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Abstract

In this paper we investigate the properties of a decentralized consensus algorithm for a network of continuous-time integrators
subject to unknown-but-bounded persistent disturbances. The proposed consensus algorithm is is based on a discontinuous local
interaction rule. Under certain restrictions on the directed switching topology of the communication graph, it is proven that
after a finite transient time the agents achieve an approximated consensus condition by attenuating the destabilizing effect of
the disturbances. Lyapunov analysis is carried out to for characterizing the performance of the suggested algorithm. Simulative
analysis are illustrated and commented to validate the developed result.
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I. INTRODUCTION

The problem of reaching consensus, i.e., driving the state of a set of interconnected dynamical systems towards the same
value, has received much attention due to its many applications in, both, the modeling of natural phenomena such as flocking
(see e.g. [1], [?], [2], [3]) and in the solution of several control problems involving synchronization or agreement between
dynamical systems (see [4], [5], [6]).

In this paper we discuss an approach to reach consensus in a network of interacting agents whose dynamics are modeled
by first order continuous time integrators subject to unknown-but-bounded persistent perturbations. The approach is based
on a local interaction rule which combines linear and nonlinear terms. The linear terms, as usual, feed each agent with the
difference between the current agent’s state and the states of its neighbors, while the nonlinear terms consider the sign of
those differences yielding a discontinuous local interaction rule involving sliding mode control concepts (see [7]).

Discontinuous local interaction rules have been used in the framework of consensus or agreement algorithms to exploit
the underlying finite-time convergence and robustness against disturbances and unmodeled dynamics. Several examples
of applications to flocking or synchronization problems can be found in the literature (see e.g. [8]). Discontinuous local
interactions were studied in [9], within a general framework of gradient flows, and several examples of discontinuous
consensus protocols were analyzed.

In [10], a finite-time consensus algorithm is proposed to address the leader-follower tracking problem in multi-robot
systems with static topology but varying leader. In [11], [12] and [13], finite-time consensus algorithms are provided for
networks of unperturbed integrators by exploiting discontinuous local interaction rules under time varying (both undirected
and directed) network topologies.

The consensus problem in presence of measurement errors is studied in [14], in a discrete-time setting, with reference to
linear consensus protocols with constant or vanishing weights. The authors derive explicit upper bounds to the maximum
disagreement error as function of the bounds on the noise magnitude and of the smallest non-zero singular value of the
network’s state update matrix.

In [15] the authors suggest a class of non-linear continuous protocols that are able to achieve the so-called “ε-consensus”,
namely an approximate agreement condition where all agents converge towards a set, in spite of the presence of additive
disturbances. Our work differs from [15] in that we consider a discontinuous protocol, as opposed to continuous, that is
able to achieve almost complete disturbance rejection up to an arbitrarily small error if the network is always connected.

An approach that shares some technical issues with the protocol proposed in this paper is the continuous-time consensus
problem in presence of quantization errors. In [16] the continuous-time consensus problem is studied in the case of quantized
information exchange between agents, and this leads to an instance of discontinuous protocol where the effect of quantization
can be regarded as a disturbance.

The approach illustrated in this paper further differs from the above mentioned literature works in that we address
the analysis of the practical stability and disturbance attenuation properties of finite-time consensus under the effect of
unknown perturbations and, additionally, with a switching and directed communication topology. In the present work the
finite time transient to reach consensus can be made arbitrarily small by properly selecting the algorithm parameters. The
disturbance rejection performance will primarily depend on the time-varying network connectivity properties. To the best of
our knowledge, the above aspects were never simultaneously addressed and characterized in the existing literature.

The main result of the present work, outlined in Theorem 1, consists in proposing a feasible local interaction rule which
provides finite time convergence of the network to a condition of approximate agreement, by attenuating the effect of the
disturbances. This result is subject to the requirement that the time varying graph defining the network switching interaction
topology stays weakly connected during, at least, a certain “minimal percentage” of time.

