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Abstract

In this paper we develop a decentralized discontinuous algorithm which guarantees the finite time synchro-
nization of a network of clocks, which are modeled as continuous-time integrators and are subject to unknown-
but-bounded time-varying disturbances. The proposed synchronization algorithm is asynchronous and consists
in a randomly applied local interaction rule. After a finite transient time, the proposed algorithm provides the
approximated synchronization of the network by attenuating the destabilizing effect of the disturbances. Lyapunov
analysis is carried out to substantiate the suggested algorithm, and simulation results are illustrated throughout the
paper.
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I. INTRODUCTION

The problem of reaching consensus, i.e. driving the state of a set of dynamical systems towards the
same value, has received much attention due to its many applications in, both, the modeling of natural
phenomena such as flocking (see e.g. [12], [16], [4], [14]) and in the solution of several type of control
problems involving synchronization or agreement between dynamical systems (see [9], [11], [1]).

In this paper we are interested in proposing an approach to the agreement problem for a network
dynamical systems modeled by first order continuous time integrators subject to unknown perturbations.
The main novelty consists in proposing a local interaction rule which provides finite time convergence of
the network to a condition of approximate agreement, by attenuating the effect of the disturbances.

There is a significant body of literature on practical clock synchronization algorithms for various systems
and applications (see e.g. the Network Time Protocol in [8], the Precision Time Protocol in [2], the Flooding
time Synchronization Protocol in [6], and many other examples as well, as surveyed in [13])

Our approach is based on a discontinuous local interaction rule using sliding mode control concepts and
techniques (see [15]). Discontinuous local interactions rules have been already exploited in the framework
of consensus or agreement algorithms, and several example of applications to flocking or synchronization
problems exist (see [3]).

In [5], a finite-time consensus algorithm is proposed for the tracking problem in a multi-robot system
with static topology but varying leader. In [17], [7] and [10], finite-time consensus algorithms are provided
for networks of unperturbed integrators by exploiting discontinuous local interaction rules under time
varying (both undirected and directed) network topologies.

The framework of sliding mode based finite-time consensus algorithms offers an interesting research
direction in that the developed techniques provide superior disturbance attenuation properties with respect
to unmodeled dynamics as compared to the more conventional linear methodologies.

Our approach differs from the above mentioned literature in that we address the analysis of the practical
stability and disturbance attenuation properties of finite-time consensus, under switching topologies. The
finite time transient to reach consensus is a design parameter that can be made arbitrarily small by varying
the algorithm parameters. The disturbance rejection performance, which is quantified in this paper, depends
on the time-varying network connectivity properties.

To the best of our knowledge, the above aspects were never simultaneously addressed and characterized
in the existing literature.

The structure of the paper is as follows. In Section II we formulate the problem under investigation
and we state the proposed local interaction rule. In Section III the convergence properties of the proposed
algorithm are investigated, and, particularly, in Subsection III-A the pros and cons of the achieved result
are discussed. In Section IV some simulation results are presented and, finally, in Section V conclusions
are drawn and future research directions are discussed.

II. PROBLEM STATEMENT

Let us consider n clocks connected by a communication network whose topology is described by a
connected undirected graph G = {V,E}, where V = {1, . . . , n} is the set of clocks and E ⊆ {V × V }
is the set of edges representing communication channels between clocks. Let the (i, j) elements of E be
ordered such that i < j, and let |E| denote the cardinality of E. Further assume that graph G does not
contain self loops. Clocks are modeled by the next dynamics

ẋi = α+ νi(t) + ui(t), xi(0) = xi0, i = 1, . . . , n, (1)

where α is a known desired clock speed, the same for each clock, νi(t) is a bounded disturbance
corrupting the clock dynamics, ui(t) is the control input used to adjust the frequency of the i-th clock,
and xi0 is the initial clock off-set.

