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Abstract

In this paper we present a procedure to analyze the diagnosability of a Petri net system in a

decentralized framework. We recall the definition of failure ambiguous strings, i.e., strings that can be

both faulty or not in the decentralized case, while can be distinguished in a centralized framework.

We first prove that the absence of such kind of strings guarantees that the system is diagnosable in a

decentralized framework. Then, we give an efficient procedure to verify the absence of such kind of

strings for both bounded and unbounded Petri net systems.
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I. INTRODUCTION

Failure detection is a crucial problem in automation systems. It has received a lot of attention

in the past few decades. Diagnosis approaches can solve two different types of problems: the

problem of diagnosis and the problem of diagnosability. Solving a problem of diagnosis means

that we associate to each observed string of events a diagnosis state, such as “normal” or “faulty”

or “uncertain”. On the other hand, diagnosability implies the ability to locate a fault after a finite

number of observations for any sequence (any behavior) of the system. Several contributions

have been presented in the discrete event systems framework, both for automata (1; 2; 3; 4; 5)

and Petri nets (PNs) (6; 7; 8; 9; 10)).

Due to the intrinsic distributed nature of the real systems, a lot of distributed diagnosis

techniques, that take advantage of the natural decompositions of a modular system, have been

studied both dealing with automata (11; 3; 12; 13; 14; 15; 16) and PNs (17; 18; 19).

In (20; 21) we presented an approach for decentralized diagnosis using Petri nets. The decen-

tralized architecture that we used is composed by a set of sites communicating their diagnosis

information with a coordinator that is responsible of detecting the occurrence of failures in the

system. In particular, we defined a series of protocols that differ for the amount of information

exchanged between the local sites and the coordinator, and the rules adopted by the coordinator

to compute the global diagnosis states.

In this paper we consider the same decentralized architecture and we first introduce the

definition of failure ambiguous strings. Secondly, we show that the absence of such kind of

sequences is a sufficient condition for the diagnosability of a given net system in a decentralized

framework, regardless of the considered protocol. We also discuss that, the absence of failure

ambiguous strings is also a necessary condition for codiagnosability, i.e., diagnosability in the

case in which there is no communication between the sites and the coordinator. Finally, we

give a procedure to detect the presence of failure ambiguous strings based on the construction

of a particular net called Modified Verifier Net (MVN), that is an extension of a particular net

system, called Verifier Net (VN), that we introduced in (22) to analyze the diagnosability of an

unbounded net system in a centralized framework.

Several polynomial time algorithms have been presented in the literature to detect failure

ambiguous traces in the case of automata (14; 15; 16). In particular, (16) propose an algorithm
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to verify the codiagnosability that has a computational complexity lower than all the other

methods previously proposed in literature. The main advantage of our approach with respect

to (wrt) the automata ones is that it can be applied to systems having an infinite state space.

Moreover, it can be shown that in the case of bounded systems the computational complexity

of our approach is comparable to that of the automata approaches (14; 15; 16).

II. BACKGROUND ON LABELED PETRI NETS

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is the set of

m places, T is the set of n transitions, Pre : P × T → N and Post : P × T → N are the

pre and post incidence functions that specify the arcs. The function C = Post− Pre is called

incidence matrix.

A marking is a vector M : P → N that assigns to each place a nonnegative integer number

of tokens; the marking of a place p is denoted with M(p). A net system 〈N, M0〉 is a net N

with initial marking M0.

A transition t is enabled at M iff M ≥ Pre(·, t) and may fire yielding the marking M ′ =

M + C(·, t). The notation M [σ〉 is used to denote that the sequence of transitions σ = t1 . . . tk

is enabled at M ; moreover we write M [σ〉M ′ to denote the fact that the firing of σ from M

yields to M ′. Given a sequence σ ∈ T ∗ we write t ∈ σ to denote that a transition t is contained

in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted with L(N, M0).

Given a sequence σ ∈ T ?, we call π : T ? → Nn the function that associates to σ a vector

y ∈ Nn, named firing vector, such that y(t) = k if the transition t is contained k times in σ.

A marking M is said to be reachable in 〈N,M0〉 iff there exists a firing sequence σ such that

M0[σ〉M . The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉
and is denoted with R(N, M0). Finally we define PR(N, M0) the potentially reachable set, i.e.,

the set of all markings M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state

equation M = M0 + C · y. It holds that R(N, M0) ⊆ PR(N, M0).

A net system 〈N, M0〉 is said to be bounded if there exists a positive constant k such that for

all M ∈ R(N, M0), M(p) ≤ k. If such is not the case, namely if the number of tokens in one

or more places can grow indefinitely, then the Petri net system is unbounded.
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A sequence σ ∈ T ∗ is called repetitive if there exists a marking M1 ∈ R(N, M0) such that

M1[σ〉M2[σ〉M3[σ〉 · · · , i.e., if it can fire infinitely often starting from M1.

A labeling function L : T → L ∪ {ε} assigns to each transition a symbol from a given

alphabet L or the empty word ε. The set of transitions sharing the same label e is denoted as Te.

Transitions whose label is ε are called silent and are denoted by the set Tu. The set To = T \Tu

is the set of observable transitions, i.e., when an observable transition fires we observe its label.

We denote as Cu (Co) the restriction of the incidence matrix to Tu (To).

Finally, given a net N = (P, T, Pre, Post) and a subset T ′ ⊆ T of its transitions, we define

the T ′-induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′), where Pre′ and Post′

are the restrictions of Pre and Post to T ′, i.e., N ′ is the net obtained from N removing all

transitions in T \ T ′. We write that N ′ ≺T ′ N .

III. THE DECENTRALIZED DIAGNOSIS ARCHITECTURE

We model anomalous or faulty behavior using the set of silent transitions Tf ⊆ Tu. The set

Tf includes all fault transitions and is further decomposed into r different subsets T i
f , where

i ∈ F = {1, . . . , r}, that model different fault classes. As in most of the literature in this topic,

we assume that the fault model is known. The transition set Treg = Tu \ Tf represents the set of

unobservable, but regular, transitions.

The problem of fault diagnosis can be seen as the problem of detecting the firing of any fault

transition in Tf , using the knowledge of the firing of observable transitions, or the knowledge

of their labels in the case of labeled PNs.

In this work we analyze the decentralized diagnosability properties of a system using a

decentralized architecture as depicted in Fig. 1. The system is monitored by a set J = {1, . . . , ν}
of sites. Each site has a complete knowledge of the net structure and of the initial marking, but

observes the evolution of the system using its own observation mask. Obviously, different sites

have different observation masks. In particular, for any site j ∈ J , the set of locally observable

transitions is the set To,j ⊆ To. Any centrally observable transition is observed by at least one

site, i.e.,
⋃

j∈J To,j = To. The set of locally unobservable transitions is defined as

Tu,j = Treg ∪ Tf ∪ (To \ To,j). (1)

We denote as

L̄ : T → L ∪ {ε} (2)
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Fig. 1. The decentralized diagnosis architecture.

the labeling function associated to the centralized system, namely a system that is able to observe

all labels associated to transitions in To. Moreover, for all j ∈ J , Lj ⊆ L denotes the alphabet

of the j-th site, i.e., the set of labels observable by the j-th site, and

Lj(t) =




L̄(t) if L̄(t) ∈ Lj

ε otherwise
(3)

is the labeling function associated to the j-th site. Note that the above definition of Lj implies

that, if a site observes a transition labeled e, then it observes all transitions whose label is e.

Finally, wj = Lj(σ) denotes the word of events in Lj associated to the sequence σ by the j-th

site.

In this paper we do not care which kind of protocol will be used for exchanging information

between the coordinator and the local sites. We just suppose that each local site performs a local

diagnosis, using a given diagnosis approach, and depending on this, it exchanges information with

a coordinator C according to a given protocol. In the most elementary protocol the coordinator

diagnoses a fault in a given fault class as soon as one site communicates the detection of it.

More precisely, for each fault class i ∈ F it computes a diagnosis state ∆̄i that can be “normal”

or “faulty” or “uncertain”. We can also think that the sites communicate to the coordinator
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not only when a fault occurs, but also other additional information helping in the diagnosis.

In the borderline case all sites communicate to the coordinator the observed sequences, and if

the coordinator knows the net structure and the sites observation masks it acts as a centralized

observer. In this paper where not specified we will refer to the most elementary protocol case.

IV. DIAGNOSABILITY AND FAILURE AMBIGUOUS STRINGS

In this section we first recall the notion of diagnosability, then we introduce the definition of

failure ambiguous strings, and show the relationships among them. In particular, as it is common

in all the literature in this topic, we make the following assumption.

A1 The system does not enter a deadlock after the firing of any fault transition.

Based on such an assumption, the following definition can be given.

Definition 4.1: Let us consider a PN system 〈N, M0〉 having no deadlock after the occurrence

of transition tf ∈ T i
f , for all i ∈ F . Assume that diagnosis is performed according to a given

approach (either centralized or decentralized).

We say that 〈N, M0〉 is diagnosable wrt the fault class T i
f and wrt a given diagnosis approach

iff the occurrence of some fault in T i
f is unambiguously detected using the specified diagnosis

approach after a finite number of transition firings. ¥
Definition 4.2: A PN system 〈N, M0〉 is diagnosable wrt a given diagnosis approach if it is

diagnosable wrt that approach for all fault classes T i
f , i ∈ F . ¥

Note that in the centralized framework, inspired by the definition of diagnosability for lan-

guages introduced in (23), Definition 4.1 can alternatively be formulated as follows.

Definition 4.3: A PN system 〈N,M0〉 having no deadlock after the occurrence of transition

tf ∈ T i
f , for i ∈ F , is diagnosable wrt the fault class T i

f if there do not exist two firing sequences

σ1 and σ2 ∈ T ∗ satisfying the following conditions:

• L(σ1) = L(σ2),

• ∀tf ∈ T i
f , σ1 ∈ (T \ T i

f )
∗,

• ∃ at least one tf ∈ T i
f such that tf ∈ σ2,

• σ2 is of “arbitrary length” after fault tf ∈ T i
f , i.e., there exists at least one decomposition

σ2 = σ′2tfσ
′′
2 such that given any k ∈ N you can always pick σ′′2 such that |σ′′2 | > k. ¥

Several protocols can be defined, based on the decentralized diagnosis architecture introduced

in the previous section, that basically differ for the kind and the amount of information exchanged
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between the local sites and the coordinator. In this section we want to show that, in all such

cases, when analyzing diagnosability in a decentralized framework, the first important step is

that of detecting the presence of particular strings, called failure ambiguous strings.

Note that the notion of failure ambiguous strings has been firstly introduced in (11) in the

framework of automata under the assumption of two sites. Here we extend such definition to

PNs and consider the general case of an arbitrary number ν of sites.

Definition 4.4: Consider a net system 〈N, M0〉 monitored by a set J = {1, . . . , ν} of sites.

Let To,j ⊆ To be the set of locally observable transitions for the generic site j ∈ J . Finally, let

T i
f ⊆ Tf be the generic i-th fault class, with i ∈ F .

A string σ ∈ T ∗ such that tf ∈ σ for at least one tf ∈ T i
f , is said to be failure ambiguous wrt

the above set of sites and wrt the fault class T i
f , if the following two conditions are verified:

(a) L−1
j (Lj(σ)) ∩ (T \ T i

f )
∗ 6= ∅ ∀j ∈ J ;

(b) L̄−1(L̄(σ)) ∩ (T \ T i
f )
∗ = ∅,

where Lj and L̄ are defined as in (3) and (2), respectively.

¥
In simple words, a sequence σ containing some fault transitions in a fault class i, is failure

ambiguous wrt to a set of sites and wrt the i-th fault class, if the word σ is ambiguous for

each site j ∈ J , i.e., it may also be explained by a non faulty word, while the word σ is not

ambiguous for the centralized system.

Example 4.5: Let us consider the PN system in Fig. 2 which is locally diagnosed by two

sites whose alphabets are equal to L1 = {a, c} and L2 = {b, c}, respectively. The sequence

σ = tf t1t2t
q
3, with q ∈ N, is failure ambiguous wrt the sites 1 and 2 and wrt to the unique fault

class Tf = {tf}. In fact, L1(σ) = {acq} and L−1
1 (L1(σ)) = {tf t1t2tq3, t5tq3}, thus L−1

1 (L1(σ)) ∩
(T \ Tf )

∗ = {t5tq3}; L2(σ) = {bcq} and L−1
2 (L2(σ)) = {tf t1t2tq3, t4tq3} thus L−1

2 (L2(σ)) ∩ (T \
Tf )

∗ = {t4tq3}; and L̄(σ) = {abcq} and L̄−1(L̄(σ)) = {tf t1t2tq3} thus L̄−1(L̄(σ))∩(T \T i
f )
∗ = ∅.

¥
Obviously, regardless of the considered protocol, if a system is diagnosable in a centralized

framework with respect to a given fault class, and has no failure ambiguous string of arbitrary

length with respect to that class, it is also diagnosable in a decentralized framework. The

following proposition formally proves this.

Proposition 4.6: Consider a net system 〈N, M0〉 monitored by a set J = {1, . . . , ν} of sites.
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Fig. 2. The PN system considered in Example 4.5.

Let T i
f ⊆ Tf be the generic i-th fault class, with i ∈ F . Let us suppose that the net system

〈N, M0〉 is diagnosable in a centralized framework wrt T i
f .

Regardless of the protocol used to perform decentralized diagnosis, if there do not exist failure

ambiguous strings of arbitrary length for the considered set of sites wrt to T i
f , then the system

is also diagnosable in a decentralized framework.

Proof: By Definition 4.4, if there do not exist failure ambiguous strings of arbitrary length

wrt a given fault class, it means that there do not exist strings of arbitrary length that can be

distinguished by the centralized diagnoser, but cannot be distinguished by all the local sites. This

implies that, for each string containing a fault there exists at least one site that detects the fault.

Thus the system is diagnosable also in a decentralized framework. ¤
Note that in general cases, as it happens in the case of automata (11), the absence of failure

ambiguous strings of arbitrary length is only a sufficient condition for the diagnosability in a

decentralized framework. In fact, if protocols are defined so that local sites take advantage of the

information collected by the other sites (e.g., receiving certain information by the coordinator),

the resulting system may be diagnosable even in the presence of failure ambiguous strings. On

the contrary, if each site computes its diagnosis states receiving no information from the other

sites and from the coordinator, then the absence of failure ambiguous strings is also a necessary

condition for the decentralized diagnosability.
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As an example, in (20; 21), we presented three different protocols for the decentralized

diagnosis using labeled PNs. In the easiest one, denoted as Protocol 1, a site communicates

to the coordinator its diagnosis state if and only if it has detected the occurrence of a fault. No

communication is allowed among sites, and among the coordinator and the local sites. The

coordinator simply produces an alarm if it receives it by at least one site. In such a case

it is obvious that the absence of failure ambiguous strings is not only a sufficient condition

for decentralized diagnosability, but it is also necessary. On the contrary, if we use the more

sophisticated protocols, denoted as Protocol 2 and 3, it may occur that a system is diagnosable

in a decentralized framework even in the presence of failure ambiguous strings. This is due to

the fact that the protocol is based on a confutation procedure that allows the sites to take benefit

of the information sent by the other sites to the coordinator.

V. DETECTING FAILURE AMBIGUOUS STRINGS USING THE MODIFIED VERIFIER NET

In this section we provide a procedure to determine if a given net system (bounded or

unbounded) observed by ν local sites has failure ambiguous strings of arbitrary length. The

proposed procedure is based on the definition of a particular PN system that we call Modified

Verifier Net (MVN) since it is a generalization of a particular finite state automaton called Verifier

Net (VN) that we used in (22) to analyze the diagnosability of unbounded PNs in a centralized

framework.

A. Modified Verifier Net

For the sake of simplicity, we consider the case of a single fault class, hence the superscript

i is omitted in T i
f hereafter.

The Modified Verifier Net system is the PN system obtained by a composition (related to

parallel composition) performed on the transitions labels of the centralized system 〈N,M0〉 with

labeling function L and ν net systems 〈N j,M j
0 〉, where j = {1, . . . , ν}, obtained by 〈N, M0〉

removing the fault and having a labeling function Lj . Thus we define:

• 〈N, M0〉 as the centralized PN system where N = (P, T, Pre, Post), T = To ∪ Tu, and

Tu = Treg ∪ Tf and labeling function L : T → L ∪ {ε};

• 〈N j, M j
0 〉 as the PN systems associated to the local sites (j ∈ J ) where N j = (P j, T j, P rej, Postj)

is the T j-induced subnet, P j = P , T j = T \Tf , Prej and Postj are the restrictions of Pre
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and Post to P j and T j and M j
0 = M0 for all j ∈ J , with labeling function Lj restricted

to T j .

Note that Lj and Lj denote two different labeling functions: Lj is the generic labeling function

associated to the PN system 〈N j,M j
0 〉 that maps each transition in T \ Tf with its proper label,

while Lj is defined as in Eq. (3). Therefore, Lj is the same for all the sites, while Lj depends

on the particular site.

Let T j
reg = T j ∩ Tu,j be the set of unobservable transitions of the jth site1. We denote the

MVN as 〈Ñ , M̃0〉, where Ñ = (P̃ , T̃ , P̃ re, P̃ ost), P̃ = P ∪ P 1 ∪ . . . P ν and

T̃ = (∪e∈LT̃o,e) ∪ (Treg × {λ} × . . .× {λ})∪
(∪j=1,...,νT̃

j
reg) ∪ (Tf × {λ} × . . .× {λ}),

where

T̃o,e =





(t, γ1, . . . , γν) | t ∈ Te,

γj =





tj ∈ T j
o,j if Lj(t

j) = L(t)

λ otherwise





and
T̃ j

reg = {({λ}, β1, . . . , βν) | βj ∈ T j
reg,

βi = λ ∀i 6= j} .

Matrices P̃ re and P̃ ost are the Pre and Post matrices of the MVN and they are defined

together with the rules of construction of the MVN in the following algorithm.

Algorithm 5.1: Construction of the MVN.

Input: a labeled PN system 〈N, M0〉 where N = (P, T, Pre, Post), T = To ∪ Treg ∪ Tf and

L : T → L∪{ε}; a set of ν local sites Sj , j = 1, . . . , ν, with observable transitions To,j ( To.

Output: the MVN system 〈Ñ , M̃0〉, where Ñ = (P̃ , T̃ , P̃ re, P̃ ost).

1) Let 〈N j,M j
0 〉, with j = 1, . . . , ν, be the labeled PN systems defined as discussed above.

2) Let P̃ = P ∪ P 1 ∪ . . . ∪ P ν .

3) Let M̃0 =




M0

M1
0

...

M ν
0




.

1Since T j does not contain fault transitions, being by definition T j = T \ Tf , it holds T j
reg ≡ Tu,j .
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4) For all transitions tf ∈ Tf , do

• add a transition t ∈ T̃ denoted as (tf , λ, . . . , λ);

• for all j = 1, . . . , ν, do

– for all p ∈ P j , let P̃ re(p, t) = P̃ ost(p, t) = 0;

• for all p ∈ P , let P̃ re(p, t) = Pre(p, tf ) and P̃ ost(p, t) = Post(p, tf ).

5) For all transitions treg ∈ Treg,

• add a transition t ∈ T̃ denoted as (treg, λ, . . . , λ);

• for all j = 1, . . . , ν, do

– for all p ∈ P j , let P̃ re(p, t) = P̃ ost(p, t) = 0;

• for all p ∈ P , let P̃ re(p, t) = Pre(p, treg) and P̃ ost(p, t) = Post(p, treg).

