
A comparison among tools for the diagnosability of discrete

event systems

Maria Paola Cabasino, Alessandro Giua, Laura Marcias, Carla Seatzu ∗

August 27, 2013

Abstract

In this paper we compare three tools for the diagnosability analysis of discrete event

systems. After introducing the notion of diagnosability, we recall for each tool the main

theoretical results on which it is based. A benchmark that describes a parametric manufac-

turing system is de�ned and used for comparison. We report the numerical results obtained

for di�erent values of the parameters and draw some general conclusions on the advantages

and possible improvements of these tools.

Published as:

M.P. Cabasino, A. Giua, L. Marcias, C. Seatzu, "A comparison among tools for the diagnos-

ability of discrete event systems", CASE12: 8th IEEE Conference on Automation Science and

Engineering, (Seoul, Korea), Aug 2012.

∗M.P. Cabasino, A. Giua, L. Marcias and C. Seatzu are with the Department of Electrical

and Electronic Engineering, University of Cagliari, Piazza D'Armi, 09123 Cagliari, Italy. E-mail:

{cabasino,giua,seatzu}@diee.unica.it, laura.marcias83@gmail.com.

1

1 Introduction

Failure detection and diagnosis in industrial systems is a subject that has received a lot of

attention in the past few decades. Within this body of research two di�erent problems are

addressed: diagnosis and diagnosability. Solving a problem of diagnosis means that we associate

with each observed string of events a diagnosis state, such as �normal� or �faulty� or �uncertain�.

Solving a problem of diagnosability is equivalent to determining if the system is diagnosable, i.e.,

if once a fault has occurred the system can detect its occurrence in a �nite number of steps.

In the framework of discrete event systems, several approaches for the diagnosability analysis have

been proposed for both automata [19, 14, 13, 10] and Petri nets (PNs) [16, 4, 9, 11, 21, 6, 22, 2].

We also mention two recent approaches that addressed the problem of on-line diagnosis (but not

diagnosability) of Petri nets [1, 8].

In a seminal paper [19] Sampath et al. presented the so called Diagnoser Approach and proposed

necessary and su�cient conditions for the diagnosability of a system modeled as an automaton.

The Discrete Event System Group of the University of Michigan developed the UMDES tool

[20]. UMDES is a library of C routines written for the study of discrete event systems modeled

by �nite-state automata. In particular, in UMDES there is a function that implements the

theoretical results in [19] and allows one to analyze the diagnosability of a given automaton.

In [4] Cabasino et al. presented an original approach for diagnosability analysis of bounded PNs

based on the notion of basis markings previously introduced in [5, 3]. The main feature of this

approach it that of not requiring the exhaustive enumeration of the set of reachable states of the

system: only the (possibly much) smaller subset of states corresponding to basis markings need

to be enumerated. Based on this approach, a MATLAB tool for the diagnosability analysis of

bounded PNs has been developed at the University of Cagliari, called PN_DIAG [15].

Unfortunately, in the case of unbounded PNs, i.e., nets with an in�nite state space, the approach

founded on basis markings cannot be used: in fact, in such a case the set of basis markings is also

in�nite. In [2] Cabasino et al. presented an approach for diagnosability analysis of labeled PNs

that applies to unbounded nets (and thus, as a particular case, also to bounded nets). Necessary

and su�cient conditions for diagnosability and diagnosability in k steps of unbounded systems

were obtained. Furthermore, in this work it was also presented a test to analyze diagnosability

and diagnosability in k steps based on the reachability/coverability graph of a particular net,

called Veri�er Net, built from the PN model of the system to be diagnosed. Based on this

approach a MATLAB tool called PN_DIAG_UNBOUNDED [18] has been developed.

The salient features of the three tools mentioned above for the diagnosability analysis of discrete

event systems, are shown in Table 1 where the meaning of the last but one column will be

explained in the following. In this paper these tools are compared, to clarify their respective

advantages/disadvantages.

