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Abstract

In the framework of discrete event systems, the observation of events is considered as outputs in most problem settings,
such as state estimation and fault diagnosis, while only a few studies exploit the availability of partial state information.
In this paper, equivalent relations between Petri nets with different observation structures, i.e., Petri net generators, are
discussed. We focus on a model called labeled Petri nets with outputs (LPNO), i.e., labeled Petri nets endowed with
an arbitrary observation function of the marking. It has been shown that any LPNO can be converted into an adaptive
labeled Petri net (ALPN) whose labeling function depends on the markings, if infinite labels are allowed. We propose an
algorithm that converts a bounded LPNO into an equivalent ALPN with minimal alphabet, i.e., an alphabet of minimal
cardinality, to avoid introducing a large number of unnecessary labels.
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1. Introduction

A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt occurrence, at possibly
unknown irregular intervals, of physical events [11]. DES are described in terms of states and events and, correspondingly,
there are two main primitives to associate an observation structure with these models: we may assume that either the states
or the event occurrences are observable, i.e., measurable by a sensor.

When automata models are considered, it is commonly assumed that only event occurrences are observed [9, 14].
The same choice is also common for Petri net models and in particular labeled Petri nets (LPN), i.e., generators whose
outputs are labels associated with transitions, have been used for supervisory control [1], fault diagnosis [2, 3, 6] and state
estimation [7] etc.

Several authors [16, 12, 13] consider an extended LPN model also endowed with state observations. They assume that
the token content in some places of the net is measurable. However, [13] have shown that such a type of LPN can always
be converted into an equivalent standard LPN by a suitable re-definition of the transition labels, and hence the two models
have the same modeling power.

In some circumstances, e.g, due to economical or technological issues, state sensors of may only provide aggregate
state information instead of a precise measurement. For example, a cheap sensor may just be able to detect if a buffer is
empty or not while the exact number of items in the buffer remains unknown. This motivates us to look for more general
observation structures in Petri net generators, than those considered in the above mentioned works.

In [15] we introduced labeled Petri nets with outputs (LPNO), i.e., labeled Petri nets endowed with state sensors
providing an observation that is an arbitrary function of the current net marking. Using an LPNO to model a system, state
observations are modeled by the output function and the net structure is identical to the one without considering the state
sensors. We tried to unify event and state observations in LPNO without changing the net structure, so that only event
occurrences are taken into account, and we may use techniques for LPN to analyze this more general type of generators.
Nevertheless, we found that such a conversion is not always possible if transitions have to be assigned a static label, as is
the case with LPN. As a result, we define a more general event-based observation structure — adaptive labeled Petri nets
(ALPN). In this type of Petri net generators only transition firings are observable but labels associated with transitions
are adaptive, i.e., depending on the current markings. Furthermore, we have shown that there always exists an ALPN
observation equivalent to an LPNO, but this may require an infinite alphabet, i.e., an alphabet with an infinite number of
labels.

Herein, we aim at finding a conversion algorithm that determines an equivalent ALPN with minimal alphabet, i.e.
an alphabet with minimal cardinality. There are several practical motivations for this: i) reducing the cardinality of the
alphabet may correspond to a cost reduction in the implementation of an observation structure; ii) it may allow one to
determine an equivalent net with a finite alphabet even when the brute-force procedure [15] generates an infinite number
of labels; iii) this procedure may allow one to show that a given LPNO cannot be converted into an LPN: such is the case
if the minimal number of labels is greater than the number of transitions. An algorithm realizing the conversion from a
bounded LPNO to the equivalent ALPN with minimal alphabet is proposed.

This paper is structured as follows. Section 2 recalls the basic formalism of Petri nets; three Petri net generators
discussed in this paper are formally defined and the further discussion about their observation relationships is presented
in Section 3; in Section 4 the conversion algorithm of bounded LPNO is proposed; finally, conclusions and future work
are presented.

2. Background on Petri Nets

In this section we introduce the formalism used in the paper. For more details on Petri nets, we refer the reader to [10]
for details.

