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Abstract

Timed marked graphs (TMGs), a special class of Petri nets, are used to model and analyze cyclic manufacturing

systems. Weighted marked graphs (WMGs) are convenient to model systems with bulk services and arrivals. It is

possible to apply analytical techniques for the marking optimization problem of such systems. The problem consists

in minimizing the cost associated with an initial marking that ensures a given average cycle time. In this paper, we

use simulation to compute the average cycle time and give a fast and effective heuristic solution.
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I. INTRODUCTION

Timed Petri nets are a well known tool to model discrete event systems and represent their dynamic behavior.

In this paper, we study a particular class of timed Petri nets called timed weighted marked graphs (TWMGs). The

main feature of this class of nets is that each place has only one input and one output transition. Moreover, the

firing delay of each transition is deterministic.

TWMGs and TMGs are widely used in manufacturing applications to model complex assembly lines and solve

cyclic scheduling problems. Workshop operations and products are usually modeled by transitions and tokens,

respectively. Between two successive transformations, semi-finished products have to be stored or moved from a

workshop to another one. The amount of products, also called Work In Process (WIP), that have to be stored

or moved may have economical consequences. Therefore, the main problem for designers is to design a proper

schedule of WIP that allows the system to reach a given productivity while the amount of WIP is the smallest.

Some results have been proven for this class of Petri nets. For instance, Teruel et al. [1] proposed serveral

techniques for the analysis of WMGs. Nakamura and Silva [2] and Campos et al. [3] developed methods to

compute the average cycle time for a given initial marking. Giua et al. [4] dealt with the firing rate optimization

of cyclic timed event graphs by token allocations. However, in the literature, few works are found to deal with the

marking optimization problem of TWMGs. Sauer [5] proposed a heuristic solution based on an iterative process

to obtain an optimal solution. Touris and Sauer [6] presented an approach based on the branch and bound to solve

the problem.

In this paper, we deal with the marking optimization problem of a TWMG. The problem consists in minimizing

the cost associated with an initial marking that ensures a given average cycle time. We propose a fast and efficient

iterative heuristic algorithm that starts with a live marking. At each step we select a place to which we add tokens

until the average cycle time is lower than or equal to the desired value; the places are selected so as to minimally

increase the marking cost. In several experiments, we carried out the obtained solution is either optimal or very

close to the optimal one.

This paper is structured as follows. In the following section, we briefly recall some basic concepts and the main

properties. In Section 3, we present the problem statement. In Section 4, we propose a heuristic solution for the

marking optimization problem based on a live marking. Following the algorithm, some numerical examples are

shown to illustrate it. And also we give details to compare our method with Sauer’s. Conclusions and future work

are finally drawn in Section 5.

II. BACKGROUND

A. Generalities

We assume that the reader is familiar with the structure, firing rules, and basic properties of PNs (see [1], [7]

and [8]). In this section, we will recall the formalism used in the paper. A place/transition net (P/T net) is a

structure N = (P, T, Pre, Post), where P is a set of n places; T is a set of m transitions; Pre : P × T → N

and Post : P × T → N are the pre- and post-incidence functions that specify the arcs; C = Post − Pre is the
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incidence matrix, where N is a set of non-negative integers. When Pre(p, t) = k > 0 we also say that the arc from

place p to transition t has weight k. A similar terminology applies to function Post.

A vector x ∈ N|T | such that x ̸= 0 and C · x = 0 is a T-semiflow. A vector y ∈ N|P | is such that y ̸= 0 and

yT ·C = 0 is a P-semiflow. The supports of T-semiflows and of P-semiflows are defined by ∥x∥={t ∈ T |x(t) > 0}

and ∥y∥={p ∈ P |y(p) > 0}.

A marking is a vector M : P → N that assigns to each place of a P/T net a non-negative integer number

of tokens, represented by black dots; we denote the marking of place p as M(p). A P/T system or net system

⟨N,M0⟩ is a net N with an initial marking M0. A transition t is enabled at M if M ≥ Pre(·, t) and may fire

yielding the marking M ′ = M + C(·, t).

A P/T net is called ordinary when all of its arc weights are 1′s. A marked graph (MG, also called an event

graph) is an ordinary Petri net such that satisfies the condition |•p| = |p•| = 1. A weighted marked graph (WMG,

also called a weighted event graph) is a net that also satisfies this condition but may not be an ordinary net, i.e.,

the weight associated with each arc is a non-negative integer number.