Note that while the last two tools, namely PN_DIAG and PN_DIAG_UNBOUNDED, are

based on PNs, the tool UMDES is based on automata. Thus, to compare them on the same test

2

Tool Model Basis Markings Bounded/Unbounded Diagnoser Software

UMDES Automata Not applicable Bounded Diag(G) C executable

PN_DIAG Petri nets Yes Bounded BRD MATLAB

PN_DIAG_UNB. Petri nets No Bounded + Unbounded None MATLAB

Table 1: A summary of the main features of the considered tools

cases we made use of a software platform developed within the FP7 project DISC (Distributed

Supervisory Control of Complex Plants) [7]. Using the software platform, we constructed for a

given PN system its reachability graph, converted it into a �le format suitable for UMDES, and

run the relevant UMDES functions.

Comparisons have been carried out on a benchmark that describes a parametric manufacturing

system. A similar benchmark was also used in [12] to compare two approaches for the diagnosis

of discrete event systems. Here the benchmark has been modi�ed to address the diagnosability

analysis.

The paper is structured as follows. Section 2 provides some background on labeled PNs. Section 2

summarizes the main notions behind the diagnosability approach for automata on which UMDES

is based. The philosophy behind PN_DIAG is summarized in Section 4. The philosophy behind

PN_DIAG_UNBOUNDED is recalled in Section 5. The considered benchmark is presented in

Section 6. The results of numerical simulations are illustrated in Section 7. Conclusions are

�nally drawn in Section 8.

2 Background on labeled Petri nets

In this section we brie�y recall the formalism used in the paper. For more details on PNs we

refer to [17].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre� and

post� incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative integer

number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T

system or net system ⟨N,M0⟩ is a net N with an initial marking M0. A transition t is enabled

at M i� M ≥ Pre(· , t) and may �re yielding the marking M ′ = M +C(· , t). We write M [σ⟩ to
denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and we write M [σ⟩ M ′

to denote that the �ring of σ yields M ′. We also write t ∈ σ to denote that a transition t is

contained in σ. The set of all sequences that are enabled at the initial marking M0 is denoted

L(N,M0), i.e., L(N,M0) = {σ ∈ T ∗ | M0[σ⟩}.

A marking M is reachable in ⟨N,M0⟩ i� there exists a �ring sequence σ such that M0 [σ⟩ M .

3

The set of all markings reachable from M0 de�nes the reachability set of ⟨N,M0⟩ and is denoted

R(N,M0).

A PN having no directed circuits is called acyclic. A net system ⟨N,M0⟩ is bounded if there

exists a positive constant k such that, for all M ∈ R(N,M0), it is M(p) ≤ k.

A labeling function L : T → L ∪ {ε} assigns to each transition t ∈ T either a symbol from a

given alphabet L or the empty string ε. We denote as Tu the set of transitions whose label is ε,

i.e., Tu = {t ∈ T | L(t) = ε}. Transitions in Tu are called unobservable or silent.

We denote as To the set of transitions whose label is a symbol in L and transitions in To are

called observable. The same label l ∈ L can be associated with more than one transition. Two

transitions t1, t2 ∈ To are called undistinguishable if they share the same label, i.e., L(t1) =

L(t2) = l ∈ L. The set of transitions sharing a label l are denoted Tl.

3 Diagnoser Approach for Automata

In this section we brie�y recall the seminal approach to the diagnosis of automata developed by

Sampath et al. in [19] known in the literature as Diagnoser Approach. The considered model is an

automaton G = (X,E, δ, x0), where X is the set of states, E is the set of events, δ : X ×E → X

is the transition function and x0 is the initial state. The set of events E is partitioned into

observable events Eo and unobservable events Eu. The set of unobservable events is further

partitioned into two disjoint subsets: the subset of unobservable and regular events Ereg and the

set of unobservable and faulty events Ef . Finally the set of fault events is partitioned into r

fault classes Ef = E1
f ∪E2

f ∪ · · · ∪Er
f . The assumptions under which this approach is valid are:

(A1) The language L(G) generated by G is live. This means that there not exists a state x ∈ X

from which no event is possible.

(A2) There does not exist in G any cycle of unobservable events.

