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Abstract

In this paper a type of specifications called OR-GMEC for place/transition nets is defined. Such a

specification consists of a set of disjunctive Generalized Mutual Exclusion Constraint, i.e. the requirement

is that, at any given time, the controlled system should satisfy at least one of them. We show that a bounded

OR-GMEC can be enforced by a special control structure composed by a set of monitor places (one for each

constraint) plus a switcher that determines the current active constraint. We also show that such a simple

control structure is not maximally permissive, and characterize this problem identifying a special subset of

transitions that may be over-restricted. A modified controller that ensures maximal permissiveness is also

presented. Finally, we discuss a particular control problem, that consists in preventing the firing of a given

set of transitions and show that it can be reduced to an OR-GMEC problem.
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alessandro.giua@lsis.org), and also with Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Cagliari
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1 Introduction

Generalized Mutual Exclusion Constraints [1] (GMECs) are a class of state specifications that can be effi-

ciently enforced in a Petri net by a simple control structure, called monitor place, that is maximally permis-

sive. Since the monitor design does not require to enumerate the reachability set but can be solved working

on the net structure, the state explosion problem is avoided and the controller design process is quite efficient.

Although this approach has many advantages and has been used in a wide range of contexts [2–6], its

modeling power is rather restricted. In fact a single GMEC only considers a very special class of legal

markings that belong to an n-dimensional half-space, where n is the number of places in the net. The legal

marking set defined by a set of GMECs is given by the intersection of half-spaces and thus is always convex.

Furthermore, when a net contains uncontrollable transitions the set of legal markings under control must

be further restricted to avoid reaching not only forbidden marking, i.e., markings that are not legal, but

also weakly forbidden markings, i.e., legal markings from which a forbidden marking is reached by firing a

sequence of of uncontrollable transitions. In such a case we say that the GMEC is not controllable. A solution

to such a problem has been provided in [6]: in these works an efficient technique that given an uncontrollable

GMEC (w,k) determines a more restrictive controllable GMEC (w′,k′) was presented. However, in [1] it was

shown that in general the set of legal markings under control for an uncontrollable GMEC is not convex. In

such a case the solution provided by the approach of [6] is suboptimal, because the set of legal markings of the

controllable GMEC (w′,k′) is a strict subset of the set of legal markings under control of the uncontrollable

GMEC (w, k). An optimal solution would require an approach capable of handling non convex sets of legal

markings.

A similar problem arises when Petri nets models are used in Supervisory Control Theory [7] for arbi-

trary language specifications [8, 9] or for nonblocking and deadlock prevention issues [10]: the set of legal

markings in this type of problems is not usually convex and the classical GMEC approach is not directly

applicable. The approach followed in this paper is to extend the concept of GMEC to a more general class

of constraints capable of describing non convex legal sets. We consider a constraint composed by a set of

disjunctive GMECs which we call OR-GMEC to distinguish it from a set of (classical) conjunctive GMECs

that we call AND-GMEC. While in an AND-GMEC a marking is legal if it satisfies all constraints, in an

OR-GMEC a marking is legal if it satisfies at least one constraint.

Disjunctive constraints of this type have also been studied by Iordache and Antsaklis [5,11]. These authors

designed a closed-loop supervisor to precisely keep track of the violation information, i.e., which constraints

are currently violated, to ensure that the plant would not violate the control law. However, in [5, 11] an

additional external decision agent is needed to determine if a firing of a transition in the plant net changes the

true value of each constraint, otherwise non-determinism may arise in the supervisor. However this external
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decision agent is not compiled into a Petri net structure. Furthermore a very restrictive assumption in their

approach is that the firing a each transition should modify the token count of each GMEC by one at most.

Here we propose a different approach to convert a given set of disjunctive constraints into a compiled

place/transition supervisor that does not require the restrictive assumption of [5, 11] on the class of GMEC

considered. The fundamental advantage of a compiled supervisor is the possibility of constructing a model of

a closedloop system as a place/transition net that can be validated using existing techniques such as structural

analysis.

We present two different design procedures for a controller capable of enforcing an OR-GMEC under

the assumption that the OR-GMEC is bounded (we refer to Section 3 for a formal definition of bounded

OR-GMEC and for a discussion of its limitations). The controller obtained using the first procedure, called

monitor switcher, can be easily implemented but in some cases may not be maximally permissive. We char-

acterize the conditions under which the monitor switcher is not maximally permissive identifying a special

subset of transitions that may be overrestricted. We also show how the monitor switcher may be modified, if

necessary, to always obtain a maximally permissive controller. The design procedures we propose work on

the net structure and thus the control problem can be efficiently solved without enumerating the state space.

