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Abstract

In this paper we propose a novel protocol to solve the consensus on the median value problem, i.e.,

the decentralized agreement problem for networked multi-agent systems where the quantity of interest is

the median value as opposed to the average value of the agents’ states. The median value is a statistical

measure particularly robust to the existence of outlier agents which are a significant issue in large scale

averaging networks. The proposed protocol achieves consensus on the median value in finite time by

exploiting a discontinuous local interaction rule.
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I. INTRODUCTION

A networked multi-agent system consists of a set of dynamical systems interconnected by

a communication network. One of the most studied topics in distributed control of networked

multi-agent systems is the consensus problem, i.e., the problem of how to force the states of

dynamical agents to converge to (or ”agree upon”) a common value. When the control objective

is to perform agreement on some average quantity related to the initial agents’ state (such as

position, speed or a generic measurement) the problem is denoted as consensus on the average

problem. In [1], linear averaging protocols were proposed to achieve consensus in a network of

single integrators. It was proved that if the graph representing the network topology is connected

and balanced then consensus on the average is achieved.

In [2], [3], [4], [5], [6] distributed protocols for consensus on the average of the initial states

were proposed with the idea of achieving the control objective when the graph of the multi-agent

system is represented by a time-varying unbalanced directed graph, i.e., a graph in which the

sum of the edge weights of incoming edges is different from that of outgoing edges. In [3]

and [5] the proposed methods involve the augmentation of the state space of the agents with an

additional variable to preserve the information about the average of the network states.

In [6], [7] the so called ratio consensus was proposed. It consists in a local interaction protocol

that achieves consensus on the average by exploiting the ratio of two state variables that execute

linear state updates with appropriate, distinct, initialization.

In [8] an alternative method to solve the average consensus problem based on the iterative

and distributed scaling of a column stochastic matrix was proposed.

The approach presented in this paper is based on a discontinuous local interaction rule. We

refer the reader to [9] and [10], [11] for an exhaustive tutorial on how to study discontinuous

gradient flows and discontinuous feedback systems by means of non-smooth Lyapunov theory.

The protocol proposed in this paper converges in finite time. Protocols that achieve consensus

on the average of the initial states (or on a generic arbitrary value) in finite-time can be found in

[12], [13] and [14] for undirected, directed and time-varying network topologies. In [15] and [16]

the case of finite time consensus for single integrators and second order systems with unknown

non-linear dynamics is investigated by considering continuous local interactions.

Almost all consensus protocols that converge to the average of the initial states suffer from

a significant problem: despite the large scale nature of these systems the existence of a single
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outlier agent, i.e., an agent whose value of its state holds an abnormal value, may affect the

whole network behavior that may ultimately fail to converge to the correct average of the agents

with nominal behavior.

This issue has been investigated in [17], [18], [19] and [20] where the main idea is to identify

the misbehaving agents in a decentralized way and then recover a correct network state after the

outlier agent has been removed from the network. Furthermore, in [21] the fundamental limits

of the consensus problem in unreliable networks are investigated while in [22] a strategy to

distributively compute an arbitrary function in a network with malicious nodes is presented.

Our opinion is that, despite a clever local interaction protocol design, the average value of a

set of variables is not a robust statistical measure if agents with outlier state values influence

the network [23].

In this paper we propose a consensus algorithm that converges in finite-time to the median

value of a set of initial network states. The median value of a sample data series is a statistical

measure robust to outliers in that the existence of abnormal values is filtered out by the possibly

large number of samples. Our target application is therefore a network in which some of

the sensors/agents are faulty or misbehaving and thus generate abnormal values that corrupt

significantly the average of the network state.

The main contributions of this work are:

1) A novel consensus protocol that achieves consensus on the median value of a set of initial

states.

2) A characterization of the finite-time convergence properties of the protocol in the case of

a network represented by an undirected connected graph.

3) Simulations to corroborate the theoretical analysis.

This paper is structured as follows. In Section II some background and the problem statement

are introduced. In Section III the consensus on the median value is presented and its convergence

properties are characterized. In Section IV we present some simulations to corroborate the

theoretical results. Finally, in Section V concluding remarks are given.

II. BACKGROUND AND PROBLEM STATEMENT

In a finite set of samples with values in ascending order S = {z1 ≤ z2, . . . ≤ zn} the sample

median is the sample value such that half of the samples is bigger and half of the samples is
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smaller than such value. If the number of samples n is odd, then the k-th value with k = n+1
2

is the sample median. If the number of samples is even we can arbitrarily choose as sample

median a number between the k-th and k + 1-th value with k = n
2
.