Assumption (A1) is made for the sake of simplicity. On the contrary, assumption (A2) is necessary

and ensures that G does not generate sequences of unobservable events whose length can be

in�nite.

The diagnosability analysis is based on the search of indeterminate cycles in the diagnoser. The

diagnoser Diag(G) is an automaton built starting from the system model G whose set of events

is Eo and whose language is the projection of the language of G onto Eo. Each state of Diag(G)

contains one or more states of G each one associated with a row vector of labels lf having r

columns. The ith entry of lf is equal to N if reaching that state no fault event belonging to the

ith fault class has occurred, while it is equal to Y otherwise. The initial state of Diag(G), called

x0,diag, contains x0 that has lf equal to a vector of N by de�nition and all those states that are

reachable from x0 �ring one or more unobservable events. Starting from x0,diag we compute the

set of events that are enabled by at least one state in Diag(G). For each one of such events

4

we consider all states x ∈ X that can be reached from a state in x0,diag. This set of states is

then extended to all those states that can be reached from one of such states �ring one or more

unobservable events. The vector of labels will be computed in the way described above, and

obviously, for the so called propagation rule, if one entry of one state x is equal to Y all states

reached starting from x will have as well that entry equal to Y . The procedure is repeated until

all states have been explored.

We now recall the notion of indeterminate cycles and for the sake of simplicity consider one single

fault event f . In Diag(G) we can distinguish three di�erent kinds of states:

• negative state, if in the node of Diag(G) for all pairs (x, l), l = N , i.e., reaching this node

we are sure that fault f has not occurred yet;

• positive state, if in the node of Diag(G) for all pairs (x, l), l = Y , i.e., reaching this node

we are sure that fault f has occurred;

• uncertain state, if in the node of Diag(G) there exists at least one pair (x, l) such that

l = N and at least one pair (x′, l′) such that l′ = Y , i.e., we cannot say nothing about the

occurrence of the fault f .

A cycle in the diagnoser is said uncertain if it is composed only by uncertain states. An inde-

terminate cycle in Diag(G) is a cycle composed exclusively of uncertain states for which there

exist:

• a corresponding cycle of observable events in G involving only states that carry Y in their

labels in the cycle in Diag(G) and

• a corresponding cycle of observable events in G involving only states that carry N in their

labels in the cycle in Diag(G).

The notion of indeterminate cycles is very important because their analysis gives us necessary

and su�cient conditions for diagnosability. A language L(G) is diagnosable if and only if its

diagnoser Diag(G) has no indeterminate cycles for all failure classes Ei
f , i = 1, . . . , r. Note that

the presence of a cycle of uncertain states in a diagnoser does not necessarily imply inability to

diagnose with certainty an occurrence of event f .

The UMDES library [20], that is a collection of C executable functions, also performs diag-

nosability analysis. In fact, given as input the automaton and the fault classes the function

dcycle computes the diagnoser and the presence of indeterminate cycles in it, giving as output

information on the diagnosability of the system.

5

4 The philosophy behind PN_DIAG

In [3, 5] we present a fault diagnosis approach that � using the notions of basis marking and

justi�cation � allows one to analyze diagnosability of a system modeled using PNs without

enumerating the entire state space, but only a subset of it. We consider labeled PNs having

undistinguishable transitions and assume that the set of unobservable transitions Tu is parti-

tioned into regular transitions Treg and faulty transitions Tf . The assumptions under which our

approach holds are:

(B1) The unobservable subnet is acyclic.

(B2) The system does not enter a deadlock after the �ring of any fault transition.

The �rst assumption is analogous to the classical hypothesis in the theory of automata where

no cycle of unobservable events can appear and allows one to use the state equation and have

necessary and su�cient conditions for the reachability. The second assumption is a weakened

version of the usual �liveness� assumption in most works on diagnosability of discrete event

systems; it avoids the technicalities that must be dealt with when the system may deadlock after

a fault.

Given a word w ∈ L∗, let σo ∈ T ∗
o be a sequence of observable transitions such that L(σo) = w.

