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Abstract

In this paper we study the problem of constraint transformation. We consider a special type of sys-

tem in which the uncontrollable subnet is an assembly flow system, which is a subclass of backward-

synchronization-backward-conflict-free Petri net. We propose an algorithm to transform a given inadmiss-

able GMEC into an equivalent admissible OR-GMEC. The algorithm is based on a technique that adds new

constraints obtained by composition of elementary ones.
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1 Introduction

Generalized Mutual Exclusion Constraints (GMECs) [1] represent an efficient control approach in Petri nets

which has drawn lots of attentions in recent years. A single GMEC defines a set of legal markings, and any

marking which is not legal should be prohibited by a controller. The GMEC approach has many advantages

since a single GMEC can be easily implemented by one monitor place without much computations. Many

type of forbidden marking problems in Petri nets, such as deadlock prevention [2], can be solved in the

framework of GMECs.

When uncontrollable transitions are present in a Petri net model, as it is common in the supervisory

control framework, such an implementation becomes difficult. A GMEC is said to be uncontrollable if the

firing of some uncontrollable transitions will increase its token count thus possibly leading to a violation of

the constraint. For a given uncontrollable GMEC we have to propose a more restrictive control policy which

prohibits not only the forbidden markings but also some other weakly forbidden markings, from which the

system may uncontrollably violate the control law.

Up to now, both on-line and off-line approaches have been proposed to solve this problem. In the on-

line approaches, in each step an integer or linear programming problem [3] has to be solved. The off-line

approaches seek a solution substituting a given uncontrollable GMEC by one or more controllable GMECs:

this technique is also called GMEC transformation. The off-line approaches have their advantages since they

provide a closed form solution and do not require exhaustive on-line computations. However, in [1] it has been

proved that in some cases there do not exist a single GMEC which is equivalent to an given uncontrollable

GMEC. [4] proposed a method to transform a given uncontrollable GMEC into a new controllable GMEC.

Their approach is very efficient in computation but the solution is suboptimal, i.e., some legal markings may

no longer be reachable. [5] studied a very similar problem and proposed an algorithm to estimate the maximal

number of tokens a place may uncontrollably get. Furthermore, Luo and Wang [6–8] extensively studied

the GMEC transformation problem in different subclass of Petri net systems, e.g., forward-synchronization-

forward-conflict-free nets.

Recently, Luo et al. extended their approach to solve GMEC transformation problems with fairly arbitrary

uncontrollable subnet structures [9]. However, we believe that some key results in [9] are not correct [10].

Therefore, although we believe that the GMEC transformation technique is an interesting and fruitful tech-

nique to explore, the general GMEC transformation problem still lacks a general solution.

In this paper, we focus on the Petri net models in which the uncontrollable subnet is an assembly-flow

system (AF system, which will be defined in Section 3). An AF system is sequentially composed by sev-

eral assembly-workstations (AWs), each of which contains a shared source place, several sequential work

flows, an assembly transition, and a sink place. An AF system belongs to the Petri net subclass backward-
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synchronization-backward-conflict-free nets (BSBCF nets), i.e., each transition has no more than one output

arc and each place has no more than one input arc. AF system can model assembly work flows with a shared

resource. The model includes both conflicts and synchronizations. We also assume that the initial uncontrol-

lable GMEC to be transformed imposes an upper bound for the marking of the final sink place. This type of

GMEC is commonly used to trim an uncontrollable supervisor [11] in the supervisory control framework .

To our knowledge, the GMEC transformation problem in AF systems and BSBCF nets has not been

studied yet. Therefore the contribution of this paper is two-fold. First, the structure and properties of AW

and AF uncontrollable structure are introduced and characterized. Secondly, we propose an approach called

GMEC composition to obtain a maximally permissive solution which is a disjunction of GMECs called OR-

GMEC. Such type of GMEC can be implemented by a Petri net controller [12,13]. This GMEC composition

technique can well handle the conflict-synchronization structure in GMEC transformation. We note that

the AW and AF model are simple but contain the main features, such as conflict and synchronization, that

characterize complex systems. We believe that these results represent a significant step towards the final goal

of solving the GMEC transformation problem for general classes of Petri nets.

The paper is organized in six sections. Section 2 recalls the basic notions on Petri net and GMECs. Sec-

tion 3 introduces the definition of assembly flow system and state the problem. In Section 4 an algorithm

based on GMEC composition operation is proposed to transform a given GMEC into an equivalent admissi-

ble OR-GMEC if the uncontrollable subnet is an assembly workstation. Section 5 extends the approach in

Section 4 to the systems in which the uncontrollable subnet is an assembly-flow system. Section 6 draws the

conclusions.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; n transi-

tions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence functions

that specify the arcs in the net and are represented as matrices in Nm×n (here N= {0,1,2, . . .}). The incidence

matrix of a net is defined by C = Post −Pre ∈ Zm×n (here Z= {0,±1,±2, . . .}).

For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t)> 0} and its set of output

places as t• = {p ∈ P | Post(p, t)> 0}. The notion for •p and p• are analogously defined.

A marking is a vector M : P →N that assigns to each place of a Petri net a non-negative integer number of

tokens, represented by black dots and can also be represented as a m component vector. We denote by M(p)
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the marking of place p. A marked net ⟨N,M0⟩ is a net N with an initial marking M0. We denote by R(N,M0)

the set of all markings reachable from the initial one.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ = M0 +C(·, t).

We write M[σ⟩ to denote that the sequence of transitions σ is enabled at M, and we write M[σ⟩M′ to denote

that the firing of σ yields M′.

The transition set T can be partitioned into Tc and Tu which represent the controllable and uncontrollable

transition set, respectively. A transition tu ∈ Tu is not controllable, i.e., it cannot be disabled by control places.

Given a net N = (P,T,Pre,Post) we say that N̂ = (P̂, T̂ , P̂re, P̂ost) is a subnet of N if P̂ ⊂ P, T̂ ⊂ T and

P̂re (resp., P̂ost) is the restriction of Pre (resp., Post) to P̂× T̂ . N̂ is said to be the uncontrollable subset of N

if T̂ = Tu and P̂ = {p ∈ P|(•p∪ p•)∩Tu ̸= /0}.

In a net N = (P,T,Pre,Post), a path is a sequence directed from a node x1 to a node xk is a sequence

π = x1x2 · · ·xk such that xi ∈ P∪T for all i = 1, . . . ,k, and xi ∈ •xi+1 for all i = 1, . . . ,k−1. A maximal path

is a path π such that |•x1|= |xk
•|= 0.

2.2 GMECs

A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) where w ∈ Zm and k ∈ N. A GMEC

defines a set of legal markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}

OR-GMEC [13]: An OR-GMEC is a set of GMECs: ξ = {(w1,k1), . . . ,(wr,kr)}. An OR-GMEC defines

a set of legal markings:

LOR(ξ ) = {M ∈ Nm | ∃i ∈ {1, . . . ,r},wT
i ·M ≤ ki}

For sake of simplicity in the following we denote LOR(ξ ) by L (ξ ).

3 Assembly Flow System and Problem Statement

We first gives the definition of Assembly Flow System.

Definition 1 An assembly workstation (AW) is an ordinary Petri net NA =(Pw∪{pst}∪{ped},Tw∪{ta},Pre,Post)

which satisfies: (1) in NA all maximal paths start from pst and end in ta ped; (2) in NA for any two maximal

paths π1,π2 starting from pst and ending in ped , if π1 ̸= π2, then π1 ∩π2 = {pst , ped , ta}. △
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Figure 1: An example of AW.

Figure 2: An example of AF.

Definition 2 An Assembly Flow System (AF system) is a Petri net N which is composed by q assembly

workstations NA1, . . . ,NAq in which NAi = (PA,TA,PreA,PostA) is an AW and the following condition holds:

(1) P =
∪

i PAi,Pi ∩Pi+1 = {pi,ed}= {pi+1,st},∀|i− j|> 1,Pi ∩Pj = /0;(2)T =
∪

i TAi,∀i ̸= j,Ti ∩Tj = /0. △

We give the illustration of an AW and an AF system as an example.

Example 1 In Figure 1, the controllable transition set is Tc = {tc1, tc2} and the uncontrollable transition set

is Tu = {t11, t12, t21, t31, t32, ta}. The subnet N (in red) is an assembly workstation. In Figure 2, the controllable

transition set is Tc = {tc1, tc2, tc3, tc4, tc5, tc6} and the controllable transition set is Tu = T \Tc. The subnet N

(the union of two dashed boxes) is an assembly flow system composed by two assembly workstations NA1 and

NA2 (in each dashed box, respectively). △

From the example one can see that an AW contains a shared source place pst followed by several se-

quential work flows πi. All these work flows merge at an assembly transition ta which is followed by a

sink place ped . From the definition, the AW and AF systems do not belong to the Petri net subclass marked

graph nor state machine since each assembly transition ti,a has more than one inputs and each start place

pi,st has more than one outputs. The AF systems belong to the Petri net subclass backward-synchronization-

backward-conflict-free nets, i.e., each transition has no more than one output arc and each place has no more

than one input arc. Note that an AF system contains a conflict at the starting place and a synchronization at

the assembly transition.

For a given L(w,k), due to the existence of uncontrollable transitions, there may exist some legal marking

M ∈ L(w,k) from which an illegal sequence of uncontrollable transitions σu ∈ T ∗
u may fire, i.e., M[σu⟩M′ /∈
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L(w,k). Correspondingly we define the set of admissible markings A(w,k) to characterize this situation:

A(w,k) = {M ∈ N|P| | (∃σu ∈ T ∗
u ) M[σu⟩M′ /∈ L(w,k)} (1)

We say that a (w,k) is not admissible if L(w,k) ̸= A(w,k). Since there is no way to prevent the firing of

an uncontrollable sequence, all markings not in A(w,k) should be avoided, that is, we need to determine an

admissive ξ such that L (ξ ) = A(w,k).

Finally we state the problem which we will study in the following of this paper.

Problem 1 Consider a Petri net N0 and assume that the uncontrollable subnet of N0 is an AF system N

which is composed by q assembly workstations NA1, . . . ,NAq. Given a GMEC (w0,k0) such that L(w0,k0) =

{M|M(pq,ed)≤ k0}, determine an equivalent admissible OR-GMEC ξ such that L (ξ ) = A(w,k). △

4 Composition of GMECs in Single Assembly Workstation

We start with the case in which there exists only one AW in N, i.e., q = 1. Since in an AW all maximal paths

start in pst and end at ta ped . We use πi to denote these paths, i.e., π1, . . . ,πr where r is the number of maximal

paths.

Definition 3 Given an assembly workstation N containing r maximal paths and given a legal marking set

L(w,k) in which (w,k) is a GMEC: M(ped)≤ k0, the elementary constraint set of (w,k) is defined as C(w,k) =

{(wi,ki),1 ≤ i ≤ r}, in which each (wi,ki) is computed by the following procedure:


wi(p) = 1, p ∈ πi

wi(p) = 0,else

ki = k0

(2)

△

We use ξC to denote the disjunction of GMECs in C(w,k), i.e., L (ξC) = {M|∃(w,k) ∈C(w,k),wT ·M ≤ k}.

Proposition 1 Any (wi,ki) ∈C(w,k) is non-increasing, i.e., the firing of any transition in Tu will not increase

the token count of (wi,ki).

Proof: Consider an arbitrary GMEC (wı,kı) ∈ C(w,k). From the definition of C(w,k) a transition t in N

must satisfy one of the following cases:
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Figure 3: The Petri net for Example 2.

(1) t ∈ πı, then ∑wı(
•t) = ∑wı(t•) = 1;

(2) t /∈ πı, t /∈ p•st , then ∑wı(
•t) = ∑wı(t•) = 0

(3) t /∈ πı, t ∈ p•st , then ∑wı(
•t) = 1,∑wı(t•) = 0

Therefore the firing of any t ∈ Tu does not increase the token count of (wi,ki) ∈C(w,k). � � From

Proposition 1 we immediately have the following corollary.

Corollary 1 ξC is controllable.

The following theorem shows that any marking which satisfies ξC is admissible.

Theorem 1 Given an assembly workstation N and L(w,k) = {M|M(ped)≤ k0}, it holds: L (ξC)⊆ A(w,k).

Proof: For all M ∈L (ξC), there must exist at least one (wi,ki) in C(w,k) such that wT
i ·M ≤ ki. Suppose

wT
ı ·M ≤ kı = k0. For all M′ /∈ L(w,k), since M′(ped)> k0, it must hold wT

ı ·M′ > k0. According to Proposi-

tion 1, the firing of any transitions in N will not increase the token count of (wı,kı), therefore M would never

reach M′ /∈ L(w,k). � �

Unfortunately, the converse of Theorem 1 does not hold: typically L (ξC) ̸= A(w,k). We prove this by

means of an example.

Example 2 Consider the Petri net N0 in Figure 3 in which Tu = {t2, t3, t4}. Suppose the initial constraint is

(w0,k0) = ([0,0,0,1],1), i.e., M(p4) ≤ 1. One can easily obtain C(w0,k0) = {([1,1,0,1],1), ([1,0,1,1],1)}.

Therefore M = [2,0,0,0] /∈L (ξC) since it violates both constraints. However, it is obvious that M ∈A(w0,k0).

△

Example 2 shows that if one uses ξC to design a controller, all reachable markings of the closed-loop

system are legal, but the controller is not always optimal, i.e., it is not maximally permissive. Notice that the

two GMECs in ξC are exactly the two possible solutions obtained by Moody and Antsaklis’ approach [4], this

indicates that the disjunction of all the suboptimal GMECs in Moody and Antsaklis’ approach is not always

the optimal OR-GMEC solution for the system.
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To solve this problem we introduce the GMEC composition technique.

Definition 4 Given an elementary constraint set: C(w,k) = {(w1,k1), . . . ,(wr,kr)}, let Xi, i = 1, . . . ,(2r − 1)

be the non-empty subset of C(w,k). For each constraints set Xi we use sXi ∈ Nr to denote the support vector of

Xi: (w j,k j) ∈ Xi ⇒ sXi( j) = 1, else sXi( j) = 0. △

Definition 5 Given an assembly workstation N, a GMEC (w,k) : M(ped) ≤ k and its elementary constraint

set C(w,k), the composition GMEC set is defined as D(w,k) = {(wi,ki)|i = 1, . . . ,(2r − 1)}, in which for all

Xi,(wi,ki) is computed by the following procedure:


wi(pst) = 1

wi(p) = ∑r
j=1 sXi( j) ·w j(p), p ̸= pst

ki = (∑r
j=1 sXi( j) · (k j +1))−1

(3)

We say that (wi,ki) is composed by the j-th constraint for all j : sXi( j) = 1. △

We let ξD be the disjunctive GMEC of D(w,k), i.e., L (ξD) = {M|∃(w,k)∈ D(w,k),wT ·M ≤ k}. Obviously

L (ξC)⊆ L (ξD).

Like the GMECs in C(w,k), the GMECs in D(w,k) are also non-increasing, which indicates ξD the disjunc-

tion of GMECs in D(w,k) is controllable.

Proposition 2 Any (w,k) ∈ D(w,k) is non-increasing.

Proof: Consider an arbitrary GMEC (w′,k′) in D(w,k) which is composed by several (w j,k j) in C. With-

out loss of generality suppose (w′,k′) is composed by the first r̄ constraints in C(w,k), i.e., (w1,k1), . . . ,(wr̄,kr̄).

Since ∀π1,π2 in N, (π1 ̸= π2)⇒ (π1∩π2 = {pst , ta, ped}), then for all places p∈
∪r̄

1 πi, p ̸= ped , w′(p)= 1,

for all places p /∈
∪r̄

1 πi,w′(p) = 0, and w′(ped) = r̄. Then, any transition t in N must satisfy one of the

following cases:

(1) t ∈
∪r̄

1 πi, t ̸= ta, then ∑w′(•t) = ∑w′(t•) = 1;

(2) t = ta, then ∑w′(•ta) = ∑w′(t•a ) = r̄;

(3) t /∈
∪r̄

1 πi, t /∈ p•st , then ∑w′(•t) = ∑w′(t•) = 0;

(4) t /∈
∪r̄

1 πi, t ∈ p•st , then ∑w′(•t) = 1,∑w′(t•) = 0;

In each case the firing of t will not increase the token count of (w′,k′). Therefore any (w,k) ∈ D(w,k) is

non-increasing.. � � From Proposition 2 we immediately have the following corollary.
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Corollary 2 The firing of any t ∈
∪r̄

1 πi (r̄ ≤ r) will not change the token count of (w,k) ∈ D(w,k) where (w,k)

is composed by (w1,k1), . . . ,(wr̄,kr̄).

Proof: Trivial, since t must be in one of the first two cases in the proof of Proposition 2. � �

Now we present the following theorem showing that a marking M is legal if and only if M satisfies ξD.

Theorem 2 Given an assembly workstation N and given (w,k) : M(ped)≤ k0, it holds: L (ξD) = A(w,k).

Proof: We prove this theorem by proving L (ξD)⊆ A(w,k) and L (ξD)⊇ A(w,k).

(L (ξD)⊆A(w,k)) : for any marking M ∈L (ξD), there must exist at least one constraint (w′,k′) in D(w,k)

such that w′T ·M ≤ k′. Without loss of generality, suppose (w′,k′) is composed by the first r̄ constraints

in C(w,k). Notice that for any M′ /∈ L(w,k), M′(ped) ≥ k0 + 1. Since w′(ped) = r̄, it must hold w′T ·M′ ≥

r̄(k0 +1)> [r̄ · (k0 +1)−1] = k′. Since w′T ·M ≤ k′, according to Proposition 2, the firing of any transitions

in N will not increase the token count of (w′,k′). Therefore M would never reach M′ such that w′T ·M′ > k′,

which indicates L (ξD)⊆ A(w,k).

(L (ξD)⊇ A(w,k)) : Suppose M violates all constraints in D(w,k). We prove that M can always evolve to a

marking M′ which is not in L(w,k) by firing only uncontrollable transitions.

For each (wi,ki) ∈C(w,k), we construct a corresponding (w′
i,ki) such that w′

i(pst) = 0,∀p ̸= pst ,w′
i(p) =

wi(p), and we put all these GMEC in a set C′. Without loss of generality, we suppose M satisfies the first

r̂ ≤ r constraints of C′. Then we do the following operation:

• Step-1: Let t ∈ (p•st ∩π1) fire under M until the current marking M1 satisfies: w′
1 ·M1 = k1 + 1, i.e.,

(w′
1,k1) is just violated.

• Step-2: Let t ∈ (p•st ∩π2) fire under M1 until the current marking M2 satisfies: w′
2 ·M2 = k2 + 1, i.e.,

(w′
2,k2) is just violated.

• . . .

• Step-r̂: Let t ∈ (p•st ∩πr̂) fire under Mr̂−1 until the current marking Mr̂ satisfies: w′
r̂ ·Mr̂ = kr̂ +1, i.e.,

(w′
r̂,kr̂) is just violated.

We claim that this operation can always be carried out until step r̂. Since each firing will modify the token

counts of corresponding GMECs by one at most, if the r̄-step (r̄ < r̂) cannot be done, i.e., Mr̄(pst) = 0, the

current marking Mr̄ must satisfy:
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∑ j Mr̄(pi j)+Mr̄(ped) = ki +1, pi j ∈ πi,∀i < r̄

Mr̄(pst)+∑ j Mr̄(pr̄ j)+Mr̄(ped)< kr̄ +1, pr̄ j ∈ πr̄

(4)

Therefore we have:

Mr̄(pst)+
r̄

∑
i=1

∑
j

Mr̄(pi j)+ r̄ ·Mr̄(ped)≤ r̄ · (k0 +1)−1 (5)

which indicates Mr̄ satisfies at least one (w′′,k′′) ∈ D(w,k) with the corresponding s(w′′,k′′) : s(w′′,k′′)( j) =

1, j ≤ r̄,s(w′′,k′′)( j) = 0, j > r̄. According to Corollary 2 the token count of (w′′,k′′) should be the same under

Mr̄ and M, indicating M satisfies (w′′,k′′). This contradicts the fact that M violates all GMECs in D(w,k).

Therefore, this operation can be done completely and a marking Mr, which violates all (w′
i,ki), is reached.

If Mr(ped) > k0,Mr /∈ L(w,k). Suppose Mr(ped) = k̄ ≤ k0 and all places in P \{pst , ped} are empty (this

can be done by repeatedly firing the transitions in T \ {ti1, ta}). Since for any pi ∈ •ta it holds ∑ j Mr(pi j)+

Mr(ped)≥ k0 +1, therefore there are at least k0 +1− k̄ tokens in each pi. We let ta fire k0 +1− k̄ times under

Mr and then it would reach a marking MB such that MB(ped) ≥ k0 + 1, indicating MB /∈ L(w,k). Therefore

M /∈ A(w,k). Therefore L (ξD)⊇ A(w,k). � �

5 Assembly-Flow System

In this section we consider the case in which there are q > 1 AWs in an AF. We first give some extended

definitions.

Definition 6 (Weakly non-increasing GMEC) Given an assembly flow system N containing q assembly

workstations NA1, . . . ,NAq, a GMEC (w,k) is said to be weakly non-increasing with an index q̄ if the fol-

lowing two conditions hold: (1) the firing of tq̄−1,a will increase the token count of (w,k); (2) the firing of any

other transition t ̸= tq̄−1,a will not increase the token count of (w,k). In particular, if there does not exist a

tq̄−1,a which satisfies the first condition, we say (w,k) is weakly non-increasing with index 1. △

Example 3 Consider the uncontrollable subnet in Figure 2. The following GMEC: M(ped1) +M(p31) +

M(ped2) ≤ 1 is a weakly non-increasing GMEC with an index 2, because only the firing of t1,a in NA1 will

increase its token count. △

We point out that the weakly non-increasing property is a basis of our approach (see Theorem 3). We will

show, at the end of this section, that to solve Problem 1 in each iteration of Algorithm 1 the resulting GMECs
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are always weakly non-increasing.

Then we extend the definition of elementary GMEC set C(w,k) and composition GMEC set D(w,k). We use

π j,i to denote the path corresponding to the i-th work flow in NA j.

Definition 7 Given an assembly flow system N containing q assembly workstations (sequentially) NA1, . . . ,NAq

and given a GMEC (w,k) which is weakly non-increasing with an index q̄+1. Suppose NAq̄ contains r work

flows. The elementary constraint set of (w,k) is defined as C(w,k) = {(wi,ki),1 ≤ i ≤ r} is a set of GMEC, in

which each (wi,ki) is computed by the following procedure:



wi(p) = 1, p ∈ πq̄,i

wi(p) = w(p), p ∈ πq̂, q̂ ≥ q̄+1

wi(p) = 0,else

ki = k0

(6)

The composition GMEC set is defined as D(w,k) = {(wi,ki)|i = 1, . . . ,(2r −1)}, in which for all Xi,(wi,ki)

is computed by the following procedure:


wi(pq̄,st) = 1

wi(p) = ∑r
j=1 sXi( j) ·w j(p), p ̸= pq̄,st

ki = (∑r
j=1 sXi( j) · (k j +1))−1

(7)

△

The following proposition shows that all constraints in C(w,k) and D(w,k) are weakly non-increasing with

a decreased index.

Proposition 3 For any GMEC (w,k) which is weakly non-increasing with an index q̄: (1) The firing of

any t ∈ TAq̂, q̂ ≥ (q̄− 1) will not increase the token count of any GMEC in D(w,k); (2) The firing of any

t ∈ TAq̄−1, t ∈
∪r̄

j=1 πq̄−1, j (r̄ ≤ r) will not change the token count of (w′,k′)∈D(w,k) where (w′,k′) is composed

by first r̄ GMECs in C(w,k).

Proof: For simplicity we do not present a formal proof. These properties can be deduced analogously

to the proofs of Proposition 1, 2 and Corollary 2. � �

Corollary 3 If (w,k) a is weakly non-increasing GMEC with an index q̄, then each GMECs in D(w,k) is

weakly non-increasing with an index q̄−1.
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Proof: Straight forward from Proposition 3. � �

If the index q̄ > 1, the constraints in C(w,k) and D(w,k) are not controllable, i.e., L (ξD)⊃A (ξD), because

the firing of tq̄−1,a will increase the token count of the GMECs in C(w,k) and D(w,k). This means that M ∈

L (ξD); M ∈ A(w,k). However, the following theorem show that a marking M is legal if and only if M ∈

A (ξD). The proof is analogous to the proof of Theorem 1.

Theorem 3 Given an assembly flow system N containing q AW NA1, . . . ,NAq and given a GMEC (w,k) which

is weakly non-increasing with index q̄ > 1, then it holds: A (ξD) = A(w,k).

Proof: A (ξD)⊆ A(w,k): suppose there exists a marking M0 ∈ A (ξD). It indicates that for all M which

is uncontrollably reachable from M0, M must satisfy at least one GMEC (w′,k′) in ξD. Due to the same

reasoning of Theorem 1, for any marking M′ /∈ L(w,k), it must holds w′T ·M > k′. This means that M would

never evolve to M′ which violates (w,k).

A (ξD)⊇A(w,k): suppose there exists a marking M0 /∈A (ξD), i.e., from M0 by firing some uncontrollable

transitions, a marking M which violates all constraints in ξD can be reached. We prove that M can always

evolve to a marking M′ /∈ L(w,k) by firing only uncontrollable transitions.

For each (wi,ki) ∈ C(w,k), we construct a corresponding (w′
i,ki) such that w′(pq̄−1,st) = 0 and ∀p ̸=

pq̄−1,st ,w′(p) = w(p) and put all these GMECs in C′. Without loss of generality, suppose M satisfies the

first r̂ constraints in C′. Then we do the following operation:

• Step-1: Let t ∈ (p•q̄−1,st ∩πq̄−1,1) fire under M until the current marking M1 satisfies: w′
1 ·M1 = k1 +1;

• Step-2: Let t ∈ (p•q̄−1,st ∩πq̄−1,2) fire under M1 until the current marking M2 satisfies: w′
2 ·M2 = k2 +1;

• . . .

• Step-r: Let t ∈ (p•q̄−1,st ∩πq̄−1,r̂) fire under Mr−1 until the current marking Mr satisfies: w′
r̂ ·Mr̂ = kr̂+1;

By the same reasoning in the proof of Theorem 1, this operation can always be carried out until the last

step. Therefore we let tq̄,a fire k+1− k̄ times and then it would reach a marking MB such that wT ·MB ≥ k+1

indicating MB /∈ L(w,k). Therefore M /∈ A which indicates A (ξD)⊇ A(w,k). � �

Finally we present an iterative algorithm to solve Problem 1.

Algorithm 1 Compute ξ

INPUT: N = NA1 +NA2 + . . .+NAq, (w0,k0)≡ (M(pq,ed)≤ k)

12



OUTPUT: An admissible OR-GMEC ξ , L (ξ ) = A(w0,k0)

Step 1: Let counter index u = q+1, let Dq+1 = {(w0,k0)};

Step 2: For each GMEC (w′,k′) in Du, compute the corresponding Cu−1,(w′,k′) and then Du−1,(w′,k′);

Step 3: Let Du−1 =
∪

(w′,k′)∈Du Du−1,(w′,k′). Let u = u−1. If u > 1, goto Step 2;

Step 4: Output ξ1 as the disjunction of all GMECs in D1. △

Algorithm 1 works in the following way. Suppose the AF system contains q AWs. For the given (w0,k0)

we first construct Dq = D(w,k). Then we iteratively compute Du−1 =
∪

(w′,k′)∈Du Du,(w′,k′) until the count index

is u = 1.

The correctness of Algorithm 1 is guaranteed by the following two theorems.

Theorem 4 In each iteration of Algorithm 1, A (ξu−1) =A (ξu), where ξu is the disjunction of all constraints

in Du.

Proof: (A (ξu−1) ⊆ A (ξu)) For any marking M ∈ A (ξu−1), M must satisfy at least one GMEC in

D(wi,ki). Therefore according to Theorem 3, M would never uncontrollably evolve to a marking which violates

(wi,ki). This indicates M ∈ A (ξu). Therefore A (ξu−1)⊆ A (ξu).

(A (ξu−1) ⊇ A (ξu)) For any marking M0 /∈ A (ξu−1), M would uncontrollably evolve to M′ which vio-

lates all GMECs in D(wi,ki). Thus for each (wi,ki) there exists σi : M′[σi⟩M′′
i which violates (wi,ki). Notice

that σi can be constructed by doing the procedure described in the proof of Theorem 3, and all such sequences

σi ∈ T ∗
Au. Thus for all p ∈ PAv,v ≥ u, it holds M′′

i (p) = M′′
j (p). Therefore we choose a M̄′′

i such that for all

j ̸= i, M′′
j (pu,ed) ≤ M′′

i (pu,ed). Then M̄′′
i can be reached from M by firing uncontrollable transitions and M̄′′

i

violates all (wi,ki). Therefore A (ξu−1)⊇ A (ξu). � �

Theorem 5 Given an AF system N which is composed by q assembly workstations NA1, . . . ,NAq and given a

GMEC (w0,k0) : {M|M(pq,ed)≤ k0} as the input of Algorithm 1, let ξ1 be the output of Algorithm 1. It holds:

L (ξ1) = A(w0,k0).

Proof: Obviously (w0,k0) in Dq+1 is a weakly non-increasing GMEC with an index q+ 1. In each

iteration each GMEC in Du is substituted by
∪

Dq,(w,k). According to Theorem 4, A (ξu−1) = A (ξu). Since

in each iteration each new generated GMECs are always weakly non-increasing, Theorem 3 and 4 can be

applied repeatedly until u = 1. Therefore A (ξ1) = A(w0,k0). Since for all GMECs in D1 are weakly non-

increasing with an index 1, no uncontrollable transition in N will increase the token count of any GMECs in

D1, so we have A (ξ1) = L (ξ1). This concludes L (ξ1) = A(w0,k0). � �
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At the end of this section we give an example to illustrate Algorithm 1.

Example 4 Consider the net in Figure 2. Let M = [M(pst1), M(p11), M(p12), M(p21), M(p22), M(pst2),

M(p31), M(p41), M(ped2)]. Suppose in D3 the initial GMEC is (w0,k0) : M(p2,ed) ≤ 1. In the first itera-

tion, NA2 is analyzed, and two elementary GMEC c1 : M(pst2)+M(p31)+M(ped2) ≤ 1 and c2 : M(pst2)+

M(p41)+M(ped2)≤ 1 are put in C2 and one composition GMEC c3 : M(pst2)+M(p31)+M(p41)+2M(ped2)≤

3 is put in D2. All these constraints are then put in D2. In the second iteration, NA1 is analyzed, and each

ci(i = 1,2,3) are replaced by two elementary GMECs ci1,ci2 and one composition GMEC ci3. All these

GMECs are put in D1. Then Algorithm 1 ends and output ξ the disjunction of nine GMECs in D1 (see

below):

(w11,k11) : ([1,1,1,0,0,1,1,0,1],1)

(w12,k12) : ([1,0,0,1,1,1,1,0,1],1)

(w13,k13) : ([1,1,1,1,1,2,2,0,2],3)

(w21,k21) : ([1,1,1,0,0,1,0,1,1],1)

(w22,k22) : ([1,0,0,1,1,1,0,1,1],1)

(w23,k23) : ([1,1,1,1,1,2,0,2,1],3)

(w31,k31) : ([1,1,1,0,0,1,1,1,2],3)

(w32,k32) : ([1,0,0,1,1,1,1,1,2],3)

(w33,k33) : ([1,1,1,1,1,2,2,2,4],7)

(8)

△

6 Discussion and Conclusion

In this paper we studied the constraint transformation problem in Petri net systems which contain a special

uncontrollable structure called assembly flow system. The composition GMECs are introduced to handle

the conflict-synchronization structure. It is straight forward to extend this approach to systems in which

the uncontrollable subnet has a multi-conflict-multi-synchronization structure, by expanding pst and ta into

several sequential conflict places and synchronization transitions. An example is given in Figure 4. The

uncontrollable subnet in Figure 4 is equivalent to the uncontrollable subnet in Figure 1.

We believe this approach can also be extended to uncontrollable subnets which have backward-conflict-

free structure, i.e., each place has at most one input, which is a more general subclass of Petri nets. This will

be the aim of our future work.
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Figure 4: A Petri net with uncontrollable subnet AW equivalent to the AW subnet in Figure 1.

References

[1] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion constraints for Petri nets with un-

controllable transitions,” in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, Chicago, USA,

1992, pp. 947–949.

[2] Z. W. Li, N. Q. Wu, and M. C. Zhou, “Deadlock control of automated manufacturing systems based on

Petri nets - a literature review,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 42,

no. 4, pp. 437–462, 2012.

[3] F. Basile, C. Carbone, and P. Chiacchio, “Feedback control logic for backward conflict free choice nets,”

IEEE Transactions on Automatic Control, vol. 52, no. 3, pp. 387–400, 2007.

[4] J. Moody and P. Antsaklis, “Petri net supervisors for DES with uncontrollable and unobservable transi-

tions,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 462–476, 2000.

[5] L. E. Holloway, A. S. Khare, and Y. Gong, “Computing bounds for forbidden state reachability functions

for controlled Petri nets,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 34, no. 2,

pp. 219–228, 2004.

[6] J. L. Luo, W. M. Wu, H. Y. Su, and J. Chu, “Supervisor synthesis for enforcing GMECs on a controlled

Petri net,” in Proc. 25th American Control Conference, Minneapolis, USA, 2006, pp. 4165–4170.

[7] ——, “Supervisor synthesis for a class of forbidden state problems in Petri nets,” in Proc. 25th American

Control Conference, Minneapolis, USA, 2006, pp. 4171–4176.

[8] S. G. Wang, C. Y. Wang, and M. C. Zhou, “A transformation algorithm for optimal admissible general-

ized mutual exclusion constraints on Petri nets with uncontrollable transitions,” in Proc. IEEE Int. Conf.

on Robotics and Automation, Shanghai, China, 2011, pp. 3745–3750.

[9] J. L. Luo, H. Shao, K. Nonami, and F. J. Jin, “Maximally permissive supervisor synthesis based on a

new constraint transformation method,” Automatica, vol. 48, no. 6, pp. 1097–1101, 2012.

15



[10] Z. Y. Ma, Z. W. Li, and A. Giua, “Comments on “Maximally permissive supervisor synthesis based on

a new constraint transformation method” [Automatica 48 (2012), 1097-1101],” Automatica, vol. 51, pp.

131–134, 2015.

[11] A. Giua, “Supervisory control of Petri nets with language specifications,” in Control of discrete-event

systems, C. Seatzu, M. Silva, and J. van Schuppen, Eds. London: Springer, 2013, vol. 433, pp. 235–

255.

[12] M. V. Iordache and P. J. Antsaklis, “Petri net supervisors for disjunctive constraints,” in Proc. 26th

American Control Conference, New York, USA, 2007, pp. 4951–4956.

[13] Z. Y. Ma, Z. W. Li, and A. Giua, “Petri net controllers for disjunctive generalized mutual exclusion

constraints,” in Proc. IEEE Int. Conf. on Emerging Technologies and Factory Automation, Cagliari,

Italy, 2013, pp. 1–8.

16