Let n ≥ 2 agents be labeled in ascending order according to their initial state value, i.e.,

x1(0) = z1 ≤ x2(0) = z2, . . . ≤ xn(0) = zn. Our objective is to design a decentralized consensus

protocol such the state of each agent converges in finite time toward the sample median of the

initial values of the network. In particular, a protocol such that

∃T : ∀t > T, xi(t) = m ∀i ∈ V, (1)

with  m ∈ [xk(0), xk+1(0)] , k = n
2
, for n even;

m = xk(0), k = n+1
2
, for n odd;

We now introduce the adopted notation. Let G = (V,E) be an undirected graph where V =

{1, . . . , n} is the set of agents and E ⊆ {V × V } is the set of edges representing information

flow between the agents. Let (i, j) ∈ E be an edge representing interaction between agent i and

j. Let Ni = {j ∈ V : (i, j) ∈ E} be the set of neighbors of agent i, i.e., the set of edges that

can send state information to agent i. A path in graph G is a sequence of consecutive edges

connecting two agents. A graph is said to be connected if there exists a path between any pair

of agents. The topology of graph G is encoded by the Laplacian matrix L, an n× n matrix the

elements of which are defined as follows

lij =


|Ni|, if i = j,

−1, if (i, j) ∈ E and i ̸= j,

0, otherwise.

(2)

Where |Ni| denotes the cardinality of set Ni. The Laplacian matrix is a positive-semidefinite

matrix with a single null eigenvalue if graph G is connected. Let 1 and 0 be respectively the n

elements vectors of ones and zeros, then L1 = 0 by construction.

The dynamics of each agent are considered to be single integrators ẋi(t) = ui(t) where xi ∈ R

is the state of the agent representing its current estimation of the median value of the initial

states xi(0) = zi and ui ∈ R is the local control input that will be specified by the consensus

protocol. The proposed protocol is discontinuous and we make use of the following definition

of the sign function
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sign(y) =


1, if y > 0;

0, if y = 0;

−1, if y < 1;

y ∈ R. (3)

Definition 2.1: A network state x(t) is said to be at consensus if

|xi(t)− xj(t)| = 0, (4)

with xi(t) = suph∈V xh(t), xj(t) = infh∈V xh(t). �
Since the proposed consensus protocol is based on a discontinuous local interaction rule,

we need to recall some preliminaries on non-smooth Lyapunov theory. First, for a differential

equation with discontinuous right-hand side, following [24], we understand the corresponding

solution in the so-called Filippov sense as the solution of an appropriate differential inclusion,

the existence of which is guaranteed (owing on certain properties of the associated set-valued

map) and for which noticeable properties, such as absolute continuity, are in force. The reader

is referred to [10] for a comprehensive tutorial of the notions of solution for discontinuous

dynamical systems.

Next we define the Clarke’s Generalized Gradient [25] of a discontinuous function that can

be also found in [9], [10].

Definition 2.2 (Clarke’s Generalized Gradient): Let V : Rn → R be locally Lipschitz con-

tinuous and define

∂V (x) , co
{
lim
i→∞

∇V (xi)|xi → x, xi /∈ ΩV ∪N
}
,

where ΩV is the set of Lebesgue measure zero where ∇V (x) does not exist and N is an arbitrary

set of measure zero. �
In Definition 2.2, co denotes the convex hull of a set. Set ΩV is a set of measure zero

which contains the points in which V (x) is not differentiable. This set can be arbitrarily chosen

to simplify the computation. The Clarke’s generalized gradient of V (x) at x consists of all

convex combinations of all of the possible limits of the gradient at neighboring points where

V is differentiable [10]. The Clarke’s generalized gradient corresponds to the standard gradient

where the derivative of the scalar function exists. Next we recall the extended Lyapunov Theorem

for discontinuous Lyapunov functions [9].
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Theorem 2.3 (Lyapunov’s Theorem Generalized): If V : Rn → R, V (0) = 0 and V (x) >

0 ∀x ̸= 0, and x : R → Rn and V (x(t)) is absolutely continuous on [t0,∞] with d
dt
[V (x(t))] <

ϵ < 0 a.e. on {t|x(t) ̸= 0} then x converges to 0 in finite time. �
Many results on non-smooth Lyapunov theory involve the so called ”Max functions” [9] that

we define in the following

Definition 2.4 (Max function): V : Rn → R is called a max function if V (x) = maxj∈Y fj(x),

where fj : Rn → R are C1 and Y is a finite index set. �
Finally, we recall from [9] a result that simplifies the verification of conditions of Theorem 2.3.

Proposition 2.5 (Chain rule): Let V : Rn → R be a max function and x : R → Rm be

differentiable at t. If d
dt
[V (x(t))] exists, then

d

dt
[V (x(t))] = ξT ẋ, ∀ξ ∈ ∂V (x).

�
In our case, we deal with absolute value functions which are a particular case of Max

functions and for which Proposition 2.5 can be exploited. This can be seen by noticing that

|y| = maxy∈R{y,−y}.