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of m places represented by circles; T is a set of n
transitions represented by bars; Pre : P × T → N and Post : P × T → N are the pre- and post-incidence functions that
specify the arcs directed from places to transition, vice versa, where N is a set of non-negative integers. We also demote
by C = Post− Pre the incidence matrix of a net.

A marking is a vector M : P → Nm that assigns to each place of a Petri net a non-negative integer number of tokens,
represented by black dots. We denote M(p) the marking of place p. A Petri net system 〈N,M0〉 is a net N with an initial
marking M0.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M0 + C(·, t). We write
M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote that the firing of
σ yields M ′. The set of all sequences that can fire in a net system 〈N,M0〉 is denoted by L(N,M0).

A marking M is reachable in 〈N,M0〉 if there exists a firable sequence σ ∈ L(N,M0) such that M0[σ〉M . The set
of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted by R(N,M0). A Petri net
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Figure 1. Inventory system and its LPNO model.

system is bounded if there exists a k ∈ N such that for all places p ∈ P and for all reachable markings M ∈ R(N,M0),
M(p) ≤ k holds.

3. Classes of Petri net generators

This section recalls the basic definitions of several classes of Petri nets models1: labeled Petri nets (LPN), labeled Petri
nets with outputs (LPNO) and adaptive labeled Petri nets (ALPN). These models consist of a net structure 〈N,M0〉 plus
an observation structure: for this reason we refer to them as Petri net generators.

3.1. Labeled Petri Nets
A labeled Petri net (LPN) is a generator GL = (N,M0,Σ, `), where N is a Petri net with initial marking M0, Σ is an

alphabet (a set of labels), and ` : T → Σ∪ {ε} is a labeling function that assigns to each transition t ∈ T either a symbol
from Σ or the empty string ε.

We denote Te the set of transitions whose label is e ∈ Σ ∪ {ε}, i.e., Te = {t ∈ T | `(t) = e}. A transition t ∈ Te is
called an e-labeled transition.

To describe the evolution of an LPN, we define its observation function as follows.

Definition 1 Given an LPN GL = (N,M0,Σ, `), its observation function LL : T ∗ → Σ∗ associates a firing sequence
σ = t1t2 · · · tk with the observation w = LL(σ) = `(t1)`(t2) · · · `(tk). �

3.2. Labeled Petri Nets with Outputs
Definition 2 A labeled Petri net with outputs (LPNO) is a generator GO = (N,M0,Σ, `, f), where (N,M0,Σ, `) is an
LPN and f : R(N,M0)→ Rk is an output function associated with k ∈ N state sensors. �

Definition 3 Given an LPNO GO = (N,M0,Σ, `, f), let σ = t1 · · · tk be a firing sequence producing the trajectory
M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function LO : T ∗ → ((Σ ∪ {ε}) × Rk)∗ associates sequence σ with the
observation

s = LO(σ) = (`(t1),∆f(M0, t1)) · · · (`(tk),∆f(Mk−1, tk)),

where ∆f(Mi−1, ti) = f(Mi)− f(Mi−1) ∈ Rk, i = 1, 2, · · · , k.
If `(ti) = ε and ∆f(Mi−1, ti) = 0, the observation (ε, 0) is the null observation since no transition firing is detected.�

Remark: in the following we will implicitly assume (see Definition 6) that M0 is known, hence the initial observation
f(M0) provides no additional information. In this case the two sequences f(M0), f(M1), . . . and ∆f(M0, t1),∆f(M1, t2), . . .
contain the same information.

Since state sensors are modeled by a function, by using such a generator, the model structure of a system is able to be
as small as the one without considering state sensors.