A net is strongly connected if there exists a directed path from any node in P ∪ T to every other node. Let us

define an elementary circuit γ (or elementary cycle) of a net as a directed path that goes from one node back to

the same node without passing twice on the same node. In a strongly connected net, it is easy to show that each

node belongs to an elementary circuit, and thus the name cyclic nets is also used to denote this class.

A deterministic timed P/T net is a pair Nδ = (N, δ), where N = (P, T, Pre, Post) is a standard P/T net, and

δ : T → R+
0 , called firing delay, assigns a non-negative fixed firing duration to each transitions. A transition with

a firing delay equal to 0 is said to be immediate. We consider a single server semantics, i.e., we assume that each

transition can fire only once at each time even its enabling degree is greater than one.

Definition 1: (Campos et al. [3]) Every elementary circuit γ of a WMG is neutral, if the following condition

holds.

∏
p∈γ

Pre(p, p•)

Post(p, •p)
= 1

�
In other words, in a neutral circuit the product of the weights of all pre arcs is equal to the product of the weights

of all post arcs. This means that if the circuit initially contains enough tokens, it is possible to fire all transitions

along the path returning to the same initial marking. It is well known that a WMG whose circuits are all neutral

has a unique T-semiflow x and it contains all transitions in its support [1].

In this paper, we limit our study to strongly connected WMG which are neutral.

The following notations will be used. Given a place p of a WMG, let ti (resp. tj) be its unique input (resp.

output) transition as in Fig. 1. We denote w(p) = Post(p, ti) the weight of its input arc and v(p) = Pre(p, tj) the

weight of its output arc. For any place p ∈ P , we denote by gcdp (resp. lcmp) the greatest common divisor (resp.

the least common multiple) of the integers w(p) and ν(p).
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Fig. 1. A place p between two transitions ti and tj .

B. Liveness of a TWMG

A weighted circuit of a TWMG is live if each transition can be fired infinitely.

Proposition 1: (Teruel et al. [1]) A TWMG is live iff each elementary circuit is live. �
In the case of a TMG, an elementary circuit is live if there exists at least one token in the circuit. However,

determining the liveness of a weighted circuit is not so easy.

First, we review some sufficient conditions for the liveness of a TWMG presented in literature. Later, these

conditions will be used in the proposed optimization approach.

Teruel et al. [1] and Chrzastowski-Wachtel and Raczunas [9] proposed a few methods to verify the liveness of

a TWMG by characterizing the liveness of all its circuits. First they define a weighted function of the marking

W (M) = yT ·M

where y is a minimal P-semiflow. Furthermore, for each place pi, they denote µi its output weight, i.e., µi =

Pre(pi, pi
•) and define the following marking:

MD = (µ1 − 1, µ2 − 1, . . . , µn − 1).

The following result provides a sufficient, albeit restrictive, condition for liveness.

Proposition 2: (Teruel et al. [1]) If W (M0) > W (MD), then the weighted circuit is live. �
Less restrictive conditions for liveness also exist.

In [9] the least live weight of a weighted circuit with minimal P-semiflow y was defined as

WL = W (MD)− g(y1, y2, · · · , yn) (1)

where g is the Frobenius number.1 Note that a Frobenius number only exists if all its arguments are coprime and

greater than one. The first condition is always verified in our case because we consider minimal P-semiflows. The

second condition may not always be verified: when it is, the least live weight in Eq. (1) can be computed and the

following proposition holds.

1Given positive integers y1, y2, · · · , yn such that gcd(y1, y2, · · · , yn)=1, the Frobenius number g(y1, y2, · · · , yn) is the largest integer

that cannot be expressed as an integer conical combination of these numbers, i.e., as a sum k1y1 + k2y2 + · · · + knyn, where k1, k2, · · · ,

and kn are non-negative integers.
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Proposition 3: (Chrzastowski-Wachtel and Raczunas [9]) If W (M0) = WL, then the weighted circuit is live. �
In the case that there exists a 1 value in the minimal P-semiflow, then a least live weight cannot be computed

by Eq. (1).

Proposition 4: (Teruel et al. [1]) If the net is live then W (M0) ≥ λ = maxj∈{1,...,n}{µj · yj}. �
In case there is a 1 value in x this lower bound is also sufficient.