The bounded disturbance νi(t) is a general representation of all the possible modeled and unmodeled
uncertainties in the clock dynamics such as time off-set, stochastic speed drift due to random electrical
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noise, deterministic speed drift due to temperature or other environmental effects, etc. The only assumption
made on the disturbance signals νi(t) (i = 1, . . . , n) is uniform boundedness, in accordance with

|νi(t)| ≤ Πi ≤ Π, Π = max
i∈V

Πi. (2)

At each instant of time, only a subset of the available communication channels in G are active for
synchronization. Let Ĝ(t) = {V,E(t)} be a time varying graph representing at each instant of time the
instantaneous topology of active links, where E(t) ⊆ E for all t ≥ 0 is the set of active edges at time t.

Our objective is to develop a clock interaction rule ui(t) compatible with the time-varying topology of
graph Ĝ(t) that guarantees the following practical finite-time consensus properties

∃ρ, tr ∈ R+ : |xi(t)− xj(t)| ≤ M ∀t > tr, ∀i, j ∈ E, (3)

where M = ρΠ and tr are positive constants, that shall be specified later on, and Π is the upper bound
to the disturbance signals.

With reference to the time varying graph Ĝ(t), let Ni(t) ⊆ V denote the set of neighbors of node i at
time t. The proposed discontinuous communication protocol takes the form

ui = −λ
∑

k∈V,k ̸=i

rik(t)sgn(xi(t)− xk(t)) (4)

where λ is the tuning constant of the algorithm and

rik(t) =

{
1 if k ∈ Ni(t)
0 otherwise

(5)

Since graph Ĝ(t) is undirected, it follows that

rik(t) = rki(t), ∀i, k,∈ V, i ̸= k (6)

III. CONVERGENCE ANALYSIS AND MAIN RESULT

In this section we demonstrate the main convergence results and, particularly, we characterize under
which conditions on Ĝ(t) the proposed local interaction rule (4)-(6) can achieve the approximate consensus
conditions (3).

Given the set of edges E, let us denote

Ei,j = {(k, l) ∈ E : {k, l} ∩ {i, j} ≠ ∅} (7)

which represents the subset of edges incident on nodes i and j only.
Let us define an error variable for each edge in the network

δij(t) = xi(t)− xj(t), ∀(i, j) ∈ E, (8)

The dynamics of δij(t) are easily obtained by differentiating (8) and considering the collective clock
dynamics

ẋi(t) = α+ νi − λ
∑

k∈V,k ̸=i

rik(t)sgn(xi(t)− xk(t)) (9)

which simply derives from substituting the local interaction rule (4) into (1). It yields

δ̇ij(t) = νi − νj − λ
∑

k∈V,k ̸=i rik(t)sgn(δik(t))
+λ

∑
k∈V,k ̸=j rjk(t)sgn(δjk(t)).

(10)

After some manipulations, relation (10) can be rewritten as

δ̇ij(t) = νi − νj + λ
∑

(k,l)∈Ei,j

αij
klrkl(t)sgn(δkl(t)) (11)
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with

αij
kl =

 −2 if k = i and l = j,
−1 if k = i xor l = j,
1 otherwise.

(12)

In order to analyze the convergence properties of the suggested algorithm the following candidate
Lyapunov function appears to be appropriate

V (t) =
∑

(i,j)∈E

|δij(t)| (13)

Clearly, the vanishing of V (t) implies the exact consensus condition among the clocks of the network,
while small values for V (t) define an approximate consensus instead.

The time derivative of (13) is given by

V̇ (t) =
∑

(i,j)∈E δ̇ij(t)sgn(δij(t)) (14)

By evaluating (14) along the error variables dynamics (11) one obtains

V̇ (t) =
∑

(i,j)∈E(νi − νj)sgn(δij(t))

+λ
∑

(i,j)∈E
∑

(k,l)∈Ei,j
αij
klrkl(t)sgn(δkl(t))sgn(δij(t))

(15)

Lengthy but straightforward manipulations yield the next expression

V̇ (t) =
∑

(i,j)∈E(νi − νj)sgn(δij)− 2λ
∑

(i,j)∈E rij [sgn(δij)]
2

+λ
∑

(i,j)∈E
∑

k∈V,k ̸=i,k ̸=j rijsgn(δij)[sgn(δjk)− sgn(δik)].
(16)

Now we introduce the next Lemma.
Lemma 3.1: The next relations holds true for all k ∈ V , with k ̸= i, k ̸= j

sgn(δij)[sgn(δjk)− sgn(δik)] =

− [sgn(δij)]
2

2
[2− |sgn(δik)|]×

[|sgn(δik)| − sgn(δijδjk)] [1 + sgn(δijδik)]

(17)

Proof: The Theorem’s statement (17) is separately demonstrated to hold in the three cases δij(t)δik(t) Q
0 which cover all possible situations.