Example 1 Let us consider the inventory system shown in Figure 1(a). Forklift A delivers products to the storage and
forklift B delivers products from the storage to a transporting truck. There is a sensor on the storage detecting whether
the inventory is over a threshold (say 100). The arrival/departure of a forklift is detected by another sensor that does not
specify which one is moving. This system can be easily modeled by the LPNO in Figure 1(b), where p1 and p2 model
the storage and the truck, respectively, and t1 (resp., t2) models the operation of forklift A (resp., forklift B). A firing
sequence σ = t100

1 t1t2 of the LPNO corresponds to an observation s = LO(σ) = (a, 0) · · · (a, 0)︸ ︷︷ ︸
100

(a, 1)(a,−1). �

1The last two classes were originally defined in [15].
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Figure 2. The ALPN in Example 2.

3.3. Adaptive Labeled Petri Nets
Definition 4 An adaptive labeled Petri net (ALPN) is a generator GA = (N,M0,Σ, `A), where 〈N,M0〉 is a Petri net
system, Σ is an alphabet and `A : R(N,M0)× T → Σ ∪ {ε} is an adaptive labeling function. �

The observation of an ALPN is a sequence of labels in Σ defined as follows.

Definition 5 Given an ALPN GA = (N,M0,Σ, `A), let σ = t1 · · · tk be a firing sequence producing the trajectory
M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function LA : T ∗ → Σ∗ associates sequence σ with the observation

wA = LA(σ) = `A(M0, t1) · · · `A(Mk−1, tk). �

Example 2 Let us consider the ALPN in Figure 2. Its alphabet is Σ = {a, a1, a2}. The adaptive labeling function is
∀M ∈ R(N,M0) : M(p1) < 100, `A(M, t1) = `A(M, t2) = a; otherwise, `A(M, t1) = a1 and `A(M, t2) = a2. A
firing sequence σ = t100

1 t1t2 of the ALPN corresponds to an observation wA = LA(σ) = a · · · a︸ ︷︷ ︸
100

a1a2. �

3.4. Observation equivalence between generators
In the following, we use GX with X ∈ {L,O,A} to denote a generator without specifying its type and denote the

corresponding observation as x ∈ {w, s, wA}, following the notation introduced in the previous subsections.
An observation x allows one to estimate the firing sequence and the current marking of a generator as follows.

Definition 6 Given an observation x in a generator GX whose underlying net system 〈N,M0〉 is assumed to be known,
we define:

• the set of firing sequences consistent with x as

S(x) = {σ ∈ L(N,M0) | LX(σ) = x};

• the set of markings consistent with x as

C(x) = {M ∈ Nm | ∃σ ∈ S(x) : M0[σ〉M}. �

Definition 7 A generator GX is said to be observation equivalent to a generator GX′ if i) GX and G′X have the same net
system 〈N,M0〉, and ii) for all sequence σ ∈ L(N,M0) that produce an observation x in GX and an observation x′ in
GX′ , S(x) = S(x′) holds. �

Note that in Definition 7, S(x) = S(x′) implies C(x) = C(x′).
Remark: Definition 7 considers generators that have the same behavior (since they have the same underlying sys-

tem) and defines equivalence with respect to the observation semantics. In this paper, “equivalence” always refers to
“observation equivalence”.

Example 3 According to Definition 7, the LPNO in Example 1 and the ALPN in Example 2 are equivalent.�

We now compare the classes of generators previously defined. An LPN is a restricted type of LPNO whose output
function is null. Analogously, we can see an LPN as a restricted type of ALPN such that the label of a transition is the
same at every marking. Hence, for an LPN there also exists an equivalent LPNO and an equivalent ALPN while, as shown
in [15], the converse is not true. In Figure 5 this is denoted by drawing an arrow from class LPN to the each of the other
two classes.

In [15], we have shown that there exists a brute-force procedure to convert an LPNO into an equivalent ALPN with
infinite alphabet. We have also shown that for some LPNO an equivalent ALPN with a finite alphabet does not always
exist. In Figure 5, this is denoted by drawing a dashed arrow labeled “+∞” from class LPNO to class ALPN.

Here we complete the comparison between these classes showing, by means of Example 4, that there exist ALPN that
cannot be converted into an equivalent LPNO.
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Figure 3. ALPN that cannot be converted into an LPNO.

Figure 4. Computation of sets C(aa) and C(b) for the ALPN in Example 4.