A basis marking Mb is a marking reached from M0 with the �ring of σo and of all unobservable

transitions whose �ring is strictly necessary to enable w. Such a sequence σu of unobservable

transitions interleaved with σo whose �ring enables σo and whose �ring vector is minimal is called

justi�cation. Since in general σo is not unique and more than one σu may be associated with

each σo, then the set of justi�cations of w is not necessarily a singleton.

In [4] we focus on bounded PN systems: we provide a necessary and su�cient condition for diag-

nosability and give a systematic method to analyze the diagnosability of a given PN system. Such

a method requires the construction of two labeled and oriented graphs denoted respectivelyMod-

i�ed Basis Reachability Graph (MBRG) and Basis Reachability Diagnoser (BRD). The MBRG

nodes contain either a basis marking or a marking that can be reached �ring a fault transition.

A node of the BRD contains one or more basis markings and each one has associated a label

that speci�es if reaching that marking a fault transition has �red.

As for the Diagnoser Approach described in the previous section we can distinguish among

negative states, positive states and uncertain states of the BRD. Basically, the diagnosability

analysis �rst consists of determining if there are uncertain cycles in the BRD, namely cycles

of uncertain states. If there are no uncertain cycles in the BRD the system is diagnosable. In

the presence of uncertain cycles the following analysis should be performed for any of such a

cycle. Let γ be an uncertain cycle in the BRD with observable projection ρ ∈ L∗ and let p ∈ L∗

be a path from the initial node to any node of the cycle. We need to verify if the cycle γ is

indeterminate wrt a fault class T i
f , namely if in the MBRG there exist two cycles γ1 and γ2

satisfying the following three conditions:

6

(i) their observable projection is equal to ρ;

(ii) there exist two paths p1 and p2 with observable projection p, that from the initial node in

the MBRG enable γ1 and γ2;

(iii) both γ2 and p2 do not contain a fault in T i
f , while either γ1 or p1 (or both) contain a fault

in T i
f .

The MATLAB tool that implements this approach is called PN_DIAG [15]. This tool explores

all paths starting from the initial node of the BRD looking for uncertain cycles and does the

same in the MBRG when looking for p1, γ1, p2 and γ2.

5 The philosophy behind PN_DIAG_UNBOUNDED

In [2] Cabasino et al. presented necessary and su�cient conditions for diagnosability of un-

bounded PNs. This is a signi�cant result, because the diagnosability of systems with an in�nite

state space has never been studied before. As in the previous section, the considered model is

a labeled PN where some transitions are undistinguishable. No assumption either on the struc-

ture of the net or on the labeling function is required. The only assumption that should hold

is (B2) de�ned in Section 4. The test to analyze diagnosability is based on the analysis of the

reachability/coverability graph of a new type of net, called Veri�er Net (VN), built from the PN

model of the system to be diagnosed. In particular, if the net is bounded, we just need to check

if there exists a cycle in the reachability graph of the VN that is reachable starting from a node

that can be reached �ring a path that contains a fault transition. If this is the case the system

is not diagnosable. In the case of unbounded nets, we need to verify if there exists a cycle in the

coverability graph of the VN associated with a repetitive sequence in the VN that is reachable

starting from a node that can be reached �ring a path that contains a fault transition. If this is

the case the system is not diagnosable.

Assume that nN denotes the number of nodes of the reachability/coverability graph of the net to

be analyzed, while nV denotes the number of nodes of the reachability/coverability graph of the

VN. It holds nN < nV ≤ n2
N , hence we need to study a system with a larger state space. Thus

for bounded systems we do not expect this approach to be particularly e�cient with respect to

other two considered in this paper. Note, however, that once the reachability/coverability graph

of the VN is computed, we need not compute a diagnoser but only need to check this graph as

summarized in the last but one column of Table 1.

The MATLAB tool that implements this approach is downloadable from [18].

6 The considered benchmark

In this section we introduce the benchmark we use to compare the above three tools.

