
Fast Discrete Consensus Based on Gossip
for Makespan Optimization

in Networked Systems

Mauro Franceschelli†, Alessandro Giua†‡, Carla Seatzu†.

† DIEE, University of Cagliari, Cagliari, Italy
‡ LSIS, University of Aix-Marseille, Marseille, France

Abstract: In this paper we propose a novel algorithm to solve the discrete consensus problem,
i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a
networked system. Tokens are tasks to be executed by the nodes and the proposed distributed
algorithm optimizes monotonically the makespan of the assigned tasks. The algorithm is based
on gossip-like asynchronous local interactions between the nodes. The convergence time of
the proposed algorithm is superior with respect to the state of the art and grows at worst
quadratically with respect to the number of nodes.

Draft version, published as: M.Franceschelli, A. Giua, C. Seatzu, ”Fast Discrete Consensus
Based on Gossip for Makespan Minimization in Networked Systems”, 19th WC of the Interna-
tional Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014.

M. Franceschelli, A. Giua, C. Seatzu are with the Dept. of Electrical and Elec-
tronic Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy. Email:
{mauro.franceschelli,giua,seatzu}@diee.unica.it. A. Giua is also with LSIS, University of Aix-
Marseille, Marseille, France. The research leading to these results has received funding from
the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement
n 257462 HYCON2 Network of excellence and by Region Sardinia, LR 7/2007 (call 2010) under
project SIAR (CRP-24709).

1. INTRODUCTION

The problem of quantized consensus consists in the design of a decentralized algorithm to steer a set of quantized state
variables toward a common value. One of the early formulations of the quantized consensus problem was in Kashyap
et al. (2007) where the issue of quantization to implement consensus algorithms was brought to attention and a solution
inspired by distributed load balancing of quantized indivisible tasks was proposed inspired by similar approaches by
Cybenko (1989); Ghosh and Muthukrishnan (1996); Herlihy and Tirthapura (2005); Houle et al. (1999). Since then,
several approaches were developed to study the issues of quantization for the consensus problem. See, e.g., Cai and Ishii
(2011); Carli et al. (2010); J. Lavaei and Murray (2012); Zhu and Mart́ınez (2011); Franceschelli et al. (2010, 2011).

In Franceschelli et al. (2010) it is proposed a generalization of the quantized consensus problem called discrete consensus,
i.e., the problem of distributing evenly a set of indivisible tokens of different weight. Thus, quantized consensus is a
special case of discrete consensus where all tokens are of equal weight. An extended version of the discrete consensus
algorithm characterized by an improved convergence time is proposed in Franceschelli et al. (2011) where the existence
of a known Hamiltonian cycle in the network is required. The key idea of these algorithms consists in swapping the
current task assignment between nodes which can not further optimize locally their current task assignment. This simple
operation has shown to bring great benefits to the performance of these algorithms.

In Fanti et al. (2012) the problem of distributed task assignment is formalized as a distributed consensus algorithm.
The authors consider tasks of different cost and type which can be executed only by subsets of nodes in the network.

In Cai and Ishii (2011) a quantized consensus algorithm for networks described by directed graphs is proposed.

In Carli et al. (2010) the quantized consensus problem is formulated with nodes with continuous states but capable
of transmitting only a finite number of symbols. The authors study algorithms in the framework of randomized
gossip algorithms developed by Boyd et al. (2006) applying deterministic and probabilistic uniform quantizers with
a combination of three local state update rules defined as partially quantized, totally quantized and compensating.

In this paper we propose a novel decentralized algorithm based on gossip to solve the discrete consensus problem. The
proposed algorithm converges in linear time with respect to the number of nodes for graphs of given diameter.

This paper extends our results in Franceschelli et al. (2011) in that existence of an Hamiltonian cycle in the network is
no longer required.

Several approaches to the study of the convergence time of quantized consensus problems investigated by Kashyap
et al. (2007); J. Lavaei and Murray (2012); Zhu and Mart́ınez (2011) are based on the computation of the average
meeting time between two random walks in the graph that represents the network topology. In this paper, we propose
an alternative approach to analyze the convergence time based on the computation of the expected time it takes for
an edge selection process to select all edges in the graph. This analysis allows to include in a simple way the inherent
parallelism of asynchronous state updates in the computation of the convergence time.

