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Abstract

We consider the scenario of a Wireless Sensor Networks (WSN) where the nodes are equipped with a programmable
middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient
needs. We then address the problem of finding the optimal deployment of the target applications in terms of network lifetime.
We approach the problem considering every possible decomposition of an application’s sensing and computing operations into
tasks to be assigned to each infrastructure component. The contribution of energy consumption due to the energy cost of each
task is then considered into local cost functions in each node, allowing us to evaluate the viability of the deployment solution.
The proposed algorithm is based on an iterative and asynchronous local optimization of the task allocations between neighboring
nodes that increases the network lifetime. Simulation results show that our framework leads to considerable energy saving with
respect to both sink-oriented and cluster-oriented deployment approaches, particularly for networks with high node densities and
non-uniform energy consumption or initial battery charge.

Draft version, published as: V. Pilloni, M. Franceschelli, L. Atzori, A. Giua, ”A decentralized lifetime maximization
algorithm for distributed applications in Wireless Sensor Networks,” ICC12: IEEE Int. Conf. on Communications (Ottawa,
ON, Canada), pp. 1372-1377, 2012.

This work has been partially supported by the European Community’s Seventh Framework Programme under project
HYCON2 (Grant Agreement n. FP7-ICT-2009-5/N.257462.)



I. INTRODUCTION

Thanks to the increasing processing and transmission power of current nodes in Wireless Sensor Networks (WSN), these have
become complex systems that are capable of making decisions and acting upon the information gathered about the monitored
environment. Indeed, reduction in the cost of the devices has increased nodes capacity, thus they can perform some processing
before sending the data to a sink. Still, one of the main open research challenges is the maximization of the network lifetime.
Devices in a WSN are typically battery powered, battery that sometimes could be difficult to replace, such as in the case of
subterranean or underwater nodes.

These considerations contribute to the vision of an horizontal ambient intelligent infrastructure wherein the sensing, computing
and communicating infrastructure is set with a programmable middleware that allows for quickly deploying different applications
running on top of it so as to follow the changing ambient needs. Based on this scenario, we focus on the need for a logic
that decides on the optimal deployment solution of a target distributed application. Herein, optimality is expressed in terms of
network lifetime and a deploying solution is such that defines which part (single task) of the application has to be executed
by each network component. In [1], we have proposed a centralized solution that is based on the assumption that a central
node is aware of the status of each node, selects the optimal application deployment and send the corresponding setting to
all the involved network components. With the intention to reduce the problem complexity, to reduce the overhead related to
the communication of the central node with the rest of the network (for node settings), and to improve the capability of the
network to adapt to topology and energy changes, in this paper we propose a distributed solution. The proposed algorithm is
based on an iterative and asynchronous local optimization of the task allocations between neighboring nodes. The resulting
scheme is based on gossip, which consists in a communication paradigm in which at each instant of time each node in the
network has some positive probability to interact with one of its neighbors. Simulation results show that our framework results
in considerable energy saving with respect to both sink-oriented and cluster-oriented deployment approaches, particularly for
networks with high node densities and non-uniform energy consumption or initial battery charge

This paper is organized as follows. The second section provides the preliminaries; the third section introduces the problem
and adopted approach; the fourth section describes the decentralized solution aimed at maximizing the network lifetime; the
following section presents some simulation results; and conclusions are drawn in the last section.

II. PRELIMIARIES

A. Past Studies

Reduction of energy consumption has always been a key challenge for Wireless Sensor Networks. There are a great number
of works which have focused on the maximization of the network lifetime, each one taking into account a different approach
to achieve it: some are focused on efficient routing techniques [2], [3]; others are aimed at minimizing transmission energy
consumption by sending data over may short hops rather than fewer long hops [4]; others propose the use of relay nodes so
as to balance network energy consumption among nodes [5], [6].

However, none of the studies mentioned above considers the possibility of processing data in the nodes of the path to
the destination. Because most of the energy spent in a Wireless Sensor Network depends on the amount of data that is
transmitted over the network, reducing the amount of data may result in a reduction of the transmission energy consumption.
This principle has been only partially adopted by LEACH [7], where sensors serve as Cluster Heads aggregating the data
and, indeed, decreasing the number of bytes sent over the network. Energy consumption balancing is guaranteed by a random
rotation of the role of Cluster Head.