7

The proposed benchmark describes a parametric manufacturing system. It consists of two sym-

metric working groups that process di�erent components of the same product. Each working

group is characterized by β production lines, each one devoted to the processing of a component.

Each production line executes η + 1 operations: when the �rst η operations are executed, no

output signal is produced; on the contrary, the last operation of each line can be observed in

the sense that an output signal is produced whenever the corresponding operation is completed.

However, such operations are not completely distinguishable in the sense that operations cor-

responding to a given line produce an output signal that is the same for the two groups. An

only exception exists to this that is related to the �rst line. In particular, two di�erent cases

may occur: (a) the last operations of the �rst lines of both groups produce the same output

signal; (b) the last operations of the �rst lines of both groups produce di�erent output signals.

Finally, faults may occur in the system. In particular, a part of a generic line i may be moved

accidentally to production line i+ 1 of the same group, for i = 1, . . . , β − 1. Note that this may

only occur after the �rst η operations in the line have already been executed.

The labeled PN model of such a manufacturing system is shown in Fig. 1. Operations in the

generic line i of the �rst group are modeled via unobservable transitions and are denoted ε′i,j ,

with i = 1, . . . , η and j = 1, . . . , β. Similarly, operations in the generic line i of the second group

are modeled as unobservable transitions and are denoted ε′′i,j , with i = 1, . . . , η and j = 1, . . . , β.

For the sake of clarity all such transitions are drawn in blue in Fig. 1.

Fault events are modeled as unobservable transitions as well but are drawn in red to clearly

distinguish them from the previous unobservable but regular transitions.

Finally, green transitions model the last operation in each line. All such transitions are observ-

able. In particular, the same label ai, with i = 2, . . . , β, is shared by transitions in line i in the

�rst and in the second group. The last transition in the �rst line of the second group is labeled

a1, while two di�erent labels may be associated with the last transition in the �rst line of the

�rst group, namely, a0 or a1, depending on the value assigned to α in Fig. 1 that may either take

value 0 or 1. Note that such a distinction is really signi�cant because the value of α a�ects the

diagnosability of the system. In particular, using any of the above tools, it can be proved that

the following holds:

α =

{
1, the system is diagnosable,

0, the system is not diagnosable.

7 Numerical simulations

In this section we compare the MATLAB tools PN_DIAG and PN_DIAG_UNBOUNDED, and

the UMDES library. Such a comparison is carried out on the benchmark model introduced in

the previous Section 6, whose PN model is sketched in Fig. 1. The automaton model used by

UMDES corresponds to the reachability graph of the PN system.

Several cases have been studied for di�erent values of β and η, considering both α = 0 and α = 1

8

2β

2β

…. ….

…. ….

….

….

….

….

…. ….

p
’

11 p
’

12 p
’

1β p
’’

11 p
’’

12
p
’’

1β

p
’

η 1 p
’

η 2
p
’

η β p
’’

η 1 p
’’

η 2 p
’’

η β

p
’

η+1 1 p
’

η+1 2
p
’

η+1 β p
’’

η+1 1
p
’’

η+1 2 p
’’

η+1 β

a2 aβ a1 a2 aβ
a{2-αααα}

ε’11 ε’12 ε’1β ε’’1β ε’’12 ε’’11

ε’η 1 ε’η 2 ε’η β ε’’ η β ε’’η 2 ε’’η 1

f
’
1 f

’
2 f

’
β -1

f
’’
1 f

’’
2 f

’’
 β -1

… …

a

 η η

β β

Figure 1: The considered benchmark

9

and they are summarized in Table 2.

For the sake of simplicity we assumed that all faults belong to the same class.

All tests have been run on a PC Intel with a clock of 2.27 GHz, RAM 4 GB.

• Columns 1, 2 and 3 show the values of β, η and α.

• Column 4 shows the time in seconds required to analyze the diagnosability using the tool

PN_DIAG. This is the sum of times to compute the MBRG, the BRD and to verify the

presence of indeterminate cycles.

• Column 5 shows the time in seconds required to analyze the diagnosability using the tool

PN_DIAG_UNBOUNDED. This is the sum of times to compute the VN, the reachability

graph of the VN and to look for cycles enabled after the �ring of a fault transition.

