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Abstract

In this paper we study the problem of constraint transformation for Petri nets. We consider a special

class of systems in which the uncontrollable subnet is backward-conflict-free, and a new special class of

GMECs called singular GMECs. We propose an algorithm to transform a given uncontrollable singular

GMEC into an equivalent controllable OR-GMEC. The algorithm is based on the composition technique of

GMECs.
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1 Introduction

Generalized Mutual Exclusion Constraints (GMECs) [1] represent an efficient control approach in Petri nets

which has drawn lots of attentions in recent years. A single GMEC defines a set of legal markings, and

any marking which is not legal should be prohibited by a controller. The GMEC approach has many ad-

vantages since a single GMEC can be easily implemented by a single monitor place whose structure can be

designed with negligible computational effort. Many type of forbidden marking problems in Petri nets, such

as deadlock prevention [2], can be can be solved in the framework of GMECs.

When uncontrollable transitions are present in a Petri net model, as it is common in the supervisory

control framework, such an implementation becomes difficult. A GMEC is said to be non admissible if the

firing of some uncontrollable transitions will increase its token count thus possibly leading to a violation of

the constraint. For a given inadmissible GMEC one need to consider a more restrictive control policy which

not only prohibits the forbidden markings but also some other weakly forbidden markings, from which the

system may uncontrollably violate the control law.

Up to now, both on-line and off-line approaches have been proposed to solve this problem. In the on-

line approaches, at each step an integer or linear programming problem has to be solved [3]. The off-line

approaches seek a solution substituting a given inadmissible GMEC by one or more admissible GMECs: this

technique is also called GMEC transformation. The off-line approaches have some advantages since they do

not require on-line computation. However, in [1] it has been proved that in some cases there does not exist

a single GMEC which is equivalent to a given inadmissible GMEC. Moody proposed a method to transform

a given inadmissible GMEC into an admissible new GMEC [4]. Their approach is very efficient from a

computational point of view but the solution is not guaranteed to be optimal, i.e., some legal markings may

no longer be reachable under their control policy. Holloway studied a very similar problem and proposed an

algorithm to estimate the maximal number of tokens a place may uncontrollably get from a given marking [5].

Furthermore, Luo et. al and Wang et. al extensively studied the GMEC transformation problem in different

subclass of Petri net systems [6–8], e.g., forward-synchronization-forward-conflict-free nets. Besides, in [9]

it is proven that the class of monitor based supervisors may not have a supremal element for uncontrollable

specifications, and some different approaches have also been proposed to solve the GMEC transformation

problem [10].

Recently, Luo et al. extended their approach to solve GMEC transformation problems with fairly arbitrary

uncontrollable subnet structures [11]. However, we found that some key results in [11] are not correct, as

discussed in [12]. Therefore, although we believe that GMEC transformation is an interesting and fruitful

technique to explore, the GMEC transformation problem still lacks a general solution.

In this paper, we focus on the Petri net models in which the uncontrollable subnet is a backward-conflict-
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free net (BCF net). A BCF net is an ordinary Petri net subclass in which each place has at most one input

transition. BCF nets are more general than assembly flow systems considered by Ma et. al [13]. BCF net

can model both conflict and synchronization in the working flow. In this paper to simplify the analysis we

focus on acyclic BCF nets. We also assume that the initial inadmissible GMEC to be transformed imposes

an upper bound on the marking of a subset of places. This type of GMECs, which are fairly general and of

practical usage, is commonly used in the supervisory control framework to trim an uncontrollable supervisor

[14]. The approach presented in this paper could be used as a basic step to solve the monolithic supervisor

trimming problem [14], since the legal marking set for a monolithic supervisor can be easily constructed by

uncontrollable GMECs which are analogous to the GMECs in Problem 1 in Section III.

To our knowledge, the GMEC transformation problem in BCF nets has not been studied yet. Therefore

the contribution of this paper is twofold. First, a special class of GMECs, that we call singular GMECs, is de-

fined, and some of its properties are characterized. Secondly, we propose an iterative GMEC transformation

approach based on GMEC composition to obtain an maximally permissive solution which is a disjunction of

GMECs called OR-GMEC. Such type of GMEC can be implemented by a Petri net controller [15, 16]. This

GMEC composition technique can well handle the conflict-synchronization structure in GMEC transforma-

tion.