Finally, in the last section of the paper we show that a particular control problem, that we call transition

disabling problem, i.e., ensuring that a given set of transitions is never enabled, can always be reduced to an

OR-GMEC problem.

The paper is organized in six sections. Section 2 presents the Petri net formalism used in the paper.

Section 3 presents the monitor switcher design. Section 4 discusses the conditions under which the switcher

is maximally permissive and shows how it can be modified, if necessary, to obtain a maximally permissive

controller. Section 5 deals with the transition disabling problem. Conclusions are presented in Section 6.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; n transi-

tions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence functions

that specify the arcs in the net and are represented as matrices in Nm×n (here N= {0,1,2, . . .}).

The incidence matrix of a net is defined by C = Post −Pre ∈ Zm×n (here Z = {0,±1,±2, . . .}). A net is

said to be self-loop free if for all places p ∈ P and for all transitions t ∈ T holds Pre(p, t) ·Post(p, t) = 0. For

a self-loop free net, from the incident matrix one may univocally determine the Pre and Post functions.
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For a transition t ∈ T we define its set of input places as •t = {p ∈ P | Pre(p, t)> 0} and its set of output

places as t• = {p ∈ P | Post(p, t)> 0}. This notation can also be applied to sets of transitions T̄ ⊆ T , defining
•T̄ = ∪•

t∈T̄ t and T̄ • = ∪t∈T̄ t•.

A marking is a vector M : P → N that assigns to each place of a Petri net a non-negative integer number

of tokens, represented by black dots. We denote by M(p) the marking of place p. A marked net ⟨N,M0⟩ is a

net N with an initial marking M0.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ = M0 +C(·, t).

We write M[σ⟩ to denote that the sequence of transitions σ is enabled at M, and we write M[σ⟩M′ to denote

that the firing of σ yields M′.

A marking M is reachable in ⟨N,M0⟩ iff there exists a firing sequence σ such that M0[σ⟩M. The set of all

markings reachable from M0 defines the reachability set of ⟨N,M0⟩ and is denoted by R(N,M0). We denote

by PR(N,M0) the potentially reachable set, i.e., the set of all markings M ∈Nm for which there exists a vector

y∈Nn that satisfies the state equation M =M0+C ·y, i.e., PR(N,M0) = {M ∈Nm | ∃y∈Nn : M =M0+C ·y}.

We have that R(N,M0)⊆ PR(N,M0).

A place p ∈ P of a marked net ⟨N,M0⟩ is said to be bounded if there exists a nonnegative integer K such

that for all M ∈ R(N,M0) it holds M(p)≤ K. A marked net is bounded if all its places are bounded.

Definition 1 A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) where w ∈ Zm and k ∈ N.

A GMEC defines a set of legal markings:

M (w,k) = {M ∈ Nm | wT ·M ≤ k}.

An AND-GMEC is a set of r GMECs denoted by a pair (W,k)AND where W = [w1 · · ·wr] ∈ Zm×r and

k = [k1 · · ·kr]
T ∈ Nr. An AND-GMEC defines a set of legal markings

MAND(W,k) = {M ∈ Nm | ∀i ∈ {1, . . . ,r},wT
i ·M ≤ ki}.

A GMEC (w,k) on a net system ⟨N,M0⟩ with N = (P,T,Pre,Post) (that we call plant net) can be easily

enforced by a control structure by adding to the net a loop-free place q called monitor with incidence matrix

C(q, ·) = −wT ·C(·, t) and initial marking M(q) = k−wT ·M0. The resulting closed-loop net ⟨N′,M′
0⟩ with

N′ = (P∪{q},T,Pre′,Post ′) is such that the projection of its reachability set on the set of places P on N

satisfies R(N′,M′
0)↑P ⊆ M (w,k). An AND-GMEC can be enforced by a set of monitor places using the

previous technique.

4



3 Monitor Switcher Design for OR-GMEC

In the classical GMEC condition, the logical relationship between constraints is AND, i.e., each legal marking

must satisfies all the constraints. We consider the cases, however, in which the system is not required to satisfy

all constraints but is only required to satisfy at least one of them. This type of constraints is called OR-GMEC.

Definition 2 An OR-GMEC is a pair (W,k)OR where W = [w1 · · ·wr] ∈ Zm×r and k = [k1 · · ·kr]
T ∈ Nr. An

OR-GMEC defines a set of legal markings

MOR(W,k) = {M ∈ Nm | ∃i ∈ {1, . . . ,r},wT
i ·M ≤ ki}.