Case 1 - δij(t)δik(t) < 0 .
Under the condition δij(t)δik(t) < 0 one has that

sgn(δijδik) = −1, (18)

and, therefore, the right hand side of (17) is zero. Relation (18) readily implies that

sgn(δij) = −sgn(δik) (19)

Since, by construction
δjk(t) = δik(t)− δij(t) (20)

then it follows from (19) and (20) that

sgn(δjk) = sgn(δik(t)) (21)

which means that the left hand side of (17) will be zero, too. Hence condition (17) holds when
δij(t)δik(t) < 0.

Case 2 - δij(t)δik(t) > 0 .
Now assume that

δij(t)δik(t) > 0, (22)
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which implies that
sgn(δij) = sgn(δik), (23)

and that
sgn(δijδik) = 1, (24)

which also means that both sgn(δij) and sgn(δik) are nonzero. This means that [sgn(δij)]
2 = 1 and

|sgn(δik)| = 1, which allow us to simplify (17) as

sgn(δij)[sgn(δjk)− sgn(δik)] =
−1

2
[1− sgn(δijδjk)] [1 + sgn(δijδik)]

(25)

Considering (24) into the right hand side of (25) yields the further simplification

sgn(δij)[sgn(δjk)− sgn(δik)] = sgn(δijδjk)− 1 (26)

Now substituting (23) into the left hand side of (26) one obtains

sgn(δij)[sgn(δjk)− sgn(δij)] = sgn(δij)sgn(δjk)− 1 (27)

which is clearly an identity. Hence condition (17) holds when δij(t)δik(t) > 0.
Case 3 - δij(t)δik(t) = 0 .
When sgn(δij) = 0 condition (17) is trivially verified regardless of the value of sgn(δik).
When sgn(δik) = 0 and sgn(δij) ̸= 0 both sides of (17) are equal to sgn(δij)sgn(δjk), hence condition

(17) is fulfilled in the considered Case 3 as well.
Lemma 3.1 is proven.

We are now in position to state the main result of this paper.
Theorem 3.2: Consider the network of clocks (1), which satisfies (2), along with the discontinuous

local interaction rule (4)-(6). Assume that
(i) there are T, ϵ > 0 with T ≥ ϵ, such that during the receding horizon time interval I(t) = (t, t+ T ),

Ĝ(t) contains a spanning tree for at least ϵ units of time.
Let parameter λ be chosen according to

λ ≥ |E| Π T+µ2

ϵ
, µ ̸= 0. (28)

Then, the collective dynamics (9) reaches the approximate consensus condition

V (t) ≤ M, t ≥ tr (29)

where V (t) is defined in (13), with the constant ρ specified as

ρ ≤ 2|E|(T − ϵ) (30)

and the finite transient time tr

tr ≤
V (0)

2µ2
T =

T

2µ2

∑
(i,j)∈E

|xi0 − xj0| (31)

Proof: To analyze the convergence to the approximate consensus condition (3) we consider the error
variables (8) along with the associated dynamic equations (11)-(12) and the Lyapunov function (13). The
time derivative of the Lyapunov function is

V̇ (t) =
∑

(i,j)∈E(νi − νj)sgn(δij)− 2λ
∑

(i,j)∈E rij [sgn(δij)]
2

+λ
∑

(i,j)∈E rijsgn(δij)
∑

k∈V,k ̸=i,k ̸=j[sgn(δjk)− sgn(δik)]
(32)

According to Lemma 3.1, the next relations hold true for all k ∈ V , with k ̸= i, k ̸= j

sgn(δij)[sgn(δjk)− sgn(δik)] ≤ 0 (33)
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since the right hand side of (17) turns out to be nonpositive. Hence the last term in the right hand side
of (32) is nonpositive, too, and the next estimation is in force