The paper is organized in six sections. Section II recalls the basic notions on Petri net and GMECs.

Section III introduces the notion of singularity of GMECs and its properties are studied. In Section IV an

algorithm based on GMEC composition operation is proposed to transform a given GMEC into an equivalent

admissible OR-GMEC if the uncontrollable subnet is a BCF net. An illustrative example is presented in

Section V. Section VI draws the conclusions. The proof of Proposition 7 is given in the appendix.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; n transi-

tions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence functions

that specify the arcs in the net and are represented as matrices in Nm×n (here N= {0,1,2, . . .}). The incidence

matrix of a net is defined by C = Post −Pre ∈ Zm×n (here Z= {0,±1,±2, . . .}).

For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t)> 0} and its set of output

places as t• = {p ∈ P | Post(p, t)> 0}. The notion for •p and p• are analogously defined.

A marking is a vector M : P →N that assigns to each place of a Petri net a non-negative integer number of
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tokens, represented by black dots and can also be represented as a m component vector. We denote by M(p)

the marking of place p. A marked net ⟨N,M0⟩ is a net N with an initial marking M0. We denote by R(N,M0)

the set of all markings reachable from the initial one.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ = M0 +C(·, t).

We write M[σ⟩ to denote that the sequence of transitions σ is enabled at M, and we write M[σ⟩M′ to denote

that the firing of σ yields M′.

The transition set T can be partitioned into Tc and Tu which represent the controllable and uncontrollable

transition set, respectively. A transition tu ∈ Tu is not controllable, i.e., it cannot be disabled by control places.

Given a net N = (P,T,Pre,Post) we say that N̂ = (P̂, T̂ , P̂re, P̂ost) is a subnet of N if P̂ ⊂ P, T̂ ⊂ T and

P̂re (resp., P̂ost) is the restriction of Pre (resp., Post) to P̂× T̂ . N̂ is said to be the uncontrollable subset of N

if T̂ = Tu and P̂ = {p ∈ P|(•p∪ p•)∩Tu ̸= /0}.

In a net N = (P,T,Pre,Post), a path is a sequence of nodes π = x1x2 · · ·xk such that xi ∈ P∪ T for all

i = 1, . . . ,k, and xi ∈ •xi+1 for all i = 1, . . . ,k−1. In an acyclic Petri net, a maximal path is a path π such that

|•x1|= |xk
•|= 0.

2.2 GMECs

A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) where w ∈ Zm and k ∈ N. A GMEC

defines a set of legal markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}

and a set of admissible markings:

A(w,k) = {M|∀σu ∈ T ∗
u ,M[σu⟩M′ ∈ L(w,k)}

OR-GMEC [12]: An OR-GMEC is a set of GMECs: WOR = {(w1,k1), . . . ,(wr,kr)}. An OR-GMEC

defines a set of legal markings:

LOR(WOR) = {M ∈ Nm | ∃(wi,ki) ∈WOR,wT
i ·M ≤ ki}

and a set of admissible markings:

AOR(WOR) = {M|∀σu ∈ T ∗
u ,M[σu⟩M′ ∈ LOR(WOR)}

For the sake of simplicity in the following we denote LOR(WOR) by L (WOR) and AOR(WOR) by A (WOR).
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Figure 1: An example of BCF uncontrollable subnet.

3 Singularity of a GMEC and Problem Statement

In this section we introduce some useful notions including singularity and composition of GMECs. We point

out that these notions can also be defined in non-BCF nets. However, in BCF nets they will have some special

properties, which will be used later to design our algorithm.

First we give the definition of backward-conflict-free net.

Definition 1 A backward-conflict-free net (BCF net) is an ordinary Petri net in which each place has at most

one input transition. △

Example 1 In the Petri net N0 in Figure 1, Tu = {t1, t2, t3, t4}. The uncontrollable subnet N contains all

places and transitions except tc1, tc2, tc3, tc4 and it is backward-conflict-free. △

The class of BCF nets strictly includes acyclic marked graphs, synchronization-free nets, and assembly-

flow systems [13].