Example 4 Let us consider the ALPN in Figure 3 with initial marking M0 = [1 1 0]T and the adaptive labeling function
given by the following table.

`A(M, t) t1 t2 t3 t4

M0 a a b b
M 6= M0 b b a a

For observed words wA = aa and wA = b, the set C(aa) and C(b) can be iteratively computed as shown in Figure 4,
where M1 = [0 2 0]T , M2 = [0 1 1]T and M3 = [1 0 1]T .

We claim that there does not exist an LPNO equivalent to this ALPN. We prove this by contradiction. If we assume
such a generator exists, then its observation function must satisfy f(M0) = f(M1) = f(M2) = f(M3) since otherwise
we would be able to distinguish between the first three markings after the firing of two a’s or between the last two after
the firing of b. In additional, all transitions must necessarily have the same label, say a. However such an LPNO after a
would produce a set of consistent markings C((a, 0)) = {M0,M1,M2,M3} 6= C(a) = {M0,M1}, which contradicts the
assumption. �

In conclusion, the relationships between LPN, LPNO and ALPN in terms of observation equivalence are summarized
in Figure 5.

LPN: Labeled 
Petri Nets

LPNO: Labeled Petri 
Nets with Outputs

ALPN: Adaptive 
Labeled Petri Nets

∞

Figure 5. Classes of Petri nets generators and their relationships in terms of observation equiva-
lence.
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Figure 6. LPNO with a nonlinear output function.

4. Conversion from bounded LPNO to ALPN

In this section we propose an approach to convert a bounded LPNO into an equivalent ALPN. The conversion only
requires finding the adaptive labeling function of the ALPN since, according to Definition 7, the two generators must have
the same net system.

As mentioned in the previous section, to convert an LPNO into an equivalent ALPN a brute-force procedure can be
used: this requires assigning to each transition t ∈ T at every marking M ∈ R(N,M0), where it is enabled, a new
label [`(t),∆f(M, t)]. This procedure may produce an infinite number of labels when the LPNO is not bounded and thus
may not terminate. When the net is bounded the procedure determines an equivalent ALPN with finite number of labels.
Even though for a bounded LPNO an equivalent ALPN with finite alphabet can be obtained, this generator may have a
large number of unnecessary labels. We look for a better conversion algorithm that determines an equivalent ALPN with
minimal alphabet. Thus, the considered problem is the following.

Problem statement: convert a given bounded LPNO into an equivalent ALPN whose alphabet has minimal cardinality.
The conversion procedure we propose is based on three steps.

Step 1 Since observation equivalence requires the set of consistent markings of the two generators to be identical for all
observations, we first determine which pairs of markings are confusable.
Step 2 Using this information, we determine which pairs [M, t] ∈ R(N,M0)×T should have the same label in the ALPN
constructing the agreement graph G(e) for all e ∈ Σ ∪ {ε}. We also determine which pairs [M, t] should have a different
label in the ALPN constructing the conflict graph Ĝ.
Step 3 Finally, we reduce the problem of finding the label assignment that determines the alphabet of minimal cardinality
to the vertex coloring problem of graph Ĝ.

All these steps will be presented and discussed in the following subsections. At the end of the section an algorithm that
summarizes all these steps will be given.

4.1. Computation of the confusion relation
Given an observation in an LPNO, there may be more than one marking consistent with this observation. To describe

such a relation between markings, we define the confusable relation.

Definition 8 Given an LPNO GO, a marking M is said confusable with M ′, denoted by M ∼ M ′, if there exists an
observation s s.t. M,M ′ ∈ C(s). �

One can readily verify that M ∼M ′ is a symmetric, refl-exive but not transitive relation.
An intuitive way to compute the confusion relation among all markings is to construct an observer [4]. First, since

the net is bounded, its reachability graph (RG) can be constructed. This is a graph where each node is a marking M and
each arc corresponds to a transition t. We tag each arc t exiting node M with the label (`(t),∆f(M, t)) thus constructing
a nondeterministic finite automaton (NFA). Then, the corresponding observer, i.e., the equivalent deterministic finite
automaton (DFA), can be constructed. In the DFA, each state is a set C(s) and all markings in C(s) are confusable with
each other.