Summarizing, the contributions of this paper are the following.

• A novel algorithm to solve the discrete and quantized consensus algorithm is proposed.
• The algorithm converges almost surely in finite time, the expected convergence time grows at best linearly and at
worst quadratically with respect to the number of nodes depending on the graph topology.

• With respect to Franceschelli et al. (2011), we both improve the convergence time and remove the assumption that
there exists a known Hamiltonian cycle in the network.

• Simulations are provided to compare the theoretical upper bound to the convergence time with the simulated
convergence time for networks with increasing number of nodes.

2. PROBLEM STATEMENT

Consider a network of n nodes whose connections can be described by an undirected connected graph G = (V, E), where
V = {1, . . . , n} is the set of nodes and E ⊆ {V ×V} is the set of edges that represent the existence of a communication
link. We consider K indivisible tokens to be assigned to the nodes, and a weight cj ∈ N+, j = 1, . . . ,K, is associated with
each token. We define a weight vector c ∈ NK whose j-th component is equal to cj and n binary vectors yi ∈ {0, 1}K
such that yi,j = 1 if the j-th token is assigned to node i, yi,j = 0 otherwise. Finally, cmax = maxj=1,...,K cj . To each
node i ∈ V is allocated a load xi = cT yi consisting in the sum of the weight of tokens assigned to node i. Denoting
Y (t) = [y1(t) y2(t) . . . yn(t)] the state of the network at time t, we want to achieve a network state that belongs to the
set

Y = {Y = [y1 y2 . . . yn] |
∣∣cT yi − cT yj

∣∣ ≤ cmax,

∀i, j ∈ V} (1)

under the constraint of constant total load. Let x = [x1 x2 . . . xn]
T
= Y T c, it holds 1Tx(t) = 1Tx(0) for any t ≥ 0,

where x(0) represents the initial load configuration. We say that discrete consensus is achieved when the state of all
nodes in the network satisfy condition (1).

2

3. PRELIMINARIES

In this section we introduce some notation and some local interaction rules that are exploited by the Fast Discrete
Consensus Algorithm 1 whose statement and characterization of convergence properties are the main contribution of
this paper.

We denote an arbitrary node as the sink node and without loss of generality we assume that it is the node with id
i = 1. In this paper we consider the following working assumpion.

Assumption 3.1. Any node i ∈ V knows its distance hi from the sink node, i.e., the length of the shortest path from
node i to node 1. �

Note that h1 = 0 and hi > 0 for i > 1. We point out that the estimation of the information required by Assumption 3.1
without any a priori knowledge on the network topology and with a sink node with label unknown to all the other
agents can be performed easily in a distributed and asynchronous way with simple message passing between the nodes.
Due to space constraints we do not discuss this known approach in this paper, it will be presented in a future work.

Definition 3.2. Given a graph G = (V, E) we call depth of the graph with respect to the sink node, or shortly depth,
the length of the greatest distance hi from any node i and the sink node, i.e., d(G) = maxi∈V hi. �

Obviously, for any choice of the sink node the depth is always smaller than or equal to the diameter of G. To each node
i ∈ V at any time instant t we associate two state variables: xi(t) is equal to the load associated with the i-th node at
time t; zi(t) is equal to the local estimation of the sink load at time t of node i. Clearly, the sink node always estimates
correctly its own load and it holds z1(t) = x1(t) for all t ≥ 0.

Let Ki(t) be the set of indices of tokens assigned to node i at time t. We denote K̂ij(t) = Ki(t)∪Kj(t) the set of tokens

present in nodes i and j at time t. We define ĉ(t) = c ↑ K̂ij(t) the projection of c on K̂ij(t), namely a vector whose
elements are the weights of the tokens present in nodes i and j at time t. Using the same notation we define two binary
vectors ŷi(t) = yi(t) ↑ K̂ij(t) and ŷj(t) = yj(t) ↑ K̂ij(t), in other words each vector has a number of elements equal to
the number of tokens locally present in the nodes.

We now introduce a local state update rule to average the load of two nodes incident on the selected edge. The rule
computes a new token assignment Ki(tk+1), Kj(tk+1) given the token assignment Ki(tk), Kj(tk) at t = tk. This local
state update rule between nodes i and j involves a heuristic that was presented in Franceschelli et al. (2007). This
heuristic can be summarized as follows.