In an uncontrollable subnet which is BCF, the tokens in a place p can only arrive from its unique upstream

transition.

Definition 2 In an ordinary Petri net, we say that a GMEC (w,k) is singular if the following conditions hold:

(1) there exists at most one tx such that ∑p∈||w|| Pre(p, tx) = 0 and ∑p∈||w|| Post(p, tx) = 1, and if Post(p, tx) = 1

then w(p) = 1 (||w|| denotes the support places of w); (2) for all t ̸= tx, wT ·C(·, t) ≤ 0; if tx does not exist,

for all t, wT ·C(·, t)≤ 0. If (w,k) is singular and tx exists, t•x ∩ ||w||= {px}, we call px the head place and tx

the injection transition of (w,k). △

Example 2 In the uncontrollable subnet net N in Figure 1, the GMEC M(p4)+M(p6) ≤ 1 is singular with

the head place p4 and the injection transition t2. The GMEC M(p3)+M(p4)+M(p6) ≤ 3 is also singular

with no head place nor injection transition. On the contrary, the GMECs 2M(p4)+M(p6)≤ 1 and M(p3)+

M(p4)+2M(p6) ≤ 3 are not singular. The concept is that there exists at most one transition tx the firing of

which will put one token into a certain support place px of w with weight 1 but will not remove tokens from
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any support place of w, and the firing of all other transitions will not increase the token count of w. We also

note that in a singular GMEC its support places (i.e., ||w||) are not necessary in one path. For instance,

M(p2)+M(p4)+M(p5)+2M(p6)≤ 3 is also a singular GMEC. △

The singularity of GMECs can be defined in arbitrary type of nets, not necessarily in BCF nets. However,

as will be shown in this paper, singular GMECs in BCFs net have some special properties which are quite

useful in constructing the GMEC transformation algorithm. Moreover, to verify if a GMEC is singular is

simple: to check Condition 1 one could simply check the incident matrix of the net, and to check Condition 2

we only have to do |Tu| vector multiplications.

Since the net is assumed ordinary, it is not difficult to prove that |t•x ∩ ||w||| = 1, i.e., px is unique if tx

exists. Then we have the following property for singular GMECs.

Proposition 1 In a BCF subnet, for any singular GMEC the firing of any transition t will increase its token

count by one at most.

Proof: Trivial, since for a singular GMEC (w,k) with its inject transition tx, the firing of tx will increase

its token count by one, while all other transition will never increase its token count. �

Then we define two operations on singular GMECs.

Definition 3 Given a singular GMEC (w,k) with its head place px and injection transition tx such that

{•tx}= {p1, . . . , pr̄}, the elementary GMEC set of (w,k) is defined as C(w,k) = {(wi,ki),1 ≤ i ≤ r̄}, in which

each (wi,ki) is computed by the following equations:


wi(p) = w(px), p = pi

wi(p) = w(p),else

ki = k

(1)

△

In brief, for each place pi in •tx a new GMEC (wi,ki) is put in C(w,k) in which the weight of pi is increased

to the weight of px. The following proposition shows that in a BCF net, for a singular (w,k), all GMECs in

C(w,k) are singular.

Proposition 2 Given a Petri net N which is BCF, for any singular GMEC (w,k) with its head place px and

its injection transition tx : |•tx|= r̄, then any single GMEC (wi,ki) in C(w,k) is singular.
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Proof: Consider the arbitrary i-th GMEC (wi,ki) in C(w,k). Since (w,k) is singular with its injection

transition tx, it must hold w(pi) = 0, and the only weight change from w to wi is that of pi. Therefore the

firing of any t /∈ •pi will not change the token count of (wi,ki). Since the net is BCF, there may exist at most

one t ′x ∈ •pi, and then (pi, t ′x) is the only pair which satisfies the condition in Definition 2. Therefore (wi,ki)

is singular. �

Then we introduce the composition of two singular GMECs.