Given the computational capacity of modern sensors, a step forward could be taken not just by aggregating data, but by
processing them before they arrive at their destination whenever possible and on the basis of the network topology and power
resource detection. In [1] an overlaying framework that determines the distribution of tasks among the nodes in a WSN by
means of a centralized optimization algorithm aimed at maximizing the network lifetime was presented. However, one major
drawback of this algorithm is its inability to react quickly to network changes.

In this paper we propose a framework of decentralized lifetime optimization for WSNs, adopting a solution in which the
communication scheme is based on gossip [8], [9], [10]. Gossip algorithms are decentralized and asynchronous, they consist
in a communication scheme in which at each instant of time each node in the network has some positive probability to interact
with one of its neighbors. By the iterative interaction between nodes, several examples of emerging behaviors have been
developed such as load balancing [11], distributed averaging [9], distributed convex optimization over networks [12], failure
detection [13] and many more. Thus, communication schemes based on gossip that mimic the act of gossiping in a crowd of
people, are easy to implement, do not require network routing or multi-hop communications, are inherently asynchronous and
decentralized in nature.

B. Energy Consumption

As mentioned in [1], energy consumption in WSNs is determined by three main components: sensing, processing and
transmission.



The sensing energy consumption esens is determined by the specific characteristics of the sensor.
The processing energy consumption eproc is proportional to the complexity of the task – that is, the number of instructions

needed to complete it – and to the ingress data datain – the higher the number of samples involved in the processing, the higher
the energy consumption. Calling M task the number of instructions for the task, smpin the number of samples to be processed
and einstr the average energy consumption per executed instruction (determined on the basis of the device datasheeet), then

eproc(task, datain) = M task × smpin × einstr (1)

Finally, the energy consumption etx required to transmit a packet of k bits from a node A to a node B with a constant rate
R is:

etx(k, PT0A , ηA, PR0B , φAB , δAB) =

k
R

(
PR0B + PT0A +

φAB×δαAB

ηA

) (2)

where: PT0 and PR0 are the components of power consumption of the transmitting and receiving circuitry; η is the drain
efficiency of the Power Amplifier; φ is a coefficient proportional to the reception power and the characteristic parameters of
the antennas; δ is the distance between transmitter and receiver; α denotes the path loss exponent.

III. PROBLEM FORMULATION

The model we consider is similar to the one described in major details in [1]. The set of nodes in the WSN is defined in
the set X = {1, ..., i, ..., N}, where i can be a sensing node, a router or an actuator (or node with a combination of these
roles). The node N refers to the sink (we assume to have only one sink in the network). In our problem setting, let the
network be described by a directed acyclic graph G = {X,E}, where E ⊆ {X ×X} is the set of edges, each representing
a point-to-point communication channel between the nodes; edge (i, j) has its tail in node i and its head in node j, with its
orientation representing the direction of the information flow. Let Ni = {j ∈ X : (i, j)or(j, i) ∈ E} be the neighborhood of
node i, namely the nodes that share a communication channel with node i. Let Nout,i = {j ∈ X : (i, j) ∈ E} be the set of
nodes that receive information from node i and Nin,i = {j ∈ X : (j, i) ∈ E} the nodes that send information to node i. We
complete the network description with

• the distance matrix ∆ = (δij), which contains the pairwise distances (in meters) between adjacent nodes. If nodes i and
j are not adjacent, then δij = ∞;

• the matrix Φ = (φij), with the parameters φij introduced in Section II-B, calculated for each couple of adjacent nodes i
and j. If nodes i and j are not adjacent, then φij = ∞;

• the set of characteristic parameters Vi = {PR0i, PT0i, ηi}, which are useful to compute the transmission energy
consumption as defined in (2) in Section II-B.

We assume that a given operation O, which can be decomposed into a sequence of tasks, has to be deployed in the network.
This could represent diverse operations, including: computing the average temperature in certain geographical areas, measuring
the light intensity in a room, videosurveillance of a specific geographical area, or a combination of these. We then define the
sequence Cs = {cs1, ..., csW } of the sensing tasks which must be executed by the network to perform the operation O, where
W is the total number of sensing tasks required. We also define the sequence Cp = {cp1, ..., c

p
L} of the processing tasks which

must be executed by the network to perform the operation O, where L is the total number of processing tasks required. If, for
instance, O is a measurement of temperature from a geographical areas that has to be spatially averaged, the set Cs would be
made of a number of elements corresponding to the number of geographical areas where the temperature has to be measured.
Cp would certainly be “measurement of temperature” and “spatial averaging”. Tasks are listed in Cp in priority order: if a
node has to execute both cp1 and cp2, the former must be executed before the latter.