Unlike an AND-GMEC, in an OR-GMEC the logical condition among constraints is OR.

In the classical AND-GMEC controller design approaches, the controller consists in a set of monitor

places PS that are added to the plant net to determine a closed-loop net N′ with P′ = P∪PS and T ′ = T . For an

OR-GMEC, however, it is not in general possible to build a controller which only consists of control places.

We look for a control structure that contains both additional control places PS and control transitions TS, i.e.,

the closed-loop net shall have set of places P′ = P∪PS and set of transitions T ′ = T ∪TS. Considering that

the firing of a transition t ∈ TS should not change the marking of the plant net, we assume that TS is such that
•TS ∪T •

S ⊆ PS. This motivates the following problem.

Problem 1 Given a Petri net system ⟨N,M0⟩ with N = (P,T,Pre,Post) and an OR-GMEC (W,k)OR, de-

termine a closed-loop net ⟨N′,M′
0⟩ where N = (P∪ PS,T ∪ TS,Pre′,Post ′) which satisfies: •TS ∪ T •

S ⊆ PS

and such that the projection of the reachability set of the net N′ on the set of places P of N satisfies

R(N′,M′
0)↑P ⊆ MOR(W,k). To ensure the problem has a solution we assume M0 ∈ MOR(W,k).

Let us first give the definition of boundedness for an OR-GMEC.

Definition 3 An OR-GMEC (W,k)OR is said to be bounded (with respect to ⟨N,M0⟩) if there exist an integer

K such that for all constraints (wi,ki) and for all markings M ∈ R(N,M0) it holds wT
i ·M ≤ K.

Proposition 1 An OR-GMEC (W,k)OR is bounded with respect to a plant net ⟨N,M0⟩ if for all constraints

(wi,ki) holds: wi(p j)> 0 ⇒ place p j is bounded.

Proof: Without loss of generality, for an arbitrarily chosen i let us assume wi(p j) > 0 for j ≤ r′ and

wi(p j)≤ 0 for j > r′. Assume that all place p j are bounded for j ≤ r′; then for all M ∈ R(N,M0) and for all
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j ≤ r′ holds M(p j)c j, where c j ∈ N is an upper bound. Define a vector w′
i ∈ Zm where w′

i(p j = wi(p j) for

j ≤ r′, w′
i(p j) = 0 for j > r′. Therefore for all M ∈ R(N,M0) we have:

wT
i ·M ≤ w′T

i ·M ≤
r

∑
j=1

wi(p j) · c j ≤ Ki ∈ N (1)

According to Definition 3, define K ∈ N such that K = max{Ki}. Since all constraints are K-bounded then

(W,k)OR is bounded. �

An immediate result of the previous proposition is the following one.

Corollary 1 If ⟨N,M0⟩ is bounded, any OR-GMEC defined on its reachability set is bounded with respect to

⟨N,M0⟩.

Note that Proposition 1 provide only sufficient (but not necessary) conditions for the boundedness of an OR-

GMEC. We believe that this property is not too restrictive since it applies not only to the class of bounded

nets but to meaningful classes of unbounded nets as well.

We found that for a given Petri net and a bounded OR-GMEC (W,k)OR, the OR-GMEC can always be

implemented by a net structure. If the OR-GMEC is unbounded, however, even in a very simple system a

maximally permissive closed-loop net may not exist (see discussion in Section 6). As a result, in this paper

we only focus on the bounded OR-GMECs.

The next algorithm transforms a bounded OR-GMEC to a closed-loop net with a control structure called

monitor switcher.

Algorithm 1 Monitor Switcher Design
Input: A plant net ⟨N,M0⟩, a constraint (W,k)OR
Output: A closed-loop net ⟨N′,M′

0⟩ such that R(N′,M′
0)↑P ⊆ MOR(W,k)

1: Select a large constant K:
K ≥ K′ = max

i∈{1,...,r}
max

M∈R(N,M0)
{wT

i ·M− ki} (2)

2: For each single constraint (wi,ki) (i ∈ {1, . . . ,r}), add a loop-free place qi to the plant net ⟨N,M0⟩ with
C(qi, t) =−wT

i ·C(·, t),M0(qi) = ki −wT
i ·M0 +K.