6) For all j = 1, . . . , ν, do

• for all transitions tjreg ∈ T j
reg, do

– add a transition t ∈ T̃ denoted as

(λ, β1, . . . , βν) where βj = tjreg and βi = λ for all i 6= j;

– for all p ∈ P j , let P̃ re(p, t) = Prej(p, tjreg) and P̃ ost(p, t) = Postj(p, tjreg);

– for all p ∈ P i ∪ P , with i 6= j, let P̃ re(p, t) = P̃ ost(p, t) = 0;

7) For all labels e ∈ L, do

• for all j = 1, . . . , ν, let T j
e = {tj ∈ T j

o,j | Lj(t
j) = e};

• for all possible combinations of transitions in Te and in T j
e , j = 1, . . . , ν, do

– add a transition t ∈ T̃ denoted as

(te, γ1, . . . , γν) where te ∈ Te, γj ∈ T j
e if T j

e 6= ∅, else γj = λ;

– for all p ∈ P , let P̃ re(p, te) = Pre(p, te), P̃ ost(p, te) = Post(p, te);

– for all j = 1, . . . , ν, do

¦ for all p ∈ P j , if γj = λ let P̃ re(p, t) = P̃ ost(p, t) = 0, else let P̃ re(p, t) =

Prej(p, γj), P̃ ost(p, t) = Postj(p, γj);

– label transition t with (e, %1, . . . , %ν) where %j = e if T j
e 6= ∅, else %j = λ.

¥
The following example presents an application of the above algorithm.

Example 5.2: Let us consider the labeled PN system in Fig. 2. Let To = {t1, t2, t3, t4, t5},

Tf = {tf} and Treg = ∅. Moreover, let L̄(t1) = L̄(t5) = a, L̄(t2) = L̄(t4) = b, L̄(t3) = c.
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Fig. 3. The MVN built starting from the PN system in Fig. 2.

Assume that there are two local sites S1 and S2 whose set of observable events is To,1 =

{t1, t3, t5} and To,2 = {t2, t3, t4}, respectively. Thus L1 = {a, c} and L2 = {b, c}.

As discussed above, all transitions that belong to To, but are not observable by a given site

are considered as regular unobservable transitions by such a site.

The resulting MVN is reported in Fig. 3. The cardinality of P̃ is 12 since N has 4 places and

the system is locally observed by two sites. The initial marking assigns one token to p1, p1
1, p2

1
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and no token to the other places.

Now, at Step 4 of Algorithm 5.1 only one transition is added to the MVN being Tf = {tf}.

In particular, the transition originating from tf is (tf , λ, λ).

Step 5, being Treg = ∅, introduces no transition in the MVN.

On the contrary, Step 6 leads to the addition of four transitions. In particular, being T 1
reg =

{t12, t14} this leads to the addition of (λ, t12, λ) and (λ, t14, λ) in the MVN. These transitions are

only connected to places in P 1 and their input and output arcs have the same weight of the

input and output arcs of t2 and t4, respectively, in N . Analogously, being T 2
reg = {t21, t25} at

Step 6 we add two transitions in the MVN, namely (λ, λ, t21) and (λ, λ, t25). No arcs go from

these transitions to places in P and P 1, while they are connected to places in P 2. In particular,

their input and output arcs to places in P 2 have the same weight of the input and output arcs

of t1 and t5, respectively, in N .

Finally, at Step 7 we add 9 transitions: four relative to label a, four relative to b and one to c. In

particular, being Ta = {t1, t5}, T 1
a = {t11, t15} and T 2

a = ∅, we consider all possible combinations

of transitions in Ta and T 1
a and add a new transition for each of such combinations. Thus the

following four transitions in the MVN correspond to label a: (t1, t
1
1, λ), (t1, t

1
5, λ), (t5, t

1
1, λ)

and (t5, t
1
5, λ). All of them are labeled (a, a, λ). Analogously, being Tb = {t2, t4}, T 1

b = ∅ and

T 2
b = {t22, t24}, in the MVN there are four transitions relative to b, namely, (t2, λ, t22), (t2, λ, t24),

(t4, λ, t22) and (t4, λ, t24), all labeled (b, λ, b). Finally, being Tc = {t3}, T 1
c = {t13} and T 2

c = {t23},

the MVN has only one transition relative