III. CONSENSUS ON THE MEDIAN VALUE

In this section we present and characterize the consensus on the median value protocol. Let

the initial states of the agents be denoted as xi(0) = zi for i = 1, . . . , n and, without loss of

generality, be ordered such that zi ≥ zj if i > j. Each agent interacts with its neighbors according

to the following protocol

ẋi(t) = −αsign (xi(t)− zi)− λ
∑
j∈Ni

sign (xi(t)− xj(t)) , (5)

where α ∈ R+ and λ ∈ R+ are positive constants which are tuning parameters that govern the

convergence properties of protocol (5).

Remark 3.1: In this paper we consider agents’ labels in ascending order according to the

corresponding value of their initial state x1(0) = z1 ≤ x2(0) = z2 . . . ≤ xn(0) = zn. We stress

the fact that agents ignore their respective labels and that this ordering is adopted only to simplify

the notation in the algorithm convergence analysis.
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Next we discuss how protocol (5) ensures that the network converges to a common value in

finite-time.

Let

δij(t) = xi(t)− xj(t), with (i, j) ∈ E, (6)

be a set of error variables for each edge in the network. The dynamics of δij(t) are easily

obtained by differentiating (6), and considering the closed loop dynamics of each agent

ẋi = −αsign (xi(t)− zi)− λ
∑

k∈V,k ̸=i

rik · sign(δik), (7)

where rik = 1 if (i, k) ∈ E, rik = 0 otherwise. Trivial manipulations yield

δ̇ij = −αsign (xi(t)− zi) + αsign (xj(t)− zj)

− λ

[ ∑
k∈V,k ̸=i

rik · sign(δik)−
∑

k∈V,k ̸=j

rjk · sign(δjk)

]
.

(8)

We are now ready to prove a preliminary result that ensures that the protocol in eq. (5)

achieves consensus in finite-time with respect to a value common to every agent, not necessarily

the median value. Some technical insights of the next Theorem appeared in [26] where the

next result was required to characterize the disturbance rejection properties of a discontinuous

consensus protocol.

Theorem 3.2: Consider the local interaction protocol (5) with tuning parameter selected

according to

λ ≥ nα+ µ2 , µ ̸= 0, (9)

Then, if graph G is connected, there exists a tr such that the consensus condition (4) is achieved

∀t ≥ tr, where the transient time tr is upper bounded as follows

tr ≤
1

µ2
· max
i,j∈V×V

|xi(0)− xj(0)|. (10)

Next we show that the agents’ interaction protocol (5) makes the network converge to a value

corresponding to the median value of the initial agents’ states.

Theorem 3.3: Let a network G of n agents interact according to protocol (5) with parameter

λ = nα+µ2 and µ ̸= 0. Consider a vector of initial states or measurements z = [z1, . . . zn] with

x1(0) = z1 ≤ ...xn(0) = zn. If graph G is connected then
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∃T : ∀t > T, xi(t) = m ∀i ∈ V, (11)

with

m ∈

 [zk, zk+1(0)] , k = n
2
, for n even,

zk, k = n+1
2
, for n odd,

where m denotes the median value of vector z ∈ Rn. Furthermore T ≤ tr + tr2, with

tr ≤

 max
i,j∈V×V

|xi(0)− xj(0)|

µ2

 ,

and

tr2 ≤ n
1T x(0)

n
−m

α
.

Proof:

The main ideas that guide this proof are the following:

1) Show that there exists a finite time tr in which the state of all agents converge to the same

value and keep such agreement for all t ≥ tr, despite the agreement value is time-varying.

2) Show that there exists a finite time tr2 in which the average of the states of the agents

corresponds to the median value of xi(0) = zi for i = 1, . . . , n and that this value is not

time-varying.

3) Conclude that the state value of each agent necessarily correspond after a time T ≤ tr+ tr2

to an approximation of the median value of the initial states.

By Theorem 3.2, in a finite time less than or equal to tr the network reaches the consensus

state (4). Let us consider the average of agents states as

c(t) =
1Tx(t)

n
. (12)

We now study the dynamics of c(t) for t ≥ tr, i.e., after the consensus condition has been

achieved. It holds

ċ(t) = 1T ẋ
n

= −α
∑

i∈V sign(xi(t)−zi)

n

−λ
∑

i∈V (
∑

j∈Ni
sign(xi(t)−xj(t)))
n

,
(13)

Since graph G is undirected, it holds
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∑
i∈V

(∑
j∈Ni

sign (xi(t)− xj(t))

)
= 0.