3: Add r places q′1, . . . ,q
′
r. Add r× (r−1) transition ti, j where i ̸= j. Let Pre(q′i, ti, j) = 1 and Post(q′j, ti, j) =

1. Let Post(qi, ti, j) = K and Pre(q j, ti, j) = K.
4: Pick an l : M(ql)≥ K. Let M(q′l) = 1 and M(q′i) = 0 for all i ̸= l. Let M(ql) = M(ql)−K.
5: Output the closed-loop net ⟨N′,M′

0⟩.

We will illustrate the algorithm by showing an example.

Example 1 In Figure 1 the Petri net on the left is the plant, and the related OR-GMEC are: M(p2)+M(p3)≤

2 OR M(p3)+M(p4) ≤ 2. By applying Algorithm 1 we obtain the closed-loop net on the right. The subnet

in red is the monitor switcher. In the closed-loop net, qi is the monitor associated to the i-th constraint. If the

6



Figure 1: The net in Example 1. The subnet in red is the monitor switcher.

unique token in the switcher (the subnet in the dashed box) is in q′i, all monitors q j (for j ̸= i) have a sufficient

number of tokens to make the corresponding constraint inactive. Therefore the unique token in q′i indicates

that the i-th constraint is active, i.e., the current legal marking satisfies (at least) the i-th constraint.

Note that in the first step the value of K should be larger than but not necessarily identical to K′. Therefore

one can efficiently find a proper K by solving the potential reachable markings by linear programming. This

algorithm cannot be applied for an unbounded OR-GMEC because a finite K that makes any constraint

inactive does not exist.

From the structure of the resulting net we have the following theorem that ensure that only legal markings

are reached under control. The following theorem also ensures that a solution disjunctive GMEC based on

monitor places and switcher always exists if the OR-GMEC is bounded.

Theorem 1 A net ⟨N′,M′
0⟩ constructed by Algorithm 1 satisfies R(N′,M′

0)↑P ⊆ MOR(W,k).

Proof: In Step 2 of the algorithm, the resulting net has among its invariants the following ones:

wT
i ·M+M(qi) = ki +K. (3)

After the monitor switcher is added, the resulting net has among its invariants the following ones:

wT
i ·M+M(qi) = ki +K −M(q′i) ·K

∑i M(q′i) = 1
(4)

The last invariant ensures that for any marking M′ ∈ R(N′,M′
0) there exists a constraint ī such that M(q′ī) = 1

and by (4) M′ also satisfies wT
ī ·M +M(qī) = kī. So M = M′

↑P satisfies at least the ī-th constraint (wī,kī) in
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Figure 2: An example in which ⟨N′,M′
0⟩ is not maximally permissive.

(W,k)OR. �

A desirable property of the obtained ⟨N′,M′
0⟩ is maximal permissiveness, that is, if the firing of a transition

t in the plant net is legal, it should also be firable in the closed-loop net. In the closed-loop net, however,

the firing of t may depend on the previous firing of a control transition in the switcher. This motivates the

following weaker definition of permissiveness.

Definition 4 A closed-loop net ⟨N′,M′
0⟩ (with respect to ⟨N,M0⟩) is said to be maximally permissive if for

all M′ ∈ (N′,M′
0) the following condition1 holds:

(M′
↑P[t⟩NM ∈ L ) =⇒ (∃σ ∈ T ∗

S : M′[σt⟩N′) (5)

In the classical supervisory control theory [7], for each marking M of the plant the supervisor generates a

control pattern ξ (M) that contains all admissible transitions that can fire without violating the specification.

In our approach, since the monitor switcher has its own transitions, when the closed-loop net by the firing of

a plant transition reaches a marking M′
1 corresponding to the plant marking M = M′

1↑P, the closed-loop nets

may evolve to marking M′
2,M

′
3, . . . by only firing transitions in TS, while M′

i↑P = M for all i. In such a case,

we assume that the equivalent control pattern for M is ξtot(M) which contains all plant transitions enabled by

any of the marking M′
i .

The following theorem shows that Algorithm 1 does not determine a maximally permissive net.

Theorem 2 The closed-loop net ⟨N′,M′
0⟩ obtained from Algorithm 1 is not always maximally permissive with

respect to ⟨N,M0⟩.