Corollary 1: (Teruel et al. [1]) If ∃i ∈ {1, · · · ,m}, xi = 1, where x is the minimal T-semiflow then, the least

weight of a live marking is equal to

W ′
L = λ = max

j∈{1,...,n}
{µj · yj}

�
If W (M0) < W ′

L, then the weighted circuit is not live; if W (M0) > W (MD), then the weighted circuit is live.

3p

1(3)t

2(2)t

3(3)t

2p

3

2 3

2
5

1p

5

Fig. 2. A weighted circuit.

Let us consider the example in Fig. 2. We have yT =(3, 2, 5), MD=(1, 4, 2), x=(5, 3, 2), WL=W (MD) − g=

21− g(3, 2, 5)=21−1=20.

It can be checked that every marking with a weight equal to 20 is live. For instance (0, 0, 4) as well as (0, 10,

0) is live. We use the approach above to select a live initial marking.

III. PROBLEM STATEMENT

The average cycle time χ of a TWMG is the average time to fire once the T-semiflow under the earliest operational

model (i.e., transitions are fired as soon as possible). Considering a net consisting only of one circuit, we define

χγ as the average cycle time of circuit γ. Let Γ represent the set of elementary circuits of a cyclic TWMG.

It is well known that for a TMG the cycle time of the net is equal to the maximal cycle time over all circuits,

i.e.,

χ = max
γ∈Γ

χγ

This result does not apply to TWMG as we will show in the examples of Figs. 4 and 5, but it holds that the

average cycle time of each circuit is smaller than or equal to the one of the net. However, when the average cycle

time of each circuit is lower than or equal to the upper bound, the average cycle time of the net will also converge

to the upper bound.
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The average cycle time of a TMG can be obtained by means of following LPP:

max {yT · Pre · δ|yT · C = 0,yT ·M0 = 1,y ≥ 0} (2)

where δ ∈ Nm is the vector containing all firing delays of timed transitions (recall that m = |T |).

It is difficult to compute the average cycle time of a TWMG, and only bounds can be analytically computed.

From Camposet et al. [3] a lower bound for the average cycle time of a live and bounded TWMG system can be

computed by solving a linear programming problem (LPP). The analytical way to compute the average cycle time

of TWMG is to convert a TWMG into a TMG and compute the average cycle time of TMG (see [2]and [10]).

Otherwise, we can use simulation to compute the average cycle time which is faster and easier.

In this paper the marking optimization problems of a TWMG is considered. We aim to find an initial marking

M0 under which the average cycle time is less than or equal to a given value. Among all feasible solutions, we

look for those that minimize a weighted function of the initial marking.

In other words we look for the optimal solution of the following optimization problem:

(P1) =

minimize f(M0) = yT ·M0

s.t. χ(M0) ≤ b

(3)

where

• χ(M0) is the average cycle time of the TWMG associated with marking M0,

• b is a given positive real value that represents the upper bound on the cycle time, and

• yT = (y1, . . . , yn) is a P-semiflow. In general, we choose the P-semiflow equal to the sum of all minimal

P-semiflows.

We choose y as a P-semiflow since the value of yT ·M0 for every reachable marking M ∈ R(N,M0) is invariant.

Proposition 5: (Sauer [5]) Problem (3) has a solution iff b ≥ χ∗ = max{xi ·δi, ti ∈ T} (where x is the minimal

T-semiflow).

IV. MARKING OPTIMIZATION FOR TWMG: A HEURISTIC SOLUTION

We propose here a fast and efficient heuristic solution based on an iterative process to solve the problem. We

first start from a least live marking, then we compute the average cycle time of each circuit. If there exist some

circuits whose average cycle time is greater than the cycle time upper bound, we add tokens to these circuits at

each iteration until the average cycle time is lower than or equal to the cycle time upper bound. We select the

places to which tokens should be added so as to increase the performance index f(M0) as little as possible.

A. The main idea of the heuristic solution

1) Selection of a proper initial marking: For each circuit, there exist some markings that satisfy the least weight

condition. We prefer to make the net live while the following condition is satisfied.
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
min f(M0) = yT ·M0

s.t. yT
γ ·M0 = WL (W ′

L) or yT
γ ·M0 > W (MD), ∀γ ∈ Γ

(4)

where

• yT is a P-semiflow of a TWMG.