• Column 6 shows the time in seconds required to analyze the diagnosability using the library

UMDES. This is the sum of times to compute the diagnoser, starting from the automaton

that represents the reachability graph of the benchmark net, and to look for indeterminate

cycles. Obviously, we did not take into account the time spent to convert the PN into the

corresponding automaton.

Some cells in the table contain non numerical values.

• o.t. (out of time): denotes that the tool did not halt within 24 hours;

• o.m. (out of memory): denotes that the virtual memory of the calculator has run out.

Table 2 shows that the time required to analyze diagnosability highly increases with the dimension

of the net and of its initial marking, namely with β and η. From the table one can also conclude

that the best results are always obtained using PN_DIAG, while the other tools in most of the

cases cannot determine a solution within the maximum time allotted (24 hours) or run out of

memory.

It is not surprising that the best performances are obtained by a tool that uses the notion of

basis marking. Indeed, for the considered example, the number of basis markings is signi�cantly

smaller than the number of reachable markings and such a di�erence becomes more relevant as

the values of the parameters increase, as summarized in Table 3. In particular, from this table

it can be seen that while the number of basis markings does not depend on η, the number of

reachable markings is highly dependent on it.

Table 3 shows that for certain values of the parameters β and η the state space becomes so

large that the two tools PN_DIAG_UNBOUNDED and UMDES that require an exhaustive

enumeration of it either go out of memory or out of time.

From the above comparison PN_DIAG_UNBOUNDED is the less e�ective tool, even when com-

pared to UMDES. This is due to the fact that PN_DIAG_UNBOUNDED requires an exhaustive

10

β η α PN_DIAG PN_DIAG_UNBOUNDED UMDES Diagnosable?

2 1 0 5.1 · 10−1 7.9 · 101 1.1 · 100 No

2 1 1 3.7 · 10−1 6.3 · 101 1.1 · 100 Yes

2 2 0 1.7 · 100 o.m. 6.0 · 101 No

2 2 1 1.6 · 100 1.0 · 105 3.0 · 101 Yes

2 3 0 8.9 · 100 o.m. o.t. No

2 3 1 8.8 · 100 o.m. o.t. Yes

3 1 0 6.7 · 101 o.m. o.t. No

3 1 1 6.3 · 101 o.m. o.t. Yes

3 2 0 2.0 · 103 o.m. o.t. No

3 2 1 2.1 · 103 o.m. o.t. Yes

3 3 0 3.4 · 105 o.m. o.t. No

3 3 1 3.4 · 105 o.m. o.t. Yes

Table 2: Numerical Results (times in seconds)

(β,η) Reachable Markings Basis Markings

(2,1) 121 16

(2,2) 361 16

(2,3) 841 16

(3,1) 2025 64

(3,2) 10000 64

(3,3) 34225 64

Table 3: The number of reachable and basis markings for di�erent values of the parameters

enumeration of the reachability set of the VN which may be signi�cantly larger than the reacha-

bility set of the original system. However, it should be stressed that PN_DIAG_UNBOUNDED

is the only tool that can manage unbounded nets. Moreover, unlike all other tools, it also applies

to nets whose unobservable subnet is acyclic. An interesting open problem is that of �nding

structural conditions for the analysis of the VN without resorting to the enumeration of its

reachability set: this may lead to the development of a more e�cient tool.

We �nally remark that PN_DIAG computes all possible paths on the BRD, following a depth-

�rst search, starting from the initial node until a cycle is found. It may be possible that other

algorithms based on the computation of the cycles without computing the paths may in some

cases further improve the performance of the simulator.

11

8 Conclusions

The main contribution of this paper is to compare the performance of three tools that analyze

diagnosability of labeled PNs and point out critical bottlenecks that could lead to better imple-

mentation. We have considered as a benchmark model a PN taken from the manufacturing area

and we have analyzed the tools both in case of diagnosable and non diagnosable systems.