As to the sensing we assign a binary state Mi ∈ {0, 1}W to each node, which codes the sensing operations executed by
node i. The status miw of the node is equal to 1 if the node performs the relating sensing task.

As to the processing tasks, we assign a binary state vector si ∈ {0, 1}L to each node that represents the processing
tasks currently assigned to the node. To each configuration of the node setting corresponds different energy consumption,
as it will better explained in the following sections. We assume that different nodes consume different amounts of energy
for the same processing to include heterogeneity of devices in the modeling. To each node i is associated a binary vector
di ∈ {0, 1}L which represents the kinds of processing that node i is allowed to execute. In particular, the following holds
∀i ∈ X , and ∀l ∈ {1, . . . , L}, dil ≥ sil. To simplify the notation we denote the matrix that collects all the statuses of
each node as S = [s1, s2, . . . , sN ]

T and the matrix that represents all the constraints on the execution of processing as
D = [d1,d2, . . . ,dN ]

T .
We consider a scenario where the sensing operations are already assigned to the network members (i.e., binary vectors Mi

are given, for i = 1, . . . , N ). Differently, the processing tasks in O can be executed according to different solutions: gathered
data can be immediately sent to a sink, or it can be processed before being transmitted. In the case of the latter, the number
of bits to be sent would be smaller, reducing the transmission energy consumption; however, processing energy consumption



could be higher in this second case. Quantifying the energy consumption in both cases, it could be possible to establish which
one determines a reduction of battery consumption in the sensors, incrementing the network lifetime. The addressed problem
is then defined as the processing status matrix S that minimizes the impact of the operation O on the network, maximizing
the network lifetime. In the following, we elaborate the considered scenario by defining further constraints and providing a
distributed solution.

IV. DEPLOYMENT OF DISTRIBUTED APPLICATIONS

In the following, we present the proposed solution towards a distributed application deployment in WSN. The following
Subsections present: the constraints on the traffic generated by the distributed applications; the cost functions built on the basis
of the energy consumption formulas; the network lifetime maximization algorithm.

A. Constraints on the Traffic Flows

In our scenario we assume that the sources of traffic in the network (the sensors) generate samples of k bits at a certain
frequency f . The processing in the network is performed on this type of traffic flow coming from different nodes. The generic
node i receives the traffic T in

i over which it performs the task corresponding to its assigned status si. The effect of this task
is the generation of the output traffic T out

i , which is computed by function p as follows

T out
i = p(T in

i , si) (3)

The output traffic is then sent to the next node. The data generated by p in node i is modeled by the H-dimensional vector
T out
i = (touti1 , ..., toutih , ..., toutiH ), where each element toutih = {koutih , fout

ih } corresponds to a traffic flow where each sample of
koutih bits is transmitted at the frequency fout

ih . The number of bits koutih for each output flow toutih resulting from p(x, y) is
either constant or linear with the number of input flows, but it cannot be non linear. Further details are available in [1]. Data
T out
i are sent to the following node j according to the directed acyclic graph G.
Node j receives data from all adjacent nodes that reach the sink through j

T in
j =

∪
i∈Nin,i

T out
i × zi, with zi =

{
0 si ≡ “no actions”

1 otherwise
(4)

As defined by (3), data T in
j received by node j are processed, according to the status of j. There are many processing tasks

that can be performed in a WSN. For each one of these, an operator p(x, y) is defined. Note that for our objective, this operator
is needed to figure out the traffic flows that will be traversing the network for each deployment scenario. We identified three
common kinds of processing, which are spatial, temporal and single sample processing. We refer to [1] for further details
about this distinction.