• yT
γ is a P-semiflow of a circuit γ, i.e.,

yγ(ti) = y(ti) if ti ∈ γ, else yγ(ti) = 0

When there exists more than one feasible solution of the initial marking M0, we choose one. If we start the

iteration from a marking that satisfies the condition above, we can ensure that the the net is live and the value of

performance index f(M0) is small. If the average cycle time of M0 is greater than the cycle time upper bound,

we add tokens to the net until the requirement on the average cycle time is satisfied. Otherwise, the initial marking

M0 is optimal.

2) Selection of the places to add tokens:

Useful tokens: The initial marking M0(p) of any place p can be replaced by M⋆
0 (p) tokens without any influence

on the precedence constraints induced by p (see [11] and [12]), where

M⋆
0 (p) =

⌊
M0(p)

gcdp

⌋
· gcdp

As a result, we can deduce that the liveness of the net and the average cycle time under M0 and M⋆
0 are the

same. However, the value of f(M⋆
0 ) is smaller than or equal to f(M0).

1p

2p

1 (4)t 2(2)t

1p

2p

1 (4)t 2(2)t

Fig. 3. Useful tokens.

Let us see the example in Fig. 3. The initial marking of the TWMG is M0 = (11, 1) and gcdp1 = gcdp2 = 2.

M⋆
0 (p1) =

⌊
M0(p1)

gcdp1

⌋
· gcdp1

=

⌊
11

2

⌋
· 2 = 10

M⋆
0 (p2) =

⌊
M0(p2)

gcdp2

⌋
· gcdp2 =

⌊
1

2

⌋
· 1 = 0

Then M⋆
0 = (10, 0) and we can check that f(M⋆

0 ) = 10 < f(M0) = 12 and the average cycle time of M0 and

M⋆
0 are identical, i.e., χ(M0) = χ(M⋆

0 ).
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5p 7p

6p

8p

9p
4 (1)t

5(3)t 6(1)t

6 4

3

3

2

2

Fig. 4. The TWMG of Example 1.

After we select the initial marking, we can compute the average cycle time χ of the TWMG and χγ for every

elementary circuit. We select the critical circuits to which tokens should be added. We denote Γc the set of these

critical circuits, i.e., Γc = {γ ∈ Γ∥χγ > χ∗}. For each critical circuit, we select one place pr and add gcdpr tokens

to this place. We choose the one that increases f(M0) as little as possible, i.e., the increment of the criteria value

f(M0) should be the least after adding gcdpr tokens. We define an n-dimensional vector I of zeros and ones.

IT = (Ip1 , Ip2 , · · · , Ipn)

where

Ipr =

1, add gcdpr tokens to place pr

0, add 0 tokens to place pr

(5)

In other words, we add tokens to places with the coefficient Ipr = 1. Let Pa be the set of these places and Gd =

(gcdp1
· y1, gcdp2

· y2, · · · , gcdpn
· yn), where y is a P-semiflow of the net and gcdpr

· yr represents the increment

of f(M0) after adding gcdpr tokens to place pr. We denote by ∆f(M0) the total increment of f(M0), where

∆f(M0) = IT ·Gd

Then, we can select places by solving the following problem:
min ∆f(M0)

s.t.
∑

p∈γ Ip = 1, ∀γ ∈ Γc

(6)

The constrains in Eq. (6) will ensure that only one place should be selected for each critical circuit.

3) Heuristic solution: We can summarize the proposed procedure in the following algorithm.

In step 3, the average cycle time needs to be computed. This can be done using any of the techniques that we

have mentioned in section 3. In this paper, we use simulation to compute the average cycle time.
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Algorithm 1
1: Compute WL, W ′

L or WD for every elementary circuit γ.

2: Compute a marking M which satisfies Eq. (4) then, compute M⋆ and initialize the initial marking M0 := M⋆.

3: Compute the average cycle time χ

if χ ≤ χ∗

stop and the optimal solution is M0;

else

compute χγ , ∀γ ∈ Γ.

end if

4: Compute Γc.

5: Compute I and Pa.

6: Add tokens to Pa.

7: Go to step 3.

TABLE I

THE ITERATION PROCESS FOR EXAMPLE 1.