Example 5 Consider the LPNO GO = (N,M0,Σ, `, f) in Figure 6, where Tε = {t1, t2}, Ta = {t3, t4, t5, t6} and
f(M) = max{M(p1),M(p2)}+M(p3). Its RG and the observer are shown in Figure 7. �
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Fig. 5. Classes of Petri nets generators and their relation-
ships in terms of observation equivalence.

C((a, 0)) = {M0,M1,M2,M3} 6= C(a) = {M0,M1}, which
contradicts the assumption. �

In conclusion, the relationships between LPN, LPNO and
ALPN in terms of observation equivalence are summarized
in Figure 5.
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4.1 Computation of the confusion relation

Given an observation in an LPNO, there may be more than
one marking consistent with this observation. To describe
such a relation between markings, we define the confusion
relation.

Definition 12. Given an LPNO GO, a marking M is said
confusable with M ′, denoted by M ∼ M ′, if there exists
an observation s s.t. M,M ′ ∈ C(s). �

An intuitive way to compute the confusion relation among
all markings is to construct an observer (Cassandras and
Lafortune, 2008). First, since the net is bounded, its
reachability graph (RG) can be constructed. This is a
graph where each node is a marking M and each arc
corresponds to a transition t. We tag each arc t exiting
node M with the label (`(t),∆f(M, t)) thus constructing
a nondeterministic finite automaton (NFA). Then, the
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confusable with each other.
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4.1 Computation of the confusion relation

Given an observation in an LPNO, there may be more than
one marking consistent with this observation. To describe
such a relation between markings, we define the confusion
relation.

Definition 12. Given an LPNO GO, a marking M is said
confusable with M ′, denoted by M ∼ M ′, if there exists
an observation s s.t. M,M ′ ∈ C(s). �

An intuitive way to compute the confusion relation among
all markings is to construct an observer (Cassandras and
Lafortune, 2008). First, since the net is bounded, its
reachability graph (RG) can be constructed. This is a
graph where each node is a marking M and each arc
corresponds to a transition t. We tag each arc t exiting
node M with the label (`(t),∆f(M, t)) thus constructing
a nondeterministic finite automaton (NFA). Then, the
corresponding observer, i.e., the equivalent deterministic
finite automaton (DFA), can be constructed. In the DFA,
each state is a set C(s) and all markings in C(s) are
confusable with each other.

(b)

Figure 7. The RG and the observer of GO.

Table 1. All possible observations after a transition firing
(e,∆) {[M, t]|`(t) = e,∆f(M, t) = ∆}
(ε, 0) [M0, t2], [M2, t1], [M2, t2], [M5, t1], [M5, t2]

(ε,−1) [M0, t1]
(ε, 1) [M1, t1], [M1, t2]

(a,−2) [M3, t3], [M6, t5]

(a,−1)
[M2, t6], [M3, t4], [M4, t4], [M4, t6], [M6, t6],
[M8, t4], [M9, t6]

(a, 0) [M1, t4]

It is known that the worst-case complexity of computing a DFA equivalent to a NFA is exponential in the number of states
of the NFA, therefore, the complexity to determine the confusion relation is exponential in the number of markings.

4.2. Construction of the agreement and conflict graphs
If two transitions t and t′ are enabled at two confusable markings M and M ′, respectively, and produce the same

observation, then the two labels `A(M, t) and `A(M, t′) must coincide in the ALPN. This can be captured, for all labels
e ∈ Σ ∪ {ε}, by an agreement graph G(e).