This paper generalizes the preliminary results presented in [17] by extending the analysis to cover directed switching
topologies that were not dealt with in the original paper. The key factor enabling such an extension is a modification
of the underlying Lyapunov analysis, which, in the present paper, involves a max function considering the maximal
difference between the agents’ states. This new approach considerably relaxes the conservativeness of the tuning inequalities
guaranteeing convergence to the approximate consensus condition using lower values of the control gains. Additionally,
we consider here continuous and discontinuous terms in the local interaction rule in such a way that the convergence to
consensus can be accelerated by increasing the weight of the linear continuous terms, rather than those of the nonlinear
discontinuous terms, thereby mitigating the chattering effect.

The structure of the paper is as follows. In Section II we recall some basic definitions and formulate the problem under
investigation. In Section III we describe the proposed local interaction rule and we investigate the associated convergence
properties by stating the main result of this paper. In Section IV some simulation results are presented, and, finally, in
Section V conclusions are drawn and possible future research directions are discussed.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a network consisting of N interacting agents whose communication topology, is modeled by a directed
graph G = (V ,E), where V = {1, . . . ,N} and E ⊆ V2 denote, respectively, the collection of agents and the edge set. An



edge, denoted as (i, j), belongs to E if the agent j is able to obtain information from its neighbor i. As a consequence, the
set of neighbors of the agent i is denoted by Ni = { j ∈ V/{i} : ( j, i) ∈ E}. By assumption the presence of self-loops in G
is not allowed. Each agent is modeled as a continuous-time perturbed integrator

ẋi(t) = ϑi(t)+ui(t), xi(0) = xi0, i ∈ V (1)

where xi(t) ∈ R and xi0 are respectively the state of the i-th agent and its initial value, ui(t) ∈ R is the local control input,
and ϑi(t) is a bounded unknown perturbation.

The only assumption made on the unknown perturbations ϑi(t) is:

∃ Π ∈ R+ : ∀ i ∈ V , |ϑi(t)| ≤ Π (2)

Assuming that at each time instant, only a subset of the available communication edges in G is active for information
exchange, we define Ĝ(t) = (V ,E(t)) as a time-varying graph representative of the active instantaneous topology, where
E(t)⊆ E is the subset of active edges at time t. Accordingly, we can define the instantaneous neighbors set of the i-th agent
as follows:

Ni(t) = { j ∈ V : ( j, i) ∈ E(t)} ⊆Ni (3)

Let Γ and tr be two positive constants, the task of the present paper is to design a local interaction rule ui(t), compatible
with Ĝ(t), which can guarantee, under suitable assumptions on the time-varying topology, the achievement of the next
practical finite-time consensus condition

∃ Γ, tr ∈ R+ : ∀ t > tr, ∀ i, j ∈ V , |xi(t)− x j(t)| ≤ Γ (4)

III. MAIN RESULT AND CONVERGENCE ANALYSIS

The proposed local interaction protocol is defined as follows:

ui(t) = ui,1(t)+ui,2(t), i ∈ V (5)

with
ui,1(t) =−λ1 ∑

k∈Ni(t)
(xi(t)− xk(t)) , (6)

ui,2(t) =−λ2 ∑
k∈Ni(t)

sign(xi(t)− xk(t)) , (7)

where λ1 and λ2 are the nonnegative tuning constants of the algorithm and the sign(·) function is defined as follows

sign(S) =

 1 if S> 0
0 if S= 0
−1 if S< 0

(8)

Let rik(t) be a binary variable, representative of the presence or not of a directed communication channel coming from
agent i to agent k at time t, denoted as:

rik(t) =
{

1 if k ∈Ni(t)
0 otherwise (9)

Then, we can rewrite the linear and nonlinear control components ui,1(t) and ui,2(t) in (6) and (7) as follows:

ui,1(t) =−λ1 ∑
k∈V,k ̸=i

rik(t) · (xi(t)− xk(t)), λ1 ≥ 0. (10)

ui,2(t) =−λ2 ∑
k∈V,k ̸=i

rik(t) · sign(xi(t)− xk(t)), λ2 > 0. (11)