M0 χγ1 χγ2 χγ3 χγ4 χ χ∗ f(M0) Γc Pa

(4, 0, 4, 0, 0, 0, 6, 2, 0) 38 39 21 20 43 30 24 {γ1, γ2} {p1, p5}

(5, 0, 4, 0, 3, 0, 6, 2, 0) 34 30 21 20 34 30 31 {γ1} {p1}

(6, 0, 4, 0, 3, 0, 6, 2, 0) 30 30 21 20 30 30 32

TABLE II

THE ITERATION PROCESS FOR EXAMPLE 2.

M0 χγ1 χγ2 χ χ∗ f(M0) Γc Pa

(8, 3, 0, 0, 0) 29 26 30 21 20 {γ1, γ2} {p3}

(8, 3, 2, 0, 0) 25 26 26 21 24 {γ1, γ2} {p3}

(8, 3, 4, 0, 0) 21 21 21 21 28

B. Examples

We consider the first example in Figure 4. There are four weighted circuits in the TWMG:

γ1 = {p1, t2, p2, t1}

γ2 = {p3, t3, p4, t4, p5, t2}

γ3 = {p6, t3, p4, t4, p7, t5}

γ4 = {p8, t6, p9, t5}
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The minimal T-semiflows of γ1, γ2, γ3, and γ4 are

x1 = (2, 3, 0, 0, 0, 0)

x2 = (0, 2, 1, 1, 0, 0)

x3 = (0, 0, 3, 3, 4, 0)

x4 = (0, 0, 0, 0, 1, 2)

while the minimal P-semiflows of γ1, γ2, γ3, and γ4 are

y1 = (1, 1, 0, 0, 0, 0, 0, 0, 0)

y2 = (0, 0, 3, 12, 2, 0, 0, 0, 0)

y3 = (0, 0, 0, 4, 0, 1, 1, 0, 0)

y4 = (0, 0, 0, 0, 0, 0, 0, 1, 1)

Therefore, the P-semiflow used in the criteria f(M0) is y = y1 + y2 + y3 + y4= (1, 1, 3, 16, 2, 1, 1, 1, 1), and

the minimal T-semiflow of the net is x=(4, 6, 3, 3, 4, 8).

γ1 : since y1 = 1, xi ̸= 1 (i = 1, 2), W (MD) =

1× 1 + 1× 2 = 3

γ2 : since x3 = 1, W ′
L = max{4× 3, 1× 12, 3× 2} = 12

γ3 : since y6 = 1, xi ̸= 1 (i = 3, 4, 5),W (MD) =

4× 0 + 1× 2 + 1× 3 = 5

γ4 : since x5 = 1, W ′
L = max{1× 1, 2× 1} = 2

We have gcdp1 = 1, gcdp2 = 1, gcdp3 = 2, gcdp4 = 1, gcdp5 = 3, gcdp6 = 1, gcdp7 = 1, gcdp8 = 1, and gcdp9 = 1.

Gd = (1, 1, 6, 16, 6, 1, 1, 1, 1)

min f(M) = M(p1) +M(p2) + 3M(p3) + 16M(p4) + 2M(p5) +M(p6) +M(p7) +M(p8) +M(p9)

s.t



M(p1) +M(p2) > 3

3M(p3) + 12M(p4) + 2M(p5) = 12

4M(p4) +M(p6) +M(p7) > 5

M(p8) +M(p9) = 2

We obtain a marking M = (4, 0, 4, 0, 0, 0, 6, 2, 0) and the initial marking M0 = M⋆ = M . From Table I we can

find that γ1 and γ2 are critical circuits at the initial marking M0. Then, we compute IT and Pa to add tokens.

min ∆f(M0) = Ip1 + Ip2 + 6Ip3 + 16Ip4 + 6Ip5 + Ip6 + Ip7 + Ip8 + Ip9

s.t

 Ip1 + Ip2 = 1

Ip3 + Ip4 + Ip5 = 1
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We can find IT = (1, 0, 0, 0, 1, 0, 0, 0, 0), and Pa = {p1, p5}. Then, we add 1 token and 3 tokens to place p1

and p5, respectively. We can observe from Table I that after the first iteration step, the net has 1 critical circuit γ1.

Then, we only need to add tokens to place p1 to decrease the average cycle time. The optimal marking is M = (6,

0, 4, 0, 3, 0, 6, 2, 0) and the weight sum of tokens is f(M) = 32.