Rule 3.3. (Balancing rule).

(1) Let K = Ki ∪ Kj .
(2) Let K′

i := ∅ and K′
j := ∅ (we define new temporary sets, both initialized to the empty set, including the indices of

tokens in the selected nodes).
(3) While K ̸= ∅, do

• let δ := argmaxj∈Kcj ;

• if
∑
r∈K′

i

cr ≤
∑
r∈K′

j

cr, then let K′
i := K′

i ∪ {δ}, K′
j := K′

j ; (if the load of the i-th node is smaller than or equal

to that of the j-th node, then assign the current token to node i)
else let K′

i := K′
i, K′

j := K′
j ∪ {δ}.

• K := K \ {δ}
endwhile

(4) if

∣∣∣∣∣∣
∑
j∈K′

i

cj −
∑
j∈K′

j

cj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
r∈Ki

cr −
∑
r∈Kj

cr

∣∣∣∣∣∣ ,
and K′

i ̸= Ki(tk) or K′
j ̸= Kj (we find a solution that is neither worse nor equal to the previous one) then let

Ki := K′
i, Kj := K′

j . �

This balancing rule can be completed in |K| steps, thus with linear complexity with respect to the number of tokens
contained in node i and j. The resulting load configuration reduces the maximum load by making the load difference
surely less than or equal to |cmax − cmin| as in Franceschelli et al. (2007). It can be shown that the proposed heuristic
provides an assignment with absolute performance guarantee of error less than cmax with respect to the optimal solution
of the corresponding optimization problem.

Let us now introduce an elaborate local state update rule which exploits Rule 3.3 to locally balance the tokens between
pairs of nodes. In the following we denote xi(tk) = cT yi(tk) the sum of the costs of tasks assigned to node i at time tk.

Rule 3.4. (Local State Update Rule).

(1) Let r = argmini,j{hi, hj} and s ∈ {i, j} with s ̸= r.
(2) If |xi(tk)− xj(tk)| > cmax then apply the Balancing Rule 3.3.

3

endif.
Assign the largest load to the node closest to the sink according to

p = argmaxi,j{xi, xj};
q = argmini,j{xi, xj};
Kr = Kp

Ks = Kq

(2)

(3) If r = 1 (sink node) then {
zr(tk+1) = xr,

zs(tk+1) = xr.
(3)

else {
zr(tk+1) = zr(tk),

zs(tk+1) = zr(tk).
(4)

endif.

�

In simple words, Step 2 balances the load of the two given nodes, when possible, and assigns the largest load to the
node r closest to the sink node. In Step 3 the node s furthest from the sink node updates its estimate by adopting the
estimate of node r closest to it. Node r keeps its estimate of the sink load unaltered. If the sink node itself is involved,
then both nodes update their estimation with the actual load of the sink node.

Next we define a further local state update rule that consists only in swapping the current task assignment between
two nodes.

Rule 3.5. (Swap). Let Ki(tk) and Kj(tk) be the set of tasks assigned to nodes i and j and time tk. A swap is a local
state update that exchanges both sets of tasks as follows{Ki(tk+1) = Kj(tk)

Kj(tk+1) = Ki(tk)
(5)

�

The aim of the swap operation is to ensure that the case when no node can balance its load with any of its neighbors
may happen only if the network has reached the discrete consensus state.

4. PROPOSED ALGORITHM

In this section we state the main contribution of this paper, namely the Fast Discrete Consensus (FDC) algorithm.

Algorithm 1. (Fast Discrete Consensus).

(1) Let k = 0, tk = 0, xi(tk) = cT yi(tk), z1(tk) = x1(tk) and zi(tk) = 0 for i = 2, . . . , n.
(2) Select an edge (i, j) according to an edge selection process.
(3) Apply the Local State Update Rule 3.4.
(4) Let s be the index of the node furthest from the sink node.

If zs − xs > cmax, then execute a Swap of the updated states according to Rule 3.5
(5) Let k = k + 1 and go back to Step 2.

�

Due to space constraints we do not discuss a stop criterion for Algorithm 1. However, it can be shown that after discrete
consensus has been achieved there exists a maximum interval of time after which no more load exchanges between
nodes may happen.