The benchmark shows that the PN tool using basis markings may, in some cases, greatly out-

perform tools based on an exhaustive enumeration of the state space.

Acknowledgments

We thank Marco Pocci for the development of the MATLAB tool PN_DIAG and Rita Perria

for the development of the MATLAB tool PN_DIAG_UNBOUNDED.

References

[1] F. Basile, P. Chiacchio, and G. De Tommasi. An e�cient approach for online diagnosis of

discrete event systems. IEEE Trans. on Automatic Control, 54(4), 2009.

[2] M.P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. A New Approach for Diagnosability

Analysis of Petri Nets Using Veri�er Nets. IEEE Trans. on Automatic Control, 2012. to be

published.

[3] M.P. Cabasino, A. Giua, M. Pocci, and C. Seatzu. Discrete event diagnosis using la-

beled Petri nets. An application to manufacturing systems. Control Engineering Practice,

19(9):989�1001, September 2011.

[4] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of bounded Petri nets. In Proc. 48th

IEEE Conf. on Decision and Control, Shanghai, China, dec 2009.

[5] M.P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event systems using

Petri nets with unobservable transitions. Automatica, 46(9):1531�1539, 2010.

[6] S.L. Chung. Diagnosing pn-based models with partial observable transitions. International

Journal of Computer Integrated Manufacturing, 12 (2):158�169, 2005.

[7] DISC Software Platform webpage. http://www.disc-project.eu/software_platform.html.

[8] M. Dotoli, M.P. Fanti, A.M. Mangini, and W. Ukovich. Fault detection of discrete event

systems using Petri nets and integer linear programming. Automatica, 45:2665�2672, 2009.

[9] Stefan Haar. Qualitative diagnosability of labeled Petri nets revisited. In Proc. 48th IEEE

Conf. on Decision and Control, Shanghai, China, dec 2009.

12

[10] S. Jiang, R. Kumar, and H. E. Garcia. Diagnosis of repeated/intermittent failures in discrete

event systems. IEEE Transactions on Robotics and Automation, 19(2):310�323, 2003.

[11] G. Jiroveanu and R.K. Boel. The diagnosability of Petri net models using minimal expla-

nations. IEEE Trans. on Automatic Control, 55(7):1663�1668, 2010.

[12] S. Lai, D. Nessi, M.P. Cabasino, A. Giua, and C. Seatzu. A comparison between two

diagnostic tools based on automata and Petri nets. In Proc. IFAC WODES'08: 9th Work.

on Discrete Event Systems, pages 144�149, May 2008.

[13] F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event Dynamic

Systems, 4(2):197�212, 1994.

[14] F. Lin, J. Markee, and B. Rado. Design and test of mixed signal circuits: a discrete event

approach. In Proc. 32rd IEEE Conf. on Decision and Control, pages 246�251, 1993.

[15] M. Pocci PN_DIAG tool tool available at the webpage.

http://www.diee.unica.it/giua/TESI/09_Marco.Pocci/.

[16] A. Madalinski, F. Nouioua, and P. Dague. Diagnosability veri�cation with Petri net un-

foldings. International Journal of Knowledge-Based and Intelligent Engineering Systems,

14(2):49�55, 2010.

[17] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541�580, April 1989.

[18] R. Perria, PN_DIAG_UNBOUNDED tool downloadable at the webpage. http://www.disc-

project.eu/PN_Diag_bounded_unbounded.zip.

[19] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnos-

ability of discrete-event systems. IEEE Trans. on Automatic Control, 40 (9):1555�1575,

1995.

[20] UMDES library. http://www.eecs.umich.edu/umdes/toolboxes.html.

[21] T. Ushio, L. Onishi, and K. Okuda. Fault detection based on Petri net models with faulty

behaviors. In Proc. SMC'98: IEEE Int. Conf. on Systems, Man, and Cybernetics (San

Diego, CA, USA), pages 113�118, October 1998.

[22] Y. Wen and M. Jeng. Diagnosability analysis based on T-invariants of Petri nets. In Proc.

IEEE Networking, Sensing and Control, Tucson, Arizona, March 2005.

13