1p 2 (1)t

3 (2)t

4 (3)t1 (7)t

2p

3p

5p

4p

Fig. 5. An example from Sauer [5].

Let us consider another example in Fig. 5. There are two weighted circuits:γ1 = {p1, t1, p3, t4, p4, t2}

γ2 = {p2, t1, p3, t4, p5, t3}

The minimal T-semiflows of γ1 and γ2 are

x1 = (3, 2, 0, 2), x2 = (3, 0, 1, 2)

while the minimal P-semiflows of γ1 and γ2 are

y1 = (1, 0, 1, 6, 0), y2 = (0, 4, 1, 0, 3)

Therefore, the P-semiflow used in the criteria f(M0) is y = y1 + y2 = (1, 4, 2, 6, 3), and the minimal T-semiflow

of the net is x = (3, 2, 1, 2).

For γ1, since y1 = 1 and xi ̸= 1 (i = 1, 2, 4), we can compute W (MD) = 8; for γ2, x3 = 1 and W ′
L =

max{µj · yj} = {1× 4, 6× 1, 4× 3} = 12.

Thus we have gcdp1 = 2, gcdp2 = 1, gcdp3 = 2, gcdp4 = 1, and gcdp5 = 2.

Gd = (2, 4, 4, 6, 6)

min f(M) = M(p1) + 4M(p2) + 2M(p3) + 6M(p4) + 3M(p5)

s.t.

 M(p1) +M(p3) + 6M(p4) > 8

4M(p2) +M(p3) + 3M(p5) = 12

We obtain a marking M = (9, 3, 0, 0, 0) and

M⋆(p1) =

⌊
M(p1)

gcdp1

⌋
· gcdp1 =

⌊
9

2

⌋
· 2 = 8

M⋆(p2) =

⌊
M(p2)

gcdp2

⌋
· gcdp2 =

⌊
3

1

⌋
· 1 = 3
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Then the initial marking is M0 = M⋆ = (8, 3, 0, 0, 0). We can observe from Table II that both γ1 and γ2 are critical

circuits at M0. Accordingly, we compute IT and Pa to select places which tokens should be added.

min ∆f(M0) = 2Ip1 + 4Ip2 + 4Ip3 + 6Ip4 + 6Ip5

s.t.

 Ip1 + Ip3 + Ip4 = 1

Ip2 + Ip3 + Ip5 = 1

We find IT = (0, 0, 1, 0, 0) and Pa = {p3} which means that we only need to add tokens to one place (p3) to

decrease the average cycle time of γ1 and γ2 simultaneously. The optimal marking is (8, 3, 4, 0, 0).

C. Comparison with previous approaches

An approach dealing with the marking optimization problem of TWMG was presented by Sauer [5], where an

iterative heuristic solution algorithm was proposed, which starts with a feasible marking and removes one token at

a time, as long as the average cycle time is lower than or equal to the cycle time upper bound. In this approach,

the initial marking M0 that contains enough tokens to ensure it represents a feasible solution. Then, the value of

the average cycle time is computed by using simulation. At each iteration, only one token is removed from a place

and the liveness of the net needs to be checked. Since the number of tokens is large, the algorithm usually requires

a large number of iterations to reach convergence and the time to verify the liveness is also long.

For the heuristic solution proposed in this paper, we start with a live marking that has a small value of performance

index f(M0). Then we add tokens to some places until the average cycle time is lower than or equal to a given

value. We use simulation to compute the average cycle time. The iteration steps are less and we do not need to

check the liveness of the net for every iteration that save us a lot of time.

We can see the comparison between our method and Sauer’s method from Table III. The number inside the

parentheses are results of Sauer’s approach.

TABLE III

THE COMPARISON OF TWO METHODS.

Example 1 Example 2

iteration step 3 (66) 2 (17)

Times(s) 267 (4996) 75 (353)

Optimal solution 32 (32) 28 (28)

V. CONCLUSION

This paper deals with the marking optimization problem of deterministic TWMG. We present a new heuristic

solution which is fast and efficient to solve the problem of minimizing a P-semiflow criteria while obtaining a given

average cycle time. It is shown the proposed approach may provide an optimal solution in some cases.

Future work will pertains to the problem that finds an optimal allocation policy to minimize the average cycle

time when a certain number of tokens is given.
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