B. Cost Functions

The objective of the proposed algorithm is to evaluate the viability of each deployment solution on the basis of cost functions
that are connected to energy consumption. We consider three cost functions: one for the sensing, one for the processing and
one for the transmission. The sensing cost function for the node i is expressed as

Esens
i =

W∑
w=1

fout
i × esensiw ×miw (5)

with esensiw representing the sensing energy consumption for node i performing sensing task w if its status miw is equal to 1,
as defined in Section II-B. Recall that fout

i is the node output traffic frequency, which also represents the sensing frequency.
We define processing cost function as follows

Eproc
i =

L∑
l=1

H∑
h=1

fout
ih × eprocih (csil ,T

in
i )× sil (6)

where eprocih is the processing energy consumption defined in (1) which depends on the task csil that has to be executed, which
in turn depends on the status sil of the node, and the received data T in

i described in (4). Because the processing cost depends
on the number of processing per second performed by the same node i, it is proportional to the frequency fout

ih of each of the
H egress traffic flows, where H is the size of T out

i as described in Section IV-A. The number of samples to calculate eproci

is defined differently for each kind of processing p(x, y) detected in Section IV-A. Both sensing and processing are followed
by a transmission. The related cost function is

Etx
i = fi × etx(T out

i , Vi,
∪

j∈Nin,i

Vj ,
∪

j∈Nin,i

φij ,
∪

j∈Nin,i

δij) (7)



with fi transmission frequency and etx transmission energy consumption defined by (7) depending on: the data to be transmitted
T out
i ; the characteristic parameters Vi of the node i; the characteristic parameters Vj of all the j nodes that will receive the

data from i which, for a connected graph, is just one; the parameter φij concerning nodes i and j; the distance δij between i
and j.

Given (5), (6) and (7), the overall cost function for any node i is

Ei =
(
Esens

i + Eproc
i + Etx

i

)
(8)

C. Algorithm description

We consider a network described by a directed acyclic graph G = {X,E} (see III) in which the information flow has
reached a stationary state. The processing state of the network is described by the processing matrix S, where sil = 1 if node
i processes task l, else sil = 0. Our objective is that of modifying the processing state so as to maximize the lifetime of the
network τ(S), intended as the time in which at least one node has exhausted its energy reserve from the battery: in fact when
this condition is reached the network topology is disrupted.

If we denote the energy reserve of node i at time t as γi(t) then we can define

τ(S) = inf{t | (∃i ∈ X)γi(t) = 0}.

Assuming a stationary state, we observe that the optimal processing state is:

Sopt = argmax
S

τ(S) = argmax
S

min
i∈X

γi
Ei(S)

where the last equation follows from the fact that in a stationary state the time required for a node to drain its battery is γi/Ei

where Ei is the energy consumed (per unit of time).
Since the tasks a node can process are limited, we get a constrained optimization problem of the form:

maxS mini∈X
γi

Ei(S)
,

s.t.

∀i ∈ X di ≥ si

S ∈ {0, 1}N×L

(9)

where di, as previously defined, is the characteristics vector of the tasks that can be processed by node i and si is the processing
state of node i.

We wish to solve problem (9) in a decentralized way by iteratively and asynchronously solving an equivalent local
optimization problem that involves at each iteration only one node i and its in-neighbors Nin,i.

We now propose the main result of this paper, namely the Decentralized Life Maximization for WSNs Algorithm (DLMA).
Algorithm 1 (Decentralized Life Maximization for WSNs):

1) Each node i ∈ X is initialized with the residual energy of the battery γi and state si = {0}L (no processing assigned).
2) Let k = 0 and t0 = 0.
3) At time tk+1 > tk, a node i not involved in a gossip, and thus, as defined in II-A, not communicating with any of its

neighbours, is selected at random to interact with nodes in its in-neighborhood Nin,i.
4) If any node in Nin,i is already involved in a gossip, then k = k + 1 and go to 3.
5) Node i, with a current processing state s̄i (which is the state of node i at current time tk+1), obtains the state s̄j for all

j ∈ Nin,i.
6) Solve the following local mixed integer linear programming problem in the unknown variables α and sj for j ∈



Nin,i

∪
{i}:12

min α

s.t.

Ej(sk : k ∈ Nin,i

∪
{i})

γj
< α ∀j ∈ Nin,i

∪
{i}

dj ≥ sj ∀j ∈ Nin,i

∪
{i}

T out
i (sNin,i

∪
{i}) ≤ T out

i (s̄Nin,i

∪
{i})

α ∈ R+

sj ∈ {0, 1}L ∀j ∈ Nin,i

∪
{i}

(10)

and let its optimal solution be (αopt, sNin,i

∪
{i},opt).

7) If sNin,i
∪
{i},opt exists then set the new processing status to sj = sj,opt, for all j ∈ Nin,i

∪
{i}.