Proof: We prove this result by providing a counterexample. Consider the plant net ⟨N,M0⟩ on the left

of Figure 2 and the bounded OR-GMEC M(p2) ≤ 2 OR M(p3) ≤ 3. In ⟨N,M0⟩, both [0 2 4] and [0 4 2]
1Here we distinguish the enabling in the nets N and N′ using the notation [·⟩N and [·⟩N′ , respectively.
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are reachable legal markings and [0 2 4][t5⟩[0 4 2]. If we apply Algorithm 1 on this plant, we obtain the

closed-loop net on the right in the figure where the marking shown is reached by firing σ = t1t1t1t1t3t3, which

is now corresponding to the plant marking [0 2 4]. Transition t5 in ⟨N′,M′
0⟩ is now blocked by q1, and the

monitor switcher cannot shift from q′1 to q′2 since M(q2) = K −1 < K. Therefore the marking [0 4 2] cannot

be reached from [0 2 4] by firing a sequence (possibly empty) of transitions in TS followed by t5. �

One may have noticed that by applying Algorithm 1 the resulting Petri net in Figure 2 is not maximal-

ly permissive according to Definition 4, but all the legal markings are still reachable, e.g., the marking [0

4 2] is still reachable. However, in some cases of OR-GMECs there may exist a legal marking which is

only reachable by firing a transition unnecessarily blocked by the monitor switcher, and thus the maximal

permissiveness in terms of markings is not guaranteed neither. One can easily find an example which is not

maximally permissive in terms of markings.

The reason why the closed-loop net ⟨N′,M′
0⟩ constructed by Algorithm 1 is not always maximally per-

missive can be explained as follows: when the switcher marking is in a state under which a constraint i is

active, if it wants to shift to a state under which another constraint j is activated, both constraints must be

satisfied by the plant marking at the same time. However, in general a legal firing may also occur from a

plant net marking that satisfies only constraint i yielding a new plant marking that satisfies only constraint

j. The undesired restriction of the switcher reduces the permissiveness of the closed-loop net. Since we

desire a maximally permissive closed-loop net, the closed-loop net ⟨N′,M′
0⟩ has to be suitably modified: this

is possible as shown in the next section.

4 Modifying a Monitor Switcher to Ensure Maximal Permissiveness

Definition 5 A transition t ∈ T is said to be maximally permissive in a closed-loop net ⟨N′,M′
0⟩ if for all

M′ ∈ R(N′,M′
0) the following condition holds:

M′
↑P[t⟩NM̄ ∈ L ⇒ ∃σS ∈ T ∗

S : M′[σSt⟩N′

In the closed-loop net in Figure 2 we can see that t1, t2, t3, and t4 are all maximally permissive while t5 is

not. This is because the current marking [0 2 4] violates the constraint M(p3)≤ 3 and the firing of t5 will lead

to a marking [0 4 2] that violates the constraint M(p2)≤ 2. However, the monitor switcher does not consider

that the firing of t5 will lead to a marking that violates M(p2)≤ 2 while concurrently satisfies M(p3)≤ 3.

The following definition aims to characterize this situation.

Definition 6 The influence vector of a transition t is a vector zt ∈ Zr defined as zt = WT ·C(·, t).
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Definition 7 A transition t is called a migrating transition if (zt � 0)∧ (zt � 0).

For such a transition we define its positive support as Z +
t = {i | zt(i) > 0} and its negative support as

Z −
t = {i | zt(i)< 0}.

We now show that the non-maximal permissiveness may be only due to migrating transitions.

Theorem 3 If a transition t is not maximally permissive, then t is a migrating transition.

Proof: For an arbitrarily chosen t which is non-maximally permissive, according to Definition 5, ∃M′
1 :

M′
1↑P = M1 ∈ L ,M1[t⟩NM2 ∈ L,∀σ ∈ T ∗

S ,¬M[σ t⟩N′ . Since M1,M2 ∈ L , let S1 ̸= /0 and S2 ̸= /0 be the

constraints M1 and M2 satisfies, respectively.

We first prove, by contradiction, that S1 ∩S2 is empty. If S1 ∩S2 ̸= /0, pick any i: (wi,ki) ∈ S1 ∩S2, if the

unique token in the monitor switcher is now in q′i, t is not blocked (σ equals to the empty string) since all the

constraints are deactivated. If the unique token in the monitor switcher is in q′j ̸= q′i, by firing t j,i it can be

moved into q′i so that t may fire after σ = t j,i.

Since S1 ∩S2 is the empty set, therefore, M2 must violate all the constraints in S1 while M1 must violate

all the constraints in S2. As a result, it must hold for all M1[t⟩M2,wT
i ·M2 < wT

i ·M1 for (wi,ki) ∈ S1 and

wT
i ·M2 > wT

i ·M1 for (wi,ki) ∈ S2. This implies zt(i) < 0, i ∈ {1, . . . ,r′} and zt(i) > 0, i ∈ {r′+ 1, . . . ,r′′}.