Remark 1: Due to the concurrent effect of the suggested discontinuous local interaction rule (11), the switching network
topology Ĝ(t), and the possibly discontinuous nature of the external disturbances (supposed to be only uniformly bounded),
the closed loop network dynamics (1) will be discontinuous and the resulting solution notion needs to be discussed and
clarified. For a differential equation with discontinuous right-hand side, following [18], we understand the resulting solution
in the so-called Filippov sense as the solution of an appropriate differential inclusion, the existence of which is guaranteed
(owing on certain properties of the associated set-valued map) and for which noticeable properties, such as absolute
continuity, are in force. The reader is referred to [19] for a comprehensive account of the notions of solution for discontinuous
dynamical systems.
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Fig. 1. Changes in network topology and communication constraints.

From now on we investigate the conditions under which the local interaction protocol (5)-(7) can achieve the approximate
consensus conditions (4). Define a set of error variables for each edge in the network as follows

δi j(t) = xi(t)− x j(t) with (i, j) ∈ E . (12)

The dynamics of δi j(t) are easily obtained by differentiating (12), and considering the closed loop dynamics of each
agents

ẋi = ϑi −λ1 ∑
k∈V,k ̸=i

rikδik −λ2 ∑
k∈V,k ̸=i

rik · sign(δik) (13)

Trivial manipulations yield

δ̇i j = ϑi −ϑ j −λ1

[
∑

k∈V ,k ̸=i
rikδik − ∑

k∈V ,k ̸= j
r jkδ jk

]
+

−λ2

[
∑

k∈V ,k ̸=i
rik · sign(δik)− ∑

k∈V ,k ̸= j
r jk · sign(δ jk)

] (14)

The requirement concerning the switching communication topology is that the time varying graph Ĝ(t) stays weakly
connected during, at least, a certain “minimal percentage” of time. This is formalized by the next Assumption.

Assumption 1: There are positive constants ε and T , with ε ≤ T , such that during the receding horizon time interval
I(t) = (t, t + T ), Ĝ(t) is weakly connected1 along a subinterval S(t) ⊆ I(t), possibly formed by the union of disjoint
subintervals, whose overall length is at least equal to ε .

The meaning of Assumption 1 is clarified by the Figure 1, namely the overall duration of the disjoint grey subintervals
during which the instantaneous digraph Ĝ(t) is weakly connected should be not less than the constant ε . We are now in a
position to state the main result of the paper.

Theorem 1: Consider the agents’ dynamics (1), which satisfies (2), and let Assumption 1 be in force. Then, the
discontinuous local interaction rule (5), (9)-(11) with tuning parameters selected according to

λ1 ≥ 0 , λ2 ≥
2T ·Π

ε
+µ2 , µ ̸= 0, (15)

provides the approximate consensus condition (4) with

Γ = [2 · (T − ε)+ξ ] ·Π, (16)

where ξ > 0 is an arbitrary infinitesimally small positive parameter and the transient time tr is upper bounded as follows

tr ≤
(

T
εµ2

)
· max

i, j∈V×V
|xi(0)− x j(0)| (17)

Proof:
Consider

V (t) = |δi j(t)| (18)

as a candidate Lyapunov function, where
(i, j) = argmax(i, j)∈V×V |δi j(t)| (19)

1 A digraph is called weakly connected if every pair of nodes are connected by an undirected path [19].



in such a way that, without loss of generality, index i will correspond to an agent carrying the maximal value at time t
among all the agents in the network, and, dually, index j will correspond to an agent carrying the minimal value, i.e.

xi(t) = sup
h∈V

xh(t), x j(t) = inf
h∈V

xh(t) (20)

Let us preliminarily address the case ε < T . It is worth to emphasize that the chosen Lyapunov function (18) is continuous
at those time instants at which either i or j will change its value. Clearly, the vanishing of V (t) implies the exact consensus
condition among the agents of the network, while small values for V (t) correspond to a practical consensus condition as in
(4). Note that the considered Lyapunov function is locally Lipschitz and it is not differentiable when δi j(t) = 0. Thus, we
refer for stability analysis to the Lyapunov Generalized Theorem for non-smooth analysis reported in [20], which makes use
of the Clarke’s Generalized Gradient [21]. However, we can observe that δi j(t) = 0 holds only when the exact consensus
condition is in force, which will bring some useful simplification in the stability analysis.