8) Let k = k + 1 and go to 3.
�

We will formally prove in the following (see Theorem 4.1) that at each iteration k of the previous algorithm, the objective
function of (9) either improves or does not change, although we cannot guarantee that the optimal solution of (9) is eventually
found as k increases. However, Algorithm 1 offers several advantages with respect to centralized algorithms to compute a
solution for problem (9). Both problems (9) and (10) are hard to solve. However, the computational complexity of the local
optimization is function only of the number of nodes involved in the optimization, thus despite being a mixed integer linear
programming problem, its complexity does not grow by increasing the number of nodes in the network and is small in absolute
terms if the number of processing that may be allocated locally between the nodes is small. Since the allocation of processing
is dynamic, the algorithm reacts to unexpected drops in battery charge by changing the status of the nodes involved.

We now characterize the behavior of the network while algorithm DLMA is being executed.
Theorem 4.1: Consider a WSN that executes Algorithm 1. Let the initial processing state S be feasible for problem (10) in

each neighborhood Ni of G. Let V (t) = maxi∈X
Ei(S)

γi
be the inverse of minimum lifetime in the network set by the nodes

with the smallest ratio between energy reserve and power consumption. Then, if the network executes Algorithm 1

∀t ∈ R+ : V (t+) ≤ V (t).

Proof: During the algorithm execution, at each iteration k two situations may occur:
Case 1: The processing state matrix S of the network does not change, then V (t+) = V (t) by definition.
Case 2: The processing state matrix S changes according to the solution of the local optimization problem (10).

The solution of problem (10) minimizes locally the energy consumption for the node with the shortest lifetime between
nodes i and j ∈ Ni. Thus, if a feasible solution is found, and we update the processing state of the nodes involved in the
optimization from s̄Nin,i

∪
{i},opt to sNin,i

∪
{i},opt then

minj∈Nin,i

∪
{i}

γi
Ei(sNin,i

∪
{i},opt)

≥

minj∈Nin,i
∪
{i}

γi
Ei(s̄Nin,i

∪
{i})

.
(11)

Now we need to show that the nodes not involved in the local optimization do not decrease their life-time as a result. In the
proposed local optimization a processing state update is performed only if each single information flow passing from node i
to the nodes in Nout,i is not increased due to the constraint T out

i (si) ≤ T out
i (s̄i). Now the transmission cost for any node in

Nout,i can only decrease as T out
i (si) is decreased, as shown in eq. (7), and so does its processing cost, as shown in eq. (6).

Furthermore also the nodes in the downstream path toward the sink receive a smaller information flow thus consuming less
power. Finally, the nodes in the upstrem path have their information flow left unchanged and such is their power consumption.
Thus it follows that

minj∈X
γi

Ei(Sopt)
≥ minj∈X

γi
Ei(S)

,

and V (t+) ≤ V (t) thus proving the statement. �
1With a slight abuse of notation we denote by sNin,i

∪
{i} the set of vectors si that represent the available processing tasks in the nodes in the set

Nin,i
∪
{i}.

2With a slight abuse of notation we denote by Ej(sNin,i
∪
{i}) the energy consumed by node j as function of the local processing assignment, it is

intended that the contribution of other nodes to this term can be computed simply by considering the term T in
j set of vectors si that represent the available

processing tasks in the nodes in the set Nin,i
∪
{i}.



TABLE I
PERCENTAGE VALUES OF ENERGY CONSERVATION USING DLMA, FOR COMPARISONS DLMA-C, DLMA-CH AND DLMA-CO

Node density
[nodes/m2] UC-UE [%]

DLMA-C DLMA-CH DLMA-CO

0.2 65.9 33.7 −22.0

0.3 69.9 32.1 −19.4

0.4 72.2 36.5 −20.0

NUC-NUE [%]
DLMA-C DLMA-CH DLMA-CO

0.2 72.2 49.1 −11.2

0.3 76.8 49.7 −10.3

0.4 78.9 55.5 −10.6

V. PERFORMANCE ANALYSIS

A. Test Cases and Simulations Setup

To evaluate the effectiveness of the algorithm on a realistic WSN, two test cases have been taken into account, according
to some of the most significant realistic scenarios considered in past works, such as in [14]: uniform energy consumption and
uniform initial energy at each node (UC-UE); non uniform energy consumption and non uniform initial energy (NUC-NUE) at
each node (the energy consumption of the nodes has been assigned randomly from 60% to 140% of the energy consumption
in case UC-UE; the initial energy has been assigned randomly from 20% to 100% of the total battery charge).