V̇ (t) ≤
∑

(i,j)∈E(νi − νj)sgn(δij)− 2λ
∑

(i,j)∈E rij [sgn(δij)]
2 (34)

The first term in the right hand side of (34) can be bounded as follows∣∣∣∑(i,j)∈E(νi − νj)sgn(δij)
∣∣∣ ≤ 2|E|Π (35)

Thus we get
V̇ (t) ≤ 2|E|Π− 2λ

∑
(i,j)∈E rij [sgn(δij)]

2 (36)
The rightmost stabilizing term in the right hand side of (36) is nonzero at time t if there is at least an

active edge in the graph, say (i,j), connecting two non-synchronized clocks of the network (i.e. such that
δij ̸= 0 ).

The hypothesis (i) given in the statement of the Theorem guarantees that during each time interval I(t)
there is a subinterval S(t) ⊆ I(t), not necessarily connected (e.g., possibly composed by the union of
disjoint intervals, see Figure 1), of duration not less than ε, during which (at least) an arc connecting non
synchronized nodes is active.

The next relation is in force for all t ≥ 0

V (t+ T )− V (t) =

∫
S(t)

V̇ (τ)dτ +

∫
I(t)\S(t)

V̇ (τ)dτ (37)

Whenever t ∈ S(t) and V (t) ̸= 0 the next estimation can be made

V̇ (t) ≤ 2|E|Π− 2λ, t ∈ S(t) (38)
while for t ∈ I(t) \ S(t) we have that

V̇ (t) ≤ 2|E|Π, t ∈ I(t) \ S(t) (39)
By noticing that the length of the subinterval S(t) is at least ε by assumption, it follows that the length

of the interval I(t) \ S(t) will not exceed the value of T − ε.
Thus, in light of (38) and (39), one can manipulate (37) as

V (t+ T )− V (t) ≤ ϵ [2|E|Π− 2λ] + (T − ε)2|E|Π
= −[2ελ− 2T |E|Π]. (40)

By considering the expression (28) of λ into (40) one obtains the next contraction condition

V (t+ T )− V (t) ≤ −2µ2 (41)
Notice that the above condition (41) will be satisfied as long as V (τ) ̸= 0 for all τ ∈ (t, t + T ).

Therefore, it can be found a finite tr such that V (tr) = 0. The value of tr can be readily overestimated
as in (31) by taking into account condition (41). Starting from the time instant tr we now compute the
maximal steady state deviation from zero of V (t), i.e. the quantity

VM = supt≥trV (t) (42)
which sets the ultimate precision of the achieved consensus. If, at any time t′ one has that V (t′) = 0

then along the time interval t ∈ (t′, t′ + T ) the Lyapunov function V (t) may grow, at most, by a quantity
2(T − ε)|E|Π, which is obtained by integrating (39) for a time T − ε (the maximal consecutive time
interval without a spanning tree, according to hypothesis (i)) starting from the zero initial condition.

Thereby, the domain
V (t) ≤ 2(T − ε)|E|Π. (43)

is positively invariant at any t ≥ tr. Theorem 3.2 is proven.
Theorem 3.2 allows to define the majorant curve V̄ (t) such that V (t) ≤ V̄ (t) as follows

V̄ (t) = max{V (0)− 2µ2 +M,M}, (44)
see Figure 2.
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A. Comments
Synchronization property (29)-(31) clearly implies the approximate finite-time consensus condition (3).

Some comments about the achieved conditions and results are given throughout this subsection.
First of all let us observe that the “synchronization error” M tends to zero when the disturbances νi are

vanishing, thereby proving some “consistency” of the suggested scheme in the sense that the guaranteed
accuracy depends continuously on the disturbance magnitude.

The synchronization error also increases with the complexity of the network, i.e., with the value of |E|,
which is reasonable.

A parameter having a major effect on the steady state accuracy is the difference T − ε, that sets the
relative amount of time during which a spanning tree is active (and, therefore, information can profitably
propagate through the network). See Fig. 1 for a graphical representation of the scenario in which ε < T

Remarkably, when ε = T , i.e. when a spanning tree is always active in the time-varying communication
graph, the complete rejection of the disturbances is guaranteed by the proposed methodology, which would
provide, in this case, the ideal consensus condition after a finite time.