Definition 4 Given two singular GMECs (wa,ka) and (wb,kb) which share the same head place pxa = pxb =

px, their composition GMEC (wab,kab) is computed by the following equations:


wab(px) = wa(px)

wab(p) = wa(p)+wb(p), p ̸= px

kab = [(ka +1)+(kb +1)]−1

(2)

△

Also we have a proposition to show that in a BCF net, the composition of two singular GMECs is also

singular.

Proposition 3 In a BCF net, ((wa,ka) and (wb,kb) are singular) ⇒ ((wab,kab) is singular).

Proof: Since the net is BCF, the only input transition of px is tx. For all transitions t ̸= tx, for all

M1[t⟩M2, it holds wT
a ·M1 ≥ wT

a ·M2 and wT
b ·M1 ≥ wT

b ·M2. Therefore (wa +wb)
T ·M1 ≥ (wa +wb)

T ·M2.

Now consider the GMEC (wab,kab). Notice that t /∈ •px, i.e., the firing of t will not change the token number

in px, we have (wa+wb)
T ·M1 =wT

ab ·M1,(wa+wb)
T ·M2 =wT

ab ·M2. Therefore we have wT
ab ·M1 ≥wT

ab ·M2,

indicating that the firing of any t ̸= tx will not increase the token count of (wab,kab).

Now consider the transition tx, since tx is also the injection transition for (wa,ka) and (wb,kb), and

||wab||= ||wa||∪||wb||, then it must hold ∑p∈||wab|| Pre(p, tx)= 0, ∑p∈||wab||\px Post(p, tx)= 0. Since wab(px)=

wa(px) = 1, it holds Post(px, tx) = 1 and consequently ∑p∈||wab|| Post(p, tx) = 1. Therefore (wab,kab) is sin-

gular. �

Corollary 1 (1) Given a singular GMEC (w,k) with its injection transition tx, the firing of tx will not

change the token count of (w′,k′) ∈ C(w,k). (2) Given two singular GMECs (wa,ka) and (wb,kb) where

pxa = pxb = px and wa(px) = wb(px), then the firing of any transition t ̸= tx will not increase the token count

of (wa,ka),(wb,kb),(wab,kab).
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Proof: Straightforward from Definition 3 and 4. �

Before the end of this section we make a comment. For the uncontrollable subnet N and an arbitrary

GMEC control law, there may exists some places whose tokens will never uncontrollably flow to the support

of w. So practically we only need to consider the uncontrollable subnets which may potentially increase the

token count of (w,k), since the uncontrollable evolution of the former will never lead to a violation of the

control law.

Definition 5 The uncontrollable subnet of a place p contains all nodes x in P∪T such that there is a directed

path from x to p in N.

Finally we state the problem which we will study in the remaining part of this paper.

Problem 1 Consider a Petri net N0 and a GMEC (w0,k0) : M(p0) ≤ k0. Assume that the uncontrollable

subnet of p0 is a backward-conflict-free system N. Determine an equivalent controllable OR-GMEC WOR

such that L (WOR) = A(w0,k0). △

Example 3 Consider again the net in Figure 1 with the initial GMEC (w0,k0) = ([0,0,0,0,0,1],1), i.e.,

M(p6) ≤ 1. This initial GMEC meets the condition in Problem 1. The uncontrollable subnet of p6 contains

all places and transitions except tc1, tc2, tc3, tc4 and it is backward-conflict-free. △

We believe that the assumption on the initial GMEC is not too restrictive since in the monolithic supervisor

trimming problem and transition disabling problem, the initial GMEC usually is in the form:

(w,k2) : k1M(p)≤ k2.

This type of GMEC can always be converted into its equivalent form:

(w′,k′) : M(p)≤ ⌊k2/k1⌋

where ⌊x⌋ denotes the maximal integer which does not exceed x. Furthermore, many real systems, such as the

assembly workflows discussed in [13], contains both conflict places and synchronization transitions. These

type of systems can be modeled by backward-conflict-free nets. We also notice the following result:

Proposition 4 For Problem 1, the GMEC (w0,k0) : M(p0)≤ k0 is singular.

8



4 GMEC Transformation in BCF Uncontrollable Subnets

In this section we first present the following algorithm to solve Problem 1 and then will explain it.