The analysis has been conducted in a MatLab environment, considering an outdoor agricultural scenario. It has been supposed
to monitor a rectangular-shaped environment, where the nodes have been deployed with densities of 0.2, 0.3 and 0.4 nodes/m2.

It has been assumed that the nodes deployment follows a uniform distribution. Each node is equipped with sensors gathering
information of temperature, humidity, PH and light exposure. The data are then sent to the Coordinator.

We have focused our analysis on one operation: calculation of the mean values of gathered information over an hour, starting
from the values gathered every 10 minutes.

We have assumed that each sensed value is represented as a double numerical value, which is 64 bits long. The nodes
communicate using IEEE 802.15.4 radio interfaces on the 2.4 GHz frequency band. The packets maximum size is 137 bytes,
with a payload of 0 to 125 bytes. To keep things simple, any possible overhead has not been taken into account.

The local optimization problem has been solved using the integer linear programming solver GLPK (GNU Linear
Programming Kit).

B. Analysis of Case Studies

The optimization algorithm has been applied to each of the cases mentioned in V-A. The results have been compared with
three other mechanisms:

i) data processed only by the Coordinator (mechanism C);
ii) data processed by every Cluster Head found in the path to the Coordinator (mechanism CH);

iii) centralized optimization algorithm described in [1] (mechanism CO).
In the following we present a comparison between the results obtained using the DLMA algorithm and those obtained using

with mechanisms C, CH and CO. Specifically, we focus on the percentage of the energy conservation gained when using
the proposed algorithm with respect to the alternative methods. We refer to these results with: DLMA-C, DLMA-CH, and
DLMA-CO. Tab.I shows the results for the operation defined in Section V-A. The results show an average improvement of
57.7% of the proposed strategy for comparisons DLMA-C and DLMA-CH, while, as it should be expected, we observed an
average decrement of 15.6% for comparison DLMA-CO. As a matter of fact, this is the drawback of the DLMA with respect
to the centralized optimization algorithm which finds an optimal solution.

As for the simulation results of the centralized optimization algorithm, the best results are obtained for heterogeneous
networks, which are the most common in real scenarios. This is because, unlike other mechanisms where the processing is
performed on fixed nodes regardless the energy consumed by the single nodes, the nodes chosen by the algorithm to perform
the processing are those weighting less on the network.

The tendency of an improving energy conservation when node density increases is due to two factors: in case NUC-NUE,
when the number of nodes in an area increases, it is more likely that among neighboring nodes there are nodes where the
processing cost is lower due to their higher battery level or energy consumption; the higher the number of nodes in the same



area, the larger the clusters formed, the bigger the amount of data that can be processed before they arrive to the Coordinator,
reducing the energy cost.

Fig. 1. Network life percentage decrement with respect to time expressed in days, for mechanisms C, CH, CO and DLMA, for a node density of 0.3
nodes/m2 in case NUC-NUE

Fig.1 shows the percentage decrease of the network life expressed as the minimum residual battery capacity among all nodes
in the network, with respect to time expressed in days, for the analysed mechanisms, for a node density of 0.3 nodes/m2 in
case NUC-NUE. Starting from the same initial battery charge, lifetime is shown to be much shorter if data are processed by
fixed nodes, than in the solutions found by centralized optimization algorithm and DLMA. Furthermore, early death of nodes
could be avoided programming nodes to run DLMA again when they reach a threshold battery level, so that they can reduce
their burden and extend their lifetime. Of course, running centralized optimization algorithm again when a node’s battery level
is critical should be much more difficult due to its higher complexity and to its centralized nature.

VI. CONCLUSIONS

In this paper we have studied the deployment of distributed applications in WSNs and proposed a framework of decentralized
lifetime maximization for WSNs which minimizes the impact of the applications on the network lifetime. The resulting DLMA
algorithm based on gossip has been described and implemented to perform simulation in realistic scenarios. The results have
been compared with alternative solutions, showing an improvement with respect to fixed nodes mechanisms such as data
processed only by the Coordinator or by Cluster Heads. DLMA algorithm is outperformed by the global optimization algorithm,
which however presents a higher computational complexity and is unable to react quickly to network changes.
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