Therefore t is a migrating transition. �

Proposition 2 The firing of a migrating transition t does not lead to a violation of the OR-GMEC if the

current plant net marking M satisfies the condition: ∃i,wT
i ·M ≤ ki − zt(i).

Proof: Suppose the current marking M satisfies: ∃i,wT
i ·M ≤ ki − zt(i). After the firing of t the system

reach M1. From the definition of zt(i) it must hold wT
i ·M1 ≤ ki. Therefore M1 is a legal marking which

satisfies at least the i-th single GMEC. �

From Theorem 3 we can clearly see that only migrating transitions should be treated to enhance permis-

siveness. We propose to add a set of mirror transitions to a migrating transition thus constructing from the

closed-loop net ⟨N′,M′
0⟩ obtained from Algorithm 1 a modified closed-loop net ⟨N′′,M′′

0 ⟩. Such a set of mir-

ror transitions is described in the following definition (where Pre′′ and Post ′′ denote the pre and post matrices

of the modified net).
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Definition 8 For a transition t ∈ T , its mirror set T (t) is defined as:



T (t) = {t ′ | ∃tS ∈ TS,

∀p ∈ P∪PS \{ql , l = 1, . . . ,r},

Pre′′(p, t ′) = Pre′(p, t)+Pre′(p, tS),

Post ′′(p, t ′) = Post ′(p, t)+Post ′(p, tS);

∀p ∈ {ql , l = 1, . . . ,r},

Pre′′(p, t ′) = Pre′(p, tS)−Post ′(p, t),

Post ′′(p, t ′) = Post ′(p, tS)−Pre′(p, t)}

(6)

Theorem 4 If under M a migrating transition t is enabled in N while its firing is legal, but t is blocked in N′,

there must exist a t ′ ∈ T (t) which is enabled under M. And the firing of a transition t ′ ∈ T (t) has the same

impact on state evolution as the firing of sequence σ = ttS in N′.

Proof: Suppose under M the current active constraint is i and the firing of t will deactivate i and activate

j. For the places p ∈ {ql} from Definition 8 Pre′′(q j, t ′) = Pre′(q j, tS)−Post ′(q j, t) = K + zt( j). Since j-th

constraint is not activated, M(q j) = k j +K−wT
j ·M. According to Proposition 2 it holds wT

j ·M ≤ k j + zt( j).

Therefore we have M(q j)≥ K + zt( j) = Pre′′(q j, t), t ′ is not blocked by ql . For the places p ∈ P∪PS \{ql}

which are the input places of t ′ it is obvious that M(p)≥ Pre(p, t ′). Therefore t ′ is enabled under M.

The fact that the firing of a transition t ′ ∈ T (t) has the same impact on state evolution as the firing of

sequence σ = ttS in N′ is straight forward from its definition. �

Theorem 4 ensures if in N′ neither t nor tS is enabled but M +CN′σ ≥ 0 where σ = ttS, we can fire t ′

instead of firing t and tS sequentially.

We present an algorithm to construct the modified net.

Algorithm 2 Modified closed-loop net design
Input: A closed-loop net ⟨N′,M′

0⟩ for (W,k)OR obtained by Algorithm 1
Output: A modified closed-loop net ⟨N′′,M′′

0 ⟩ that is maximally permissive
1: Let N′′ = N′, M′′

0 = M′
0.

2: Let Tmig be the set of migrating transitions.
3: Pick a transition t from Tmig.
4: For all (i, j) ∈ Z +

t ×Z −
t , add to T ′′ a transition tdup,i j with: ∀p ∈ P ∪ PS \ {ql}, Pre′′(p, tdup,i j) =

Pre′(p, t) + Pre′(p, ti, j),Post ′′(p, tdup,i j) = Post ′(p, t) + Post ′(p, ti, j); ∀p ∈ {ql},Pre′′(p, tdup,i j) =
Pre′(p, ti, j)−Post ′(p, t),Post ′′(p, tdup,i j) = Post ′(p, ti, j)−Pre′(p, t).

5: Remove t from Tmig.
6: If Tmig ̸= /0 goto Step 2.
7: Output the closed-loop net ⟨N′′,M′′

0 ⟩.
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Figure 3: A modified closed-loop net that is maximally permissive constructed by Algorithm 2 for the net in
Figure 2.