Definition 9 Given an LPNO GO = (N,M0,Σ, `, f) and a label e ∈ Σ∪ {ε}, the agreement graph of e is an undirected
graph G(e) = (V (e), E(e)) where V (e) = {[M, t] ∈ R(N,M0) × Te|M [t〉} and E(e) = {([M, t], [M ′, t′]) ∈ V (e) ×
V (e)|M ∼M ′,∆f(M, t) = ∆f(M ′, t′)} ([M, t] 6= [M ′, t′]). �

The set of nodes V (e) of such a graph includes all pairs [M, t] where t is an e-labeled transition enabled at a markingM .
Two nodes [M, t] and [M ′, t′] are connected by an edge in G(e) ifM andM ′ are confusable and ∆f(M, t) = ∆f(M ′, t′).
In an agreement graph, there is no self loop.

Example 6 Consider again the LPNO in Example 5. Table 1 is built based on the RG. According to Definition 9, the
agreement graphs G(ε) (Figure 8(a)) and G(a) (Figure 8(b)) are constructed. �

If e ∈ Σ, then the set of nodes of an agreement graph G(e) can be partitioned into

V (e) = v̂1(e) ∪̇ v̂2(e) ∪̇ · · · ∪̇ v̂l(e)
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(a) (b)

Figure 8. The agreement graphs of GO.

Figure 9. The (colored) conflict graphs of GO.

where the v̂i(e)-induced subgraph with i ∈ {1, 2, · · · , l} is a component of G(e).
If e = ε, then

V (ε) = v̂0(ε) ∪̇ v̂1(ε) ∪̇ v̂2(ε) ∪̇ · · · ∪̇ v̂l(ε),
where v̂0(ε) = {[M, t] ∈ V (ε)|∆f(M, t) = 0}, v̂i(ε) ⊆ V (ε) \ v̂0(ε) and v̂i(ε)-induced subgraph is a component of
G(ε) when i ∈ {1, 2, · · · , l}. This is due to the requirement that an ε-labeled transition t at a marking M where its firings
produce the null observation should be labeled by ε no matter whether this marking is confusable with other markings or
not, i.e., in the ALPN it should hold `A(M, t) = ε. For a label e ∈ Σ ∪ {ε}, we also define

Πe = {v̂1(e), v̂2(e), · · · , v̂l}.

Example 7 Consider Table 1 and the agreement graphs G(ε) and G(a) in Example 6.
v̂0(ε) = {[M0, t2], [M2, t1], [M2, t2], [M5, t1], [M5, t2]},
v̂1(ε) = {[M0, t1]}, v̂2(ε) = {[M1, t1], [M1, t2]};
v̂1(a) = {[M3, t3]}, v̂2(a) = {[M6, t5]},
v̂3(a) = {[M2, t6], [M3, t4], [M4, t4], [M4, t6], [M6, t6]},
v̂4(a) = {[M8, t4], [M9, t6]}, v̂5(a) = {[M1, t4]}.
Πε = {v̂1(ε), v̂2(ε)} and Πa = {v̂1(a), · · · , v̂5(a)}. �

By means of the agreement graph, we have determined the classes of pairs [M, t] that produce the same observation.
We now determine, by means of the conflict graph, which classes must be assigned a different label in the ALPN.

Definition 10 Given an LPNO GO = (N,M0,Σ, `, f), the conflict graph is an undirected graph Ĝ = (V̂ , Ê) that
V̂ =

⋃
e∈Σ∪{ε}Πe and Ê = {(v̂i(e), v̂j(e′)) ∈ V̂ × V̂ |∃[M, t] ∈ v̂i(e),∃[M ′, t′] ∈ v̂j(e′) : M ∼ M ′(e,∆f(M, t)) 6=

(e′,∆f(M ′, t′))}. �

The nodes of graph Ĝ are classes of nodes
⋃

e∈Σ∪{ε}Πe and all nodes in a class produce the same observation.
Consider now any two classes v̂i(e) and v̂j(e′). If there exist [M, t] ∈ v̂i(e) and [M ′, t′] ∈ v̂j(e′) such that M and M ′ are
confusable but t and t′ will produce different observation (e,∆f(M, t)), (e′,∆f(M ′, t′)), then in the ALPN, different
labels must be assigned to them, i.e., `A(M, t) 6= `A(M ′, t′). Thus we add an arc between v̂i(e) and v̂j(e′) to denote that
the two classes must be assigned a different label.