Algorithm 1 Computing a controllable OR-GMEC equivalent to a GMEC (w0,k0) : M(p0)≤ k0.

INPUT: A GMEC (w0,k0) on p0, and the BCF uncontrollable subnet N of p0.

OUTPUT: LOR(WOR) = A(w0,k0)

1. Initialize two sets Pu := P,Pc := /0 for places and two sets Tu := T,Tc := /0 for transitions;

2. Initialize the counter s = 0. Initialize the OR-GMEC set W0 containing the initial GMEC (w0,k0), and

initialize WC =WD = /0;

3. Move p0 from Pu to Pc;

4. Search Tu to find a transition tx such that: (1) tx is the injection transition of some GMECs in Ws; (2)

tx• ⊆ Pc. If Tu = /0, goto Step 10;

5. For all (wi,ki) ∈Ws such that wT
i ·C(·, tx)> 0, add them to WC and then delete them from Ws;

6. In WC, use C(wi,ki) instead of each (wi,ki);

7. Check all GMECs in WC and Ws. If there exist two GMECs (wb,kb) ∈WC and (wa,ka) ∈Ws such that

px1 = px2 = px, compute their composition GMEC (wab,kab) and put it in WD;

8. Ws+1 :=Ws ∪WC ∪WD,WC := /0,WD := /0. Add tx to Tc and then delete tx from Tu;

9. For all p ∈ Pu, if p• ⊆ Tc, add p to Pc and delete p from Pu. s := s+1, Goto Step 4;

10. Output WOR =Ws, END.

△

We explain how Algorithm 1 works. In Step 1 four sets Pu,Pc,Tu,Tc are initialized to record the

current state of places and transitions: unchecked, checked. Step 2 initializes two temporary sets of GMECs

WC,WD. In Step 3 p0 is moved from Pu to Pc indicating it is checked.

Steps 4 to 9 compose the iteration cycle. In each iteration the new generated GMECs are based on

elementary GMEC computation and/or GMEC composition. Since the initial GMEC (w0,k0) is singular, in

each iteration s, all GMECs in Ws are singular (this will be proved shortly). The iteration process plays like a

step-by-step analysis of N backward from p0. In each iteration, an unchecked transition tx is picked from Tu
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in Step 4, indicating the firing of tx may increase some GMECs in Ws. Then all these GMECs are moved to

WC to be further treated in Step 6. The selection rule of transition tx is not random but follows the rule given

in Step 4. Intuitively speaking, for any conflict place p, any t which is in the upstream of p cannot be picked

until all transitions in the downstream of p are checked. This rule is important since it will detect the conflict

and do the GMEC composition accordingly.

Since the net is backward conflict free, for each (w,k) in WC, the head place p can only uncontrollable

get tokens from tx. In Step 6, each (w,k) in WC is substituted by its elementary GMEC set C(w,k). In Step 7,

by checking elements in WC and Ws, the conflict of two paths can be determined. For each pair of GMECs

(wa,ka) and (wb,kb), a new constraint (wab,kab) will be generated. All composition GMECs are put in WD.

Step 8 computes Ws+1 the union of Ws,WC and WD, and then moves tx to Tc indicating tx has been checked.

In Step 9 the set Pu is updated, while all fully checked places are moved to Pc. Then another iteration starts

until there is no tx which could increase the token counts of GMECs in Ws, indicating all GMECs in Ws are

controllable.

We claim that the OR-GMEC WOR the output of Algorithm 1 is the solution of Problem 1, i.e., LOR(WOR)=

A(w0,k0). To prove this we need to prove some intermediate results first.

First, we prove that all GMECs in Ws in Algorithm 1 are singular.

Theorem 1 All GMECs in Ws in Algorithm 1 are singular.

Proof: The initial GMEC (w0,k0) is obviously singular. From Proposition 2 and 3, in any iteration all

new generated GMECs in Ws are singular. Therefore the statement holds. �

From Theorem 1 and Proposition 1 we immediately have the following propositions.

Proposition 5 For all iterations j, of Algorithm 1, and for all t ∈ Tu, the firing of t will increase the token

count of any GMEC in Ws by one at most.