Finally, all parameters in eq. (28) or upper or lower bounds to them are assumed to be known and
µ > 0 is a design parameter that constrains the upper bound to the convergence time.

Some important aspects still need additional investigations since we are considering clocks that are
synchronized in continuous time and we are neglecting possible delays in the communication channels,
which are both limiting restrictions in applications. We expect, however, that the effect of communication
delay can be considered equivalent to a further “artificial” reduction of ε. This conjecture will be explored
in next research.

IV. NUMERICAL SIMULATIONS

In the considered network of 20 clocks, G is a random connected graph. For numerical simulation
purposes, fixed-step Euler integration method is used with sampling step of size 0.0001 seconds. The
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Fig. 3. Test 1. Transient evolution of the clock variables.

additive disturbances are selected of the form νi(t) =
N

2
(ni(t) + sin(3|ni(t)|t)) with ni(t) being a

uniformly distributed random variable in the range ni(t) ∈ [−1, 1] for all t. With the given parameters,
the upper bound to the disturbance signals is Π = N = 5. The value λ = 30 is chosen and the desired
clock speed is α = 1. Initial clocks values are chosen uniformly at random in the range [0, 1].

The outline of the performed simulations is as follows. In the first simulation, Test 1, the graph Ĝ(t)
is randomly chosen so that at each time instant it contains a spanning tree (i.e., ε = T ). In the second
simulation, Test 2, the switching policy is modified in such a way that ε = 0.3T , i.e., the spanning tree
in active on average for the 30% of time. In the final test, Test 3, the same switching policy of Test 1 is
used, and the disturbance signals are removed.

In Figure 3 the evolution of the clock variables relative to Test 1 are shown. It clearly emerges that after
a finite time transient the clocks will be exactly synchronized, in accordance with (3). Figure 4 shows
the time evolution of the Lyapunov function V (t). After a finite-time transient V (t) is actually steered
to zero. In Figure 5, the evolution of the clock variables relative to Test 2 are shown, with the same
network parameters used in Test 1 except the value ϵ = 0.3T . The Figure 6, which reports a zoom on the
transient evolution of V (t), puts into evidence the effect of the bounded disturbances on the convergence
properties of the network, and the robustness properties of the proposed local interaction rule. Finally, in
Figures 7 the clock variables time evolutions relative to Test 3, having removed any additive disturbance,
are displayed.

In both Test 1 (where ε = T ) and Test 3 (where Π = 0), the achievement of the consensus with
V (t) = 0 condition is expected, according to the demonstrated convergence properties, while in Test 2
the approximate attainment of the synchronization (”practical consensus”) is guaranteed. The obtained
simulation results confirm the theoretical analysis.”

Due to the approximation of the continuous-time evolution by the Euler method, we may still observe
some small numerical residual errors in the steady state even in presence of theoretically exact synchro-
nization. These errors, however, tend to vanish when the sampling time is progressively reduced as shown
in Figure 8 which displays the steady state evolutions of the Lyapunov function relative to Test 3 using
two different sampling times in the Euler integration method.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a distributed algorithm to solve the finite time consensus problem in a network
of first order dynamical systems with additive disturbance signals. The proposed system models a network
of clocks that synchronize themselves with a time-varying network topology. It has been proven that the
proposed local interaction rule is robust against bounded disturbance signals and the system converges in
finite time to a synchronized state in which each clock evolves at the same speed with a bounded error
can be made arbitrarily small if the control parameter λ and the relative amount of time along which the
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Fig. 5. Test 2. Transient evolution of the clock variables.
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Fig. 6. Test 2. Zoomed transient evolution of the Lyapunov function V (t).
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Fig. 7. Test 3. Transient evolution of the clock variables.
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Fig. 8. Test 3. Zoomed transient evolution of the Lyapunov function V (t).

network possesses a spanning tree is increased. Numerical simulations have been provided to corroborate
the analytical results.

In future work we will extend the sufficient condition on the network topology to the case in which
the graph is only jointly connected over a finite time window.
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