The Algorithm 2 can be illustrated in the following way. First we compute all migrating transitions which

should be deal with. For each migrating transition t, according to Theorem 3, the only condition under which

t is abnormally blocked under a marking M′
↑P = M is when some satisfied constraints i ∈ Z +

t are going

to be violated by the firing of t while some violated constraints j ∈ Z −
t are going to be satisfied. At this

moment the unique token in the monitor switcher must be in an q′i. Since the firing of t is legal, it must hold

M′+CN′ · y ≥ 0 where y is the count vector which represents σ = tti, j. So a transition tdup,i j is added. The

firing of tdup,i j indicates the firing of t and, simultaneously, deactivate the i-th constraints while activate the

j-th constraint.

Since the firing of a transition t ′ ∈ T (t) has the same impact on state evolution as the firing of sequence

σ = ttS in N′, the definition of maximal permissiveness given in Definition 4 should be changed for the net

⟨N′′,M′′
0 ⟩ as follows.

Definition 9 A closed-loop net ⟨N′′,M′′
0 ⟩ (with respect to ⟨N,M0⟩) is said to be maximally permissive if

∀M′′ ∈ R(N′′,M′′
0 ) the following condition holds:

(M′′
↑P[t⟩NM̄ ∈ L ) =⇒ (∃σ ∈ T ∗

S ,∃t ′ ∈ T (t)∪{t} : M′′[σt ′⟩N′′) (7)

According to Definition 9 we can state the following result.

Theorem 5 The closed loop-net ⟨N′′,M′′
0 ⟩ obtained from Algorithm 2 is maximally permissive with respect

to ⟨N,M0⟩.

Proof: The result follows from the previous discussion, since the only conditions that violate maximal

permissiveness are removed in the the net ⟨N′′,M′′
0 ⟩ by the addition of the mirror transitions. �
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Example 2 Figure 3 shows the resulting net obtained from the net in Figure 2 by Algorithm 2. In the net in

Figure 2, t5 is the only migrating transition. zt5 = [2− 2] indicates the firing of t5 may activate the second

constraint M(p3) ≤ 2 while concurrently deactivate the first constraint M(p2) ≤ 2. The fact that |Z +
t5 | =

|Z −
t5 |= 1 indicates |T (t5)|= 1. Therefore one transition t5,dup is added with its incident matrix Pre′′(·, t5,dup)

and Post ′′(·, t5,dup) are computed according to Step 4 so that the firing of t5,dup is equivalent to fire t5 and

t1,2 concurrently (although neither of them is enabled under [0 2 4]). The resulting net ⟨N′′,M′′
0 ⟩ is shown in

Figure 3 in which the subnet in blue is newly added. The net is maximally permissive.

Let us now discuss the complexity of the algorithms presented so far. To convert an OR-GMEC with r

single constraints to a monitor switcher Algorithm 1 adds 2r places and r × (r − 1) transitions. Applying

Algorithm 2 for each migrating transition t, |Z +
t | × |Z −

t | mirror transitions are added, which in the worst

case means (r/2)× (r/2) transitions will be added. Assuming all transitions are migrating, the total number

of places and transitions added in the modified monitor switcher net is of order O(r) and O(nr2), respectively,

where n is the number of transitions in the net. Considering that the complexity is linear in the size of the net

(number of transitions) and quadratic in the number of constraints, while the enumeration of the reachability

set is not required, we believe this approach is efficient.

We have some final comments concerning Algorithm 2. From our observation after the first stage of

controller design, some of the migrating transitions may be maximally permissive so that in the monitor

switcher controlled closed-loop net it is not necessary to add the corresponding mirror transitions. However,

since the characterization of a maximally permissive transition relies on the Petri net structure, initial marking

distribution, and the OR-GMEC itself, one cannot determine if a migrating transition is maximally permissive

or not unless the whole reachability graph is checked. Thus it is preferable to add the mirror transitions (albeit

redundant) for all migrating transitions rather than to compute the reachability graph.

5 Transition Disabling Problem

In this section we consider a particular control problem and show that it can be reduced to an OR-GMEC

problem.

Problem 2 (Transition Disabling). Given a Petri net ⟨N,M0⟩, let Td be a subset of it transitions. We want

to restrict the behavior of this net so that no marking M that enables a transition in Td is reachable under

control, i.e., the set of legal markings is L = {M ∈ R(N,M0) | (∀t ∈ Td)¬M[t⟩}. To ensure the problem has a

solution we assume that no transition in Td is enabled at the initial marking M0 and that for all t ∈ Td holds
•t ̸= /0.

13



In plain words the problem consists in preventing the firing of all transitions in Td without directly dis-

abling them (e.g., because they are uncontrollable in the supervisory control framework).

Definition 10 For all transitions t ∈ Td , we define the minimal enabling marking of t as Men,t = Pre(·, t).