We now briefly explain the main steps of Algorithm 1. At Step 3 the local state update rule balances the loads of the
nodes whenever possible and makes sure that the largest load is assigned to the node closest to the sink. Moreover it
updates the estimation of the sink load.

Then, at Step 4 if the node furthest from the sink has a load sufficiently small such that a balancing is possible with
the sink node according to its estimation, then loads are swaped between the nodes. This is to ensure that loads that
can be balanced with the sink node are moved closer to it at each iteration.

Note that the above algorithm iterates on the number of selected edges. This implies that several edges may perform the
state update rule simultaneously with the only exception of two edges incident on the same node. Moreover, Algorithm 1
exploits only locally available information at each step.

Next we show an example of execution of Algorithm 1 to further clarify its functioning.

Example 4.1. Consider the network of 4 nodes depicted in Fig. 1. Nodes are labeled from 1 to 4. The sink node is
node 1. Thus, node 2 has distance 1 with respect to the sink node, node 3 has distance 2 and node 4 has distance 3.

4

2

Sink node
Node 1

Node 2

Node 3

Node 4

t0

t1

t3

t4

t2

2 8 0 4 0 3 0

5 5 5 5 4 0 3 0

5 5 5 5 4 5 3 0

5 5 5 5 3 5 4 5

5 5 4 5 4 5 4 5

x1 z1

Update

Update

Update and Swap

Update

x2 z2 x3 z3 x4 z4

Fig. 1. Example of execution of Algorithm 1 described in Example 4.1.

In this example for sake of clarity we consider tokens of unitary weight cj = 1 for j = 1, . . . ,K, thus representing a
standard quantized consensus problem. The initial state of the network is at t = t0: x1(t0) = 2, x2(t0) = 8, x3(t0) = 4,
x4(t0) = 3. All variables containing the estimation of the sink load are initialized to zero except for the sink node, thus
z1(t0) = 2, z2(t0) = z3(t0) = z4(t0) = 0. In this example we consider an arbitrary edge selection sequence for sake of
clarity.

(1) At t0 edge (1, 2) is selected. Since |x1 − x2| > cmax, the nodes balance their load leading to x1 = x2 = 5. Then
they update their estimations of the sink load that are set to z1 = z2 = 5.

(2) At t1 edge (2, 3) is selected. Since |x2 − x3| ≤ cmax and the largest load is already in the node closest to the sink,
then the nodes update only the sink load estimate to z2 = 5 and z3 = 5.

(3) At t2 edge (3, 4) is selected. Since |x3 −x4| ≤ cmax no balancing occurs but estimations are updated as z3 = 5 and
z4 = 5. Furthermore, since z4 − x4 > cmax a swap is executed.

(4) At t3 edge (2, 3) is selected. Since |x2 − x3| > cmax the nodes balance their load.
(5) At t4 the discrete consensus condition (1) is reached and the state of the network can not change anymore by the

execution of Algorithm 1.

5. CONVERGENCE PROPERTIES

In this section we study the convergence properties of Algorithm 1 in the case in which nodes interact according to an
edge selection process. In particular, we now formally define a stochastically persistent edge selection process.

Definition 5.1. (Edge Selection Process). An edge selection process e : R+×E → {0, 1} is a function e that associates
with each time instant t ∈ R+ and each edge (i, j) ∈ E a binary value: if e(t, (i, j)) = 1 then edge (i, j) is active at time
t, not active otherwise.

We denote as
Ê(t, t+ T) = {(i, j) ∈ E : e(τ, (i, j)) = 1

for some τ ∈ [t, t+ T]}
the set of edges selected at least once during the time interval [t, t+ T]. �

We now recall a definition that has been used in Franceschelli et al. (2013) to prove almost sure finite time stability in
gossip based vehicle routing problems.

Definition 5.2. (Stochastic persistence). An edge selection process e : R+ × E → {0, 1} is said to be stochastically
persistent if ∀t ≥ 0 there exists a finite T > 0 and a probability p ∈ (0, 1) such that

Pr(Ê(t, t+ T) ≡ E) ≥ p (6)

where Pr(·) denotes a probability. �

Stochastic persistence implies that, if we consider a finite but sufficiently large time interval, then each edge has a
probability greater than or equal to a finite value p of being selected during such an interval. For instance, any Markov
process is stochastically persistent.