Proposition 6 For all iterations j in Algorithm 1, for all (w,k) in Ws and for all t ∈ Tc, the firing of t will

not increase the token count of (w,k).

Proof: First, if t = tx which is picked from Tu at a given iteration, then after this iteration, t does not

increases (w,k) from Corollary 1. Second, if t ∈Tc does not increase (w,k) ∈Ws in any s-th iteration, then it

does not increase (w′,k′) ∈Wj for any j-th iteration where j > s. If not, it indicates that the weight of a place

p ∈ t• is increased by the elementary GMEC computation in the j-th iteration. However, this cannot happen

since t can only be put into Tc when all its downstream places are checked. �

10



From Proposition 6 we have the following theorem.

Theorem 2 The OR-GMEC the output of Algorithm 1 is controllable.

Proof: Trivial, since in the end all t ∈ Tu are in Tc. �

Then we give the key step to the final result.

Proposition 7 In Algorithm 1, it holds AOR(Ws+1) = AOR(Ws).

Proof: Rather than presenting a detailed formal proof, here we just give some intuitions to show why

the result holds. To prove AOR(Ws+1) = AOR(Ws) we just need to prove that both AOR(Ws+1) ⊆ AOR(Ws)

and AOR(Ws+1)⊇ AOR(Ws) hold.

To prove the ⊆ containment is not difficult. Notice that firing any uncontrollable transitions in Tc will not

increase the token count of any GMEC in W , if (w,k) ∈ Ws+1 is satisfied at M, then all reachable markings

from M must satisfy some GMEC in Ws.

For the ⊇ containment, if a marking M0 is not in AOR(Ws+1), i.e., M0 would evolve to a marking M

violates all GMECs in LOR(Ws+1) by firing only uncontrollable transitions, then from M by repeatedly firing

tx for enough times a new marking M′ which violates all GMECs in LOR(Ws), indicating AOR(Ws+1) ⊇

AOR(Ws). �

Finally we can state the main result of this paper.

Theorem 3 The output of Algorithm 1 satisfies LOR(WOR) = A(w0,k0).

Proof: First, the initial GMEC (w0,k0) is singular. Since the net is BCF, according to Proposition 2

and 3, all GMECs in Ws are singular in the iterations. Therefore Proposition 7 could be repeatedly applied,

and finally it holds AOR(WOR) = A(w0,k0). According to Theorem 2, LOR(WOR) = AOR(WOR). Therefore

LOR(WOR) = A(w0,k0). �

We have some comments on Algorithm 1 and Theorem 3.

Remark 1 In the approaches in literatures, in each iteration only one GMEC is modified. Here in each

iteration (typically) a package of GMECs in the disjunctive GMEC set is substituted by a new package of

GMECs. We notice that AOR(Ws+1) = AOR(Ws) holds only for the GMEC transformation based on such

package substitution. If we do the GMEC transformation for just a single GMEC in the package one by one,

although the final result is the same, in the intermediate steps the admissible marking sets are not always

identical. △
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Remark 2 One may have noticed that the GMEC in the final WOR is strongly dependent on the conflict-

synchronization structure in the uncontrollable subnet N. However, from our observation two nets N1 and

N2 containing the same number of conflict places and synchronization transitions may have quite different

number of GMECs in WORs. Therefore the complexity depends on not only the number of conflict places

and synchronization transitions, but also their relative positions in N. Up to now, it is difficult to propose

a complexity indicator to evaluate the complexity of WOR, or to predict the complexity in a certain case,

i.e., there is no direct relation between the complexity of WOR and the size of the uncontrollable subnet.

Qualitatively speaking, a large uncontrollable subnet with no conflict places nor synchronization transitions

would have a very simple WOR. On the other hand, the alternation of conflict places and synchronization

transitions in one path would greatly increase the number of GMECs in WOR. To find a proper index to

estimate the complexity of WOR would be part of our future work. △

5 A Case Study

In this section we give an example to illustrate Algorithm 1. To simplify the expression we use c(·) to denote

(w(·),k(·)) in case there is no confusion. The iteration process is listed in Tabel 1.

i Pick Pu Pc Tu Ws

0 - p1, p2, p3,

p4, p5

p6 t1, t2, t3,

t4

c0

1 t4 p1, p2, p3 p4, p5, p6 t1, t2, t3 c1, c2

2 t2 p1, p2 p3, p4, p5,

p6

t1, t3 c2, c3,

c4

3 t3 p1 p2, p3, p4,

p5, p6

t1 c3, c4,

c5, c6

4 t1 /0 p1, p2, p3,

p4, p5, p6

/0 c3, c7,

c8, c9

Table 1. Iteration steps of Example 4.