We now show that Problem 2 can be formulated as an OR-GMEC problem.

Theorem 6 Given a Petri net ⟨N,M0⟩ and a transition t such that •t ̸= /0, there exist an OR-GMEC (W,k)OR

such that

{M ∈ R(N,M0) | ¬M[t⟩= R(N,M0)∩MOR(W,k)

Furthermore the OR-GMEC is bounded if all places p ∈• t are bounded.

Proof: Consider a transition t which needs to be prevented from firing and let •t = {p j1, . . . , p jq}. From

the definition of minimal enabling marking, the legal marking set is:

L = {M ∈ Nm | M � Men,t}

This condition can be rewritten as the following OR-GMEC condition:

∨


eT
j1 ·M < Men,t(p j1)

eT
j2 ·M < Men,t(p j2)

· · ·

eT
jq ·M < Men,t(p jq)

(8)

where ei ∈ Nm denotes i-th canonical basis vector. Obviously (8) is an OR-GMEC problem with:

W = [e j1,e j2, . . . ,e jq] and k =


Men,t(p j1)−1

Men,t(p j2)−1
...

Men,t(p jq)−1

 .

The boundedness of the constraint follows from Proposition 1. �

From Theorem 6 we see that a transition disabling problem can be reduced to an OR-GMEC problem,

and if all places in •Td are bounded we can use the technique proposed in Section 4 to convert the OR-GMEC

condition to a net controller as described in the following algorithm.

Example 3 An example of transition disabling problem is given in Figure 4. The origin marked Petri net is

14



Algorithm 3 Transition disabling
Input: A marked net ⟨N′,M′

0⟩, a subset of transitions Td
Output: A closed-loop net ⟨N′,M′

0⟩ where no transition in Td is enabled at M ∈ R(N,M0)
1: Let T EMP = Td .
2: Pick a t in T EMP, compute its Men,t .
3: If |•t| ≥ 2, transform the constraint M � Men,t to an OR-GMEC problem. Convert the OR-GMEC to a

Petri net controller and add it to the net. Goto Step 5.
4: If |•t|= 1, transform the constraint M � Men,t to a classical single GMEC. Convert the single GMEC to

a Petri net controller and add it to the net.
5: Remove t from T EMP.
6: If T EMP ̸= /0 goto Step 2.
7: Output the closed-loop net ⟨N′,M′

0⟩.

Figure 4: An example and its solution of the transition disabling problem.

the subnet in black. The transition td is the transition we want to disable. Because •t = {p2, p3} and Men,td =

[023], by Theorem 6 this can be converted to the OR-GMEC: M(p2) ≤ 1 OR M(p3) ≤ 2. By converting

the OR-GMEC to a Petri net controller, the closed-loop net is the entire net in Figure 4 and it is maximally

permissive. In this example the arcs from td to q1 and q2 are not drawn since td would never be enabled.

The previous algorithm adds to the net to be controlled a monitor switcher for each transition in Td . If

some transition in Td is dead (i.e., may never fire) the corresponding monitor switcher is redundant and does

not constrain the net evolution.

6 Conclusions

In this paper we are considering the OR-GMEC, i.e., a constraint composed by a set of disjunctive GMECs.

Since an OR-GMEC can be transformed to a Petri net control structure with maximal permissiveness, it

would be a supplement and extension to the classical GMEC approach. The algorithms can be widely used
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Figure 5: An OR-GMEC with unbounded places:(a) the original net and the inhibitor solution; (b) part of its
reachability graph.

in different type of systems where, according to the control demand, the legal marking set L is not a convex

set.

In this paper we restricted our attention to bounded OR-GMECs. An expected extension of this approach

is to convert an arbitrarily OR-GMEC (possibly not bounded) into a maximally permissive control structure.

However we believe that if the OR-GMEC is unbounded, it may be impossible to construct such a controller

as a place/transition net. For instance, consider the Petri net in Figure 5(a) without the red dash arc. Here

the OR-GMEC M(p1)≤ 0 OR M(p2)≤ 0 is unbounded. The legal markings are partially presented as solid

circles in Figure 5(b). Such OR-GMEC can be enforced by inhibitor arcs as in Figure 5(a) considering red

dashed arcs. We conjecture that for an arbitrary OR-GMEC there exists a maximally permissive closed-loop

net with inhibitor arcs. However, it is well known that a Petri net with inhibitor arcs is equivalent to a Turing

Machine and may not always be converted to a place/transition net. This will be the the object of our future

work.
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