In the remainder, we refer to the computation method illustrated in [20], where a Lyapunov analysis based on an analogous
sum-of-absolute-value Lyapunov function was dealt with. All the necessary technicalities justifying the correctness of adopting
the chain rule to compute the time derivative of V (t), which exists almost everywhere in the form of a suitable set-valued
map, are not reported here, and the reader is referred, e.g., to [9], [20], [22] where discontinuous systems and non-smooth
Lyapunov tools analogous to those involved in the present analysis were discussed in detail.

The time-derivative of V (t) along the solutions of the deviation error dynamics (14) takes the following set-valued form

V̇ (t) = SIGN(δi j(t)) · δ̇i j(t) =
= SIGN(δi j) · (ϑi −ϑ j)
−λ1 ·SIGN(δi j) ∑

k∈V ,k ̸=i
rik ·δik

+λ1 ·SIGN(δi j) ∑
k∈V ,k ̸= j

r jk ·δ jk

−λ2 ·SIGN(δi j) ∑
k∈V ,k ̸=i

rik · sign(δik)

+λ2 ·SIGN(δi j) ∑
k∈V ,k ̸= j

r jk · sign(δ jk)

(21)

where SIGN(δi j(t)), the generalized gradient of V (t) (see [20]), is the multi-valued function

SIGN(δi j(t)) =

 1 if δi j(t)> 0
[−1,1] if δi j(t) = 0
−1 if δi j(t)< 0

(22)

Note that by definition, and considering (20), as long as V (t) ̸= 0 we have SIGN(δMm(t)) = 1. Furthermore due to the
uniform boundedness of the disturbance (2), the next estimation is in force

|ϑM −ϑm| ≤ 2Π (23)

Thus, we can manipulate (21) so as to obtain

V̇ (t)≤ 2 ·Π−λ1 ∑
k∈V,k ̸=i

rik ·δik+

+λ1 ∑
k∈V,k ̸= j

r jk ·δ jk+

−λ2 ∑
k∈V,k ̸=i

rik · sign(δik)+

+λ2 ∑
k∈V,k ̸= j

r jk · sign(δ jk)

(24)

Note that, in light of (20), irrespectively of the instantaneous current graph topology, all the state-dependent feedback
terms in the right hand side of (24) are nonnegative, i.e.

−λ1 ∑
k∈V,k ̸=i

rik ·δik +λ1 ∑
k∈V,k ̸= j

r jk ·δ jk+

−λ2 ∑
k∈V,k ̸=i

rik · sign(δik)+

+λ2 ∑
k∈V,k ̸= j

r jk · sign(δ jk)≤ 0

(25)

The receding horizon time interval I(t) = (t, t +T ) is divided into the union of subinterval S(t), along which the graph
is guaranteed to be weakly connected, and the complementary interval I(t)\S(t) during which nothing can be said about
the connectivity properties of the switching graph. By virtue of (24) and (25) one can conclude that

V̇ (t)≤ 2 ·Π, t ∈ I(t)\S(t). (26)



It shall be noted that the pair (i, j) is not uniquely defined and there can be multiple agents carrying the maximal or
minimal values xi and x j at time t. At those time instants when Ĝ(t) is weakly connected, however, at least one of the
following conditions holds:

1) among all agents carrying the maximal value, there is at least one of them which admits, among its neighbors, one
agent with state value strictly less than xi;

2) among all agents carrying the minimal value, there is at least one of them which admits, among its neighbors, one
agent with state value strictly greater than xi;

Suppose i (resp., j) is the agent for which the maximum (resp., minimum) is achieved at time t. If there are many such
agents, we choose one, if any, which share an active edge with a neighbor having state value strictly less (resp., greater)
than xi (resp., x j). If there are still many of such agents we choose any one of those, but commit to that until a new agent
holds the maximum (resp., minimum) value.