Therefore,

ċ(t) =
1T ẋ

n
= −α

∑
i∈V sign (xi(t)− zi)

n
, (14)

We recall that the agents are labeled in ascending order with respect to their constant zi, i.e.,

if zi > zj then i > j. Let m be the median value of vector x(0) = z, i.e., m ∈ [zk, zk+1] , k = n
2
, for n even,

m = zk, k = n+1
2
, for n odd.

Let Nup(t) be the number of agents such that xi(t) > m and xi(t) ̸= zi and Ndown(t) the

number of agents such that xi(t) < m and xi(t) ̸= zi. Then, by construction

ċ(t) = −α

n
(Nup(t)−Ndown(t)) . (15)

Therefore, 
ċ(t) ≥ α

n
if Nup(t) < Ndown(t);

ċ(t) ≤ −α
n

if Nup(t) > Ndown(t);

ċ(t) = 0 if Nup(t) = Ndown(t).

(16)

Let us consider the following function for t ≥ tr, i.e., after the consensus condition has been

achieved

V (t) = |c(t)−m|. (17)

The corresponding generalized time derivative is

d

dt
[V (t)] = SIGN(c(t)−m))ċ.

The network is by hypothesis at the approximate consensus condition, thus if c(t) ̸= m then

either Nup(t) < Ndown(t) and c(t) > 0 or Nup(t) > Ndown(t) and ċ(t) < 0 or Nup(t) = Ndown(t)

and ċ(t) = 0. It follows by simple manipulations that for c(t) ̸= m
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d

dt
[V (t)] ≤ −α

n
SIGN(c(t)−m)sign(c(t)−m) ≤ −α

n
.

Therefore, according to standard non-smooth Lyapunov analysis the network average converges

to c(t) = m, i.e., the median value, within a finite transient time corresponding to tr2 ≤ n c(0)−m
α

.

�

IV. SIMULATIONS

In the first simulation we consider a network of 8 agents interacting by a randomly connected

graph whose topology is not shown due to lack of space. We consider an initial network state

such that [x1(0) = z1, . . . , xn(0) = zn] = [0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8]. The initial states’

average is 3.1875 while the median value, since n = 8 is even, is considered to be any value

between 0.8 and 1.6 which correspond to the value of either agent 4 or 5. For this simulations

we choose parameters α = 1 and µ = 1, thus λ = 2. In Figure 1 it is shown the time evolution

of the network states. It is evident how after a finite transient time (of duration approximately

2 seconds, lower than the analytical upper bound of tr = 12.7) consensus on a common value

has been achieved. At t = 7 the network state converges to the value of 1.6 which corresponds

to the median value of the initial states. We note that since n is even, the median value is not

unique and therefore a different choice of initial conditions may lead to any legitimate median

value. In Figure 2 it is shown the evolution of function V (t) defined in eq. (??) which converges

to zero in finite-time.
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15

Time
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Fig. 1. Time evolution of the network state x(t).

July 27, 2017 DRAFT



11

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14
15

Time
V

(t
)

Fig. 2. Time evolution of function V (t).

In Figure 3 it is shown the network evolution of the second simulation example that considers

the case in which two agents are outliers. In the second simulation we consider the case of

a network with 19 nodes, which is an odd number. We consider a random connected network

topology which is not shown due to lack of space. Initial states are taken uniformly at random

with xi(0) = zi ∈ [0, 10] for any i ∈ V . Also for this simulation we choose parameters α = 1,

µ = 1 and thus λ = 2. Furthermore, we consider agent 1 and 2 to be outliers and artificially set

their initial state values to 100 and 94 respectively. The average of the network with outliers is

14.9 while the average without considering outliers is 5.74. This sensitivity to outlier values is

particularly critical in large-scale systems. On the other hand, the median value of the network

with outliers is 6.8 while without considering outliers it is 5.13. Clearly, as the number of agents

increases the median value becomes less and less sensitive to outlier values thus allowing a

robust implementation of consensus algorithms. We point out that for many random variables

with symmetric distribution, such as uniform or Gaussian random variables, the average value

corresponds numerically to the median value.

Finally, in Figure 4 it is shown the evolution of the difference between the average value

of the network and the median value for the second simulation. It is clear that as predicted

by the analytical analysis as soon as consensus between the agents is achieved in finite time

the difference between the average value and the median value of the network state converges

monotonically to zero in finite time.
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V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel consensus protocol which achieves agreement with respect

to the median value of the initial states in finite time. The proposed protocol achieves distributed

agreement toward an inherently robust statistical measure with respect to outlier states due to

faults or measurement errors. Future work will involve the characterization of a discrete time

version of the proposed algorithm and characterization of the robustness of the protocol with

respect to noisy relative state measurements.
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Fig. 3. Time evolution of the network state x(t) with 2 outlier agents.
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Fig. 4. Time evolution of the difference between the average value c(t) of the network state x(t) with 2 outlier agents and

the median value.
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