Example 4 Consider the Petri net N0 in Figure 1 and the initial GMEC is c0 = (w0,k0) = ([0,0,0,0,0,1],1),

i.e., M(p6) ≤ 1. Initially all places except p6 are in Pu and all uncontrollable transitions are in Tu. In W0

there is only one constraint c0:

c0 : M(p6)≤ 1 (3)
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In the first iteration, only transition t4 could be picked since its downstream places (only p6) are in Pc.

In Step 6, c0 is substituted by Cc0 , i.e., two new constraints:

c1 : M(p4)+M(p6)≤ 1

c2 : M(p5)+M(p6)≤ 1
(4)

Then W1 = {c1,c2} from Step 7. In Step 8 t4 is moved from Tu to Tc. In Step 9, since p•3 ⊆ Tc, p•4 ⊆ Tc,

p3 and p4 are moved from Pu to Pc.

In the second iteration, there are two transitions t2 and t3 which can be picked. Suppose t2 is picked.

Since t2 is the injection transition of c1, in this iteration c1 is substituted by

c3 : M(p3)+M(p4)+M(p6)≤ 1

c4 : M(p2)+M(p4)+M(p6)≤ 1
(5)

Then W2 = {c2,c3,c4} and t2 is now in Tc. Since p•2 *Tc, indicating p2 is a conflict place and the GMEC

composition will be taken in some further iteration(s). Therefore only p3 is moved to Pc.

In the third iteration, because p2 /∈ Pc, t1 cannot be picked. Therefore t3 is picked and c2 is substituted

by c5:

c5 : M(p2)+M(p5)+M(p6)≤ 1 (6)

At this moment, c5 and c4 are conflict at p2. Therefore Step 7 is triggered and a new composition GMEC

c6 is added:

c6 : M(p2)+M(p4)+M(p5)+2M(p6)≤ 3 (7)

Now W3 = {c3,c4,c5,c6} and p2 is moved to Pc. In the final iteration, t1 is picked and c4,c5 and c6 are

substituted by c7,c8 and c9, respectively:


c7 : M(p1)+M(p2)+M(p4)+M(p6)≤ 1

c8 : M(p1)+M(p2)+M(p5)+M(p6)≤ 1

c9 : M(p1)+M(p2)+M(p4)+M(p5)+2M(p6)≤ 3

(8)
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The algorithm ends and outputs WOR = W4 = {c3,c7,c8,c9}. One can verify this OR-GMEC is control-

lable and optimal, i.e., LOR(WOR) = A(w0,k0). �

In Moody’s approach [4], any input single GMEC would always produce a controllable single GMEC as

the solution. For the sake of space, we do not present the detailed procedures of Moody’s method here. If

one applies Moody’s method on this example taken the initial GMEC c0 as the input, we point out that the

output solution could be either c3, c7 or c8. One can easily verify that none of them is an optimal solution:

the legal marking set defined by either c3, c7 or c8 is a strict subset of LOR(WOR) that is equivalent to Ac0 .

6 Discussion and Conclusion

In this paper a GMEC transformation technique is proposed to transform an uncontrollable singular GMEC

into a set of disjunctive controllable ones when the uncontrollable subnet is backward-conflict-free. This

could be used as a basic step to solve the monolithic supervisor trimming problem [14], since the legal

marking set for a monolithic supervisor can be easily defined by means of uncontrollable GMECs of the form

considered in Problem 1. We hope to further extend our approach to the systems which contain more general

uncontrollable structures. However we conjecture that there does not exist a generalized method to do such

transformation for arbitrary GMEC in arbitrary Petri nets since, as we have shown in [17], in some cases the

expected optimal Petri net controller does not exists.
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