As a consequence of the previous developments, at those time instants when Ĝ(t) is weakly connected there exists at
least an agent index k̄, k̄ ̸= i, k̄ ̸= j, which satisfies at least one of the following conditions:

rik̄(t) = 1 , δik̄ > 0 (27)
r jk̄(t) = 1 , δ jk̄ < 0 (28)

When either of (27) and (28) is in force, it follows that the right hand side of (24) can be upper-estimated as follows.
Whenever t ∈ S(t) and V (t) ̸= 0

V̇ (t)≤ 2 ·Π−λ2 t ∈ S(t) (29)

By construction the next relation holds:

V (t +T )−V (t) =
∫

S(t)

V̇ (τ) dτ +
∫

I(t)\S(t)

V̇ (τ) dτ (30)

By noticing that the length of the subinterval S(t) is at least ε , according to the Assumption 1, it follows that the length
of the interval I(t)\S(t) will not exceed the value of T − ε .

Thus, in light of (26) and (29), one can manipulate (30) as

V (t +T )−V (t)≤ ε (2Π−λ2)+(T − ε)2 ·Π =
=−ελ2 +2T ·Π (31)

By plugging (15) into (31) one obtains the next condition

V (t +T )−V (t)≤−µ2ε. (32)

which will be satisfied as long as V (τ) ̸= 0 ∀ τ ∈ (t, t + T ), thereby guaranteeing the existence of a finite tr such that
V (tr) = 0. In order to evaluate an upper bound to the transient time tr, denote Vκ =V (κT ), and express (32) in the form of
the difference equation

Vκ+1 =Vκ −µ2ε (33)

which admits the solution
Vκ =V (0)−κ ·µ2ε (34)

From (34) it can be readily concluded that

tr ≤
(

T
εµ2

)
·V (0) =

(
T

εµ2

)
· max

i, j∈V×V
|xi(0)− x j(0)| (35)

which is according to (17). We now prove that, at t ≥ tr, the Lyapunov function V (t) undergoes bounded fluctuations
preserving the consensus accuracy established by (4) and (16). Define

VS = sup
t≥tr

V (t) (36)

which sets the ultimate precision of the approximate consensus condition. If, at any time t ′ one has that V (t ′) = 0 then along
the time interval t ∈ (t ′, t ′+T ) the Lyapunov function V (t) may deviate form zero, at most, by a quantity 2(T −ε)Π, which
is obtained by integrating (26) for a time T − ε (the maximal consecutive time interval in which the graph is disconnected,
according to the Assumption 1 starting from the zero initial condition. Thereby, the domain

V (t)≤ 2(T − ε)Π. (37)

is positively invariant at any t ≥ tr.
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Now let us address the case in which ε = T , i.e. the time varying graph is weakly connected at all times. The previous
analysis has shown that there exists a finite time tr, satisfying (17), at which exact consensus is achieved, i.e. V (tr) = 0.
Unfortunately, V (t) = 0 cannot be an equilibrium state at t ≥ tr due to the fact that all the local control laws ui(t) are
identically zero when V (t) = 0 (as a consequence of all δi j’s being zero and in view of the adopted definition (8) of the sign
function) while the disturbances ϑi(t) are not. On the other hand, an infinitesimal deviation of V (t) from zero will restore
the convergence features of the algorithm, steering immediately V (t) back to zero. This phenomenon, local instability of the
ideal consensus condition V (t) = 0 when the disturbances are acting, can be characterized by an infinitesimal increase of Γ
as follows:

Γ ≤ [2(T − ε)+ξ ]Π (38)

where ξ is an arbitrarily small positive real number. Theorem 1 is proven.