Example 8 Based on the result in Example 7 and Definition 10, the conflict graph Ĝ of GO is shown in Figure 9. �

4.3. Solving the vertex coloring problem
The conflict graph Ĝ of an LPNO exactly describes the relabeling rule following which an equivalent ALPN can be

obtained. In order to meet the relabeling rule and the requirement of an minimal alphabet, the problem of assigning labels
to every node of Ĝ such that two adjacent nodes have a different label can be reduced to the vertex coloring problem
defined as follows.

Definition 11 [5] A vertex coloring of a graph G = (V,E), where V is the set of nodes and E is the set of edges, is a
map `col : V → Σcol such that `col(v) 6= `col(v

′) if v and v′ are adjacent, where v, v′ ∈ V and Σcol is a set of available
colors. The vertex coloring problem is to find a vertex coloring with the minimal number of colors. �
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It is well known that the coloring problem is in general NP-complete, while there exist effective polynomial algorithms
for some special classes of graphs, see [8]. Let the vertex coloring `col and the set of colors Σcol be the solution of graph Ĝ,
then the corresponding adaptive labeling function is ∀[M, t] ∈ v̂i(e), `A(M, t) = e if `col(v̂i(e)) = e, where v̂i(e) ∈ V̂ ,
and the alphabet of the ALPN is Σ = Σcol. Therefore, an equivalent ALPN with minimal alphabet is obtained. Note that
at markings where a transition t is not enabled, the adaptive labeling function is not defined, since t could never produce
any observation at those markings.

Example 9 The minimal number of colors to color the conflict graph of GO in Example 5 is three and one possible way
to color it is shown in Figure 9. �

4.4. Conversion algorithm
The procedure to convert a bounded LPNO into an equivalent ALPN with minimal alphabet can be summarized as in

Algorithm 1. To avoid confusion between alphabets in the LPNO and the ALPN, ΣA is used to denote the alphabet in the
ALPN obtained.

Algorithm 1 Conversion of an LPNO into an equivalent ALPN with minimal alphabet
Input: a bounded LPNO GO = (N,M0,Σ, `, f)
Output: an equivalent ALPN GA = (N,M0,ΣA, `A)

1: Compute confusion relations.
2: for all e ∈ Σ ∪ {ε}, do
3: construct G(e) according to Definition 9;
4: compute Πe;
5: if e = ε ∧ v̂0(e) 6= ∅, then
6: `col(v̂0(e)) = ε;
7: end if
8: end for
9: Construct Ĝ according to Definition 10.

10: Solve the vertex coloring problem of Ĝ.
11: ΣA := Σcol, `A := `col.

Example 10 Based on Example 9 and Algorithm 1, the equivalent ALPN with minimal alphabet isGA = (N,M0,ΣA, `A),
where ΣA = {α, β, γ},
`A(M0, t2) = `A(M2, t1) = `A(M2, t2) = `A(M5, t1) = `A(M5, t2) = ε, `A(M0, t1) = `A(M3, t3) = `A(M1, t1) =
`A(M1, t2) = α, `A(M1, t4) = `A(M6, t5) = `A(M8, t4) = `A(M9, t6) = β, `A(M2, t6) = `A(M3, t4) = `A(M4, t4) =
`A(M4, t6) = `A(M6, t6) = γ. �

The algorithm outlined above may assign to two pairs [M, t] and [M ′, t′] the same label in the ALPN even if in the
original LPNO transitions t and t′ have a different label, i.e., `(t) 6= `(t′).

5. Conclusions and Future Work

This paper discusses the observation equivalence relation between different Petri net generators and provides an algo-
rithm converting a bounded LPNO into an equivalent ALPN with minimal alphabet. The complexity of such an algorithm
mainly depends on the computation of confusion relations and solving the coloring problem on a particular graph that we
call a conflict graph. In the future we plan to solve state estimation and fault diagnosis problems in LPNO generators.
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