Definition 5.3. Given a stochastically persistent edge selection process we define a continuous random variable τ that
represents the smallest interval of time in which Ê(t, t+ τ) ≡ E, independently from the initial time t. �

5

The expected value E [τ] of the random variable τ can be computed directly from the Definition 5.2 of stochastically
persistent edge selection process as E [τ] ≤

∑∞
i=1 iTp(1− p)i−1.

Let us now introduce two preliminary results. First, we consider the case in which the load of the sink node does not
change for some time. Proposition 5.4 characterizes in what interval of time the generic node estimates correctly the
load of the sink node under such assumption.

Proposition 5.4. Consider a stochastically persistent edge selection process e. Let τi, i = 1, . . . , d(G), be d(G)
realizations of the continuous random variable τ defined as in Definition 5.3, which represents the time such that

Ê(Ti−1, Ti) ≡ E, where Ti = Ti−1 + τi for i = 1, . . . , d(G). Let Td(G) =
∑d(G)

i=1 τi. If x1(t) = x1 for t ∈ [t1, t2] with
t2 − t1 ≥ Td(G), then

zi(t) = x1 ∀t ∈
[
t1 + Td(G), t2

]
, ∀i ∈ V.

Proof: Due to space constraints we do not include a complete proof in this preliminary manuscript. �

The following proposition guarantees that if the number of nodes whose load is maximum in the network remains
constant for a sufficiently long time, then the sink node within a given time interval is guaranteed to hold the maximum
load in the network.

Proposition 5.5. Consider a stochastically persistent edge selection process e. Let τi, i = 1, . . . , 2d(G), be 2d(G)
occurrences of the continuous random variable τ defined as in Definition 5.3, namely such that Ê(Ti−1, Ti) ≡ E, where

Ti = Ti−1 + τi. Let T2d(G) =
∑2d(G)

i=1 τi. If in a time interval [t1, t2] with t2 − t1 ≥ T2d(G), both the maximum load and
the number of nodes with the maximum load remain constant, then

x1(t) = max
i∈V

xi(t) ∀t ∈
[
t1 + T2d(G), t2

]
.

Proof: Due to space constraints we do not include a complete proof in this preliminary manuscript. �

We now prove that, in the case of a stochastically persistent edge selection process, Algorithm 1 converges almost surely
in finite time to discrete consensus.

Theorem 5.6. Consider a network G of n nodes that executes Algorithm 1. If the edge selection process e is stochastically
persistent, then

Pr
(
∃Tconv ∈ R+ : ∀t ≥ Tconv, Y (t) ∈ Y

)
= 1

where Y is defined as (1) and Pr (·) denotes a probability.

Proof: We define a Lyapunov-like function

V (t) = ∥cTY (t)∥∞ = ∥x(t)∥∞ (7)

The proof is based on three main arguments.

(1) First, we prove that ∀tk ≥ 0 it holds V (tk+1) ≤ V (tk).
If there is only one node with the maximum load and such a node is one of the two selected nodes, as soon as

the local state update rule in Definition 3.4 is applied, it holds V (tk+1)≤V (tk).
If none of the selected nodes has the maximum load, it holds V (tk+1) = V (tk). The same occurs when one of

the selected nodes has the maximum load but there also exist other nodes with the maximum load.
(2) Whenever V (tk+1) < V (tk), the local maximum must decrease of at least 1 being cj ∈ N for all j = 1, . . . ,K, thus

V (tk+1) ≤ V (tk)− 1.
(3) We now prove that if at a given time instant tk it is

max
i,j∈V

|xi(tk)− xj(tk)| > cmax (8)

then, after a number of iterations of Algorithm 1 at most equal to ∆ = 4(n − 1)d(G)T it is V (tk + ∆) < V (tk),

where T > 0 is the length of a finite time interval such that Ê(t, t+ T) ≡ E ∀t ≥ 0.
By Proposition 5.5 if the maximum load and the number of nodes with the maximum load remain constant,

then if the edge selection process is stochastically persistent there exists Td(G) =
∑d(G)

i=1 τi such that after 2Td(G)
units of time the sink node has the maximum load.
Moreover, by Proposition 5.5 if the maximum load and the number of nodes with the maximum load remain

constant, then the value of the sink node remains constant as well. By Proposition 5.4 after a further time equal
to Td(G) all nodes have an exact estimation of the sink load. If inequality (8) holds, then there exists at least one
node whose load is smaller than the maximum load of a quantity larger than cmax. After further Td(G) units of
time the execution of swaps reduce surely by at least one unit the distance between a load that can balance with
the sink node and the sink node itself. The distance of such a node is at most equal to the depth d(G), then after
further Td(G) units of time such a node balances with the sink node, thus reducing the number of nodes verifying
inequality (8). The same reasoning can be repeated until there exists some node verifying inequality (8). Since
such a number may be at most equal to n− 1, then inequality (8) cannot hold for a time larger than (n− 1)T4d(G).

According to Definition 5.2 ∀t ≥ 0 there exists a finite T > 0 and a probability p ∈ (0, 1) such that
6

Pr(Ê(t, t+ T) ≡ E) ≥ p. (9)

therefore, the probability that the event Ê(t, t+ T) ≡ E occurred in disjoint time intervals at least (n− 1)4d(G) times
in an interval of time of length kT is at least

Pr(Ê(ti, ti + T) ≡ E, i = 1, . . . (n− 1)4d(G),
with t(n−1)4d(G) ≤ (n− 1)T4d(G)) ≥ p(n−1)4d(G).

(10)

Therefore, since the probability of occurrence of the above event over a finite interval of time is strictly positive, it
directly follows that

lim
i→∞

Pr(Ê(ti, ti + T) ≡ E, at least (n− 1)4d(G) times) = 1.

Since the condition |xi(t) − xj(t)| ≤ cmax ∀i, j ∈ V is achieved with a finite number of occurrences of the event

Ê(ti, ti + T) ≡ E it follows that with probability one (almost surely), ∃Tconv ∈ R+ such that ∀t ≥ Tconv, and ∀i, j ∈ V,
it is |xi(t)− xj(t)| ≤ cmax, thus proving the statement of the Theorem. �

6. EXPECTED CONVERGENCE TIME

In this section we determine the expected convergence time of Algorithm 1 when edges are selected according to a
stochastically persistent process.

Proposition 6.1. Let τ be the continuous random variable introduced in Definition 5.3. If the edge selection process
e is stochastically persistent, then

E [Tconv] ≤ 4(M −m)(n− 1)d(G)E [τ] , (11)

where

M = ∥x(0)∥∞, m =
1Tx(0)

n
, (12)

and E [·] denotes the expected value.

Proof:

The proof is carried out in three steps.

(a) Using the same arguments as in item 3 of Theorem 5.6 the time between two consecutive improvements of V (t) is

at most equal to Tconv ≤
∑4N(n−1)d(G)

i=1 τ , where N is the maximum number of improvements of V (t) defined as in
(7), needed by any realization of Algorithm 1 to reach the set Y, starting from any initial token assignment.

(b) We prove that N ≤ M −m.
By definition M−m is the difference between the maximum load and the average load at the initial configuration.

Therefore, since the smallest decrement of V (t) is equal to one, the maximum number of decrements of V (t) is less
or equal to M −m.

(c) Finally, if edges are selected by a independent and identical stochastic processes, the expected convergence time
depends on the expected value of Tconv which can be bounded as E

[
Td(G)

]
≤ 4(M −m)(n− 1)d(G)E [τ]. �

Since Algorithm 1 consists only of local and asynchronous state updates between nodes, we now consider the case where
there exists an independent stochastic process for each edge in the network that in parallel governs the activation of
each edge.

Proposition 6.2. Let τe be a random variable that represents the time interval between two consecutive selections of
a given edge by its own stochastic process. If edges are selected according to independent and identical stochastically
persistent processes, then

E [Tconv] ≤ 4(M −m)(n− 1)d(G)E [τe] , (13)

where

M = ∥x(0)∥∞, m =
1Tx(0)

n
, (14)

and E [·] denotes the expected value.

Proof: The proof follows from Proposition 6.1 and the fact that we are considering independent and identical
stochastically persistent processes to activate each edge. This implies that the average time for the selection of all
edges is equal to the average interval of time for activation of any given edge, i.e., the expected value of random variable
τe corresponds to the expected value of random variable τ in Definition 5.3. �

We now consider as an example the case where edges are chosen according to Poisson stochastic processes with parameter
λe, which is a stochastically persistent process.

7

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Number of nodes

C
on

ve
rg

en
ce

 ti
m

e
Fig. 2. Comparison between simulated convergence time and the upper bound defined in equation (13).

The probability that a given edge e ∈ E is selected k times in the unit of time is

P [k] = e−λe
λk
e

k!
, k = 0, 1,

As a consequence the continuous random variable τe defining the waiting time among two consecutive selections of the
same edge follows an exponential distribution and its expected value is E [τe] =

1
λe
.

Summarizing, the expected convergence time of Algorithm 1 if edges are selected according to a Poisson process with
parameter λe is upper bounded by

E [Tconv] ≤ 4(M −m)(n− 1)
d(G)
λe

≈ O (n) d(G). (15)

7. NUMERICAL SIMULATIONS

A series of numerical simulations have been carried out to compare the convergence time of Algorithm 1 resulting from
numerical simulations with the upper bound defined in equation (13). Results of such a comparison are shown in Fig. 2
where the continuous blue line represents the average value of the convergence time over 100 executions of Algorithm 1
over networks randomly generated with an increasing number of nodes and a constant value of the depth equal to 4.
The dashed black curve represents the upper bound defined in equation (13). As it can be noted the upper bound is
much larger than the convergence time resulting from simulations and their difference increases as the number of nodes
increases. The considered convergence time is computed as the number of times that all edges are selected at least once,
in particular we choose T = 1. This means that if the network has a large number of nodes, then more parallel state
updates may to occur during the same time period T . This is in line with the fact that Algorithm 1 iterates over the
number of selected edges, thus allowing parallel executions of the state update rules.

8. CONCLUSIONS

In this paper we have presented a novel decentralized algorithm that solves the discrete and quantized consensus problem.
It has been shown that the proposed algorithm has improved convergence time with respect to other algorithms in the
literature. Simulations have been provided to compare the theoretical upper bound to the expected convergence time
with the simulated convergence time for networks with increasing number of nodes.

REFERENCES

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Trans. on Information Theory,
52(6):2508–2530, 2006.

Kai Cai and H. Ishii. Quantized consensus and averaging on gossip digraphs. IEEE Transactions on Automatic Control,,
56(9):2087 –2100, 2011.

R. Carli, F. Fagnani, P. Frasca, and S. Zampieri. Gossip consensus algorithms via quantized communication. Automatica,
46(1):70–80, 2010.

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. of Parallel and Distributed Computing,
7:279–301, 1989.

M.P. Fanti, A.M. Mangini, and W. Ukovich. A quantized consensus algorithm for distributed task assignment.
Proceedings of the IEEE Conference on Decision and Control, pages 2040–2045, 2012.

M. Franceschelli, A. Giua, and C. Seatzu. Load balancing on networks with gossip-based distributed algorithms.
Proceedings of the IEEE Conference on Decision and Control, pages 500–505, 2007.

M. Franceschelli, A. Giua, and C. Seatzu. A gossip-based algorithm for discrete consensus over heterogeneous networks.
IEEE Transactions on Automatic Control,, 55(5):1244 –1249, 2010.

M. Franceschelli, A. Giua, and C. Seatzu. Quantized consensus in Hamiltonian graphs. Automatica, 47(11):2495 – 2503,
2011.

8

M. Franceschelli, D. Rosa, C. Seatzu, and F. Bullo. Gossip algorithms for heterogeneous multi-vehicle routing problems.
Nonlinear Analysis: Hybrid Systems, 10(1):156–174, 2013.

B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J. of Computer and Systems Sciences,
53(3):357–370, 1996.

M. Herlihy and S. Tirthapura. Self-stabilizing smoothing and balancing networks. Distributed Computing, 2005.
M.E. Houle, E. Tempero, and G. Turner. Optimal dimension exchange token distribution on complete binary trees.
Theoretical Computer Science, 220:363–377, 1999.

R.M. J. Lavaei and Murray. Quantized consensus by means of gossip algorithm. IEEE Transactions on Automatic
Control, 57(1):19 –32, 2012.

A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Automatica, 43(7):1192–1203, 2007.
M. Zhu and S. Mart́ınez. On the convergence time of asynchronous distributed quantized averaging algorithms. IEEE
Transactions on Automatic Control, 56:386–390, 2011.

9