Remark 2: Note that the transient time, which satisfies (35), can be made arbitrarily small by taking the design parameter
µ in (15) large enough. It can be defined a µ-dependent majorant curve, illustrated in Figure 2, such that

V (t)≤ V̄ (t) = max
{

V (0)−µ2ε
t
T
+Γ,Γ

}
, (39)

It is also worth to remark that the tuning of the gain λ2 does not require the perfect knowledge of the time varying
network topology, and it is carried out on the basis of an upper bound to the noise magnitude and an upper bound to the
ratio T/ε that sets the relative amount of time during which the network is weakly connected.

IV. NUMERICAL SIMULATION

To demonstrate the effectiveness of the proposed local interaction protocol, a network of 20 agents is considered, which
interact through a randomly chosen directed communication network with switching topology. Each agent, modeled as in
(1), has a randomly chosen initial state xi0 ∈ [0,5]. The disturbances are selected according to

ϑi(t) = ηi(t)+αi +βi · sin(20 · t +ϕi), i = 1, . . . ,20 (40)

where ηi(t) is a bounded uniformly distributed random signal, αi is a random constant, and the pair βi, ϕi are the characteristic
parameter of the harmonic part of the disturbance. All the underlying disturbance parameters have been randomly chosen
in such a way to guarantee the bound |ϑi(t)| ≤ Π = 2.5 ∀ i.

The communication topology is set by a randomly chosen time-varying graph G(t) such that at most |E| = 30 edges
can be simultaneously active. The random edge selection policy is implemented in such a way that the requirement of
Assumption 1 is met. The value T = 0.01s is used in all tests while different choices for ε have been considered for the
sake of comparison.

Four tests, using different values of ε and of the control gains λ1, λ2 have been considered, according to the next tabular
representation.

TEST1 : ε = T, λ1 = 0, λ2 = 6
TEST2 : ε = 0.5T, λ1 = 0, λ2 = 11
TEST3 : ε = 0.05T, λ1 = 0, λ2 = 101
TEST4 : ε = 0.5T, λ1 = 5, λ2 = 11

The chosen control gains are always according to the design inequalities (15). The continuous time network (1) has been
simulated numerically by using the Euler fixed-step solver with sampling time Ts = 10−4. Figure 3 and Figure 4 display,
respectively, the time evolutions of the agent state variables, and of the corresponding Lyapunov function V (t), relative to
the first three tests. It can be verified that in all tests agents are synchronized after a finite transient time. Particularly, Figure
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4 shows the negative impact of an increasing difference T − ε on the steady state accuracy, in accordance with conditions
(4) and (16).

With reference to TEST2 and TEST4, Figure 5 shows how the introduction of the linear control component in the
consensus protocol (5)-(7) speeds up the achievement of consensus without causing chattering, as it would be the case by
increasing the parameter λ2 instead.

Figure 6 shows the Lyapunov function relative to an additional conclusive test (TEST5) where, under the same conditions
of TEST1, the external perturbations have been removed (ϑi(t) = Π = 0). A small residual synchronization error is still
present, even if the achievement of a theoretically-exact consensus condition would be expected in this condition due to
(16). The source of this error is, however, of purely numerical nature and the size of the residual set teds to zero while the
sampling-time Ts is progressively reduced.

V. CONCLUSIONS AND FUTURE WORKS

In this paper a distributed algorithm, based on the mixed use of continuous and discontinuous local interaction rules, is
suggested to solve the finite-time consensus problem in a network of continuous time integrators with additive disturbances.
It has been proven that the network converges in finite-time to an approximate consensus condition. Numerical simulations
have been provided to corroborate the analytical results. Among the most interesting directions for next research, more
complex agent’s dynamics are currently under investigation. Convergence under discrete time implementation of the proposed
interaction rule, whose proof demands different and more involved Lyapunov analysis, is under study as well.
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