with respect to the number of nodes in a semi-logarithmic chart in line graphs (cotninuous line)
and random graphs (dashed line). To allow fair comparisons we kept the average number of tasks constant and thus
selected at each simulation a total number of tasks equal to K = 6n. It can be seen that the convergence time grows
polynomially with respect to the number of nodes. Random graphs are generated with a probability of edge existence

among pairs of nodes equal to p = log(n)
n . This probability of edge existence is chosen to generate graphs that with high

probability have similar diameter. Comparing the simulations in Figure 3 it can be seen that the convergence time in
random graphs is much smaller than in line graphs. A theoretical study of the convergence time will be carried out in
future work.

6. CONCLUSIONS

In this paper we proposed a novel algorithm, the Heterogeneous Discrete Consensus (HDC) algorithm, which optimizes
with guaranteed performance the execution time of a set of tasks by a network of nodes with heterogeneous execution
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Fig. 3. Expected convergence time for line graphs (continuous line) and random graphs (dashed line) with increasing
numbers of nodes.

speed exploiting only asynchronous and pairwise local state updates, i.e., gossip-based. The proposed algorithm extends
the state of the art in that it guarantees the achievement of an assignment whose objective function value differs from
the optimal one only by a constant function of the maximum task cost and minimum task execution speed. Therefore,
the proposed distributed algorithm scales well with network size and is suitable to solve task assignment problems
in large networks. We characterized the convergence properties of the algorithm and proved an absolute performance
guarantee on the final computed task assignment. We discussed numerical simulations to further validate the proposed
algorithm.

Future work will involve a theoretical characterization of the convergence time of the proposed algorithm.
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Kashyap, A., Başar, T., and Srikant, R. (2007). Quantized consensus. Automatica, 43(7), 1192–1203.
Lavaei, J. and Murray, R. (2012). Quantized consensus by means of gossip algorithm. IEEE Transactions on Automatic
Control, 57(1), 19 –32.

Zhu, M. and Mart́ınez, S. (2011). On the convergence time of asynchronous distributed quantized averaging algorithms.
IEEE Transactions on Automatic Control, 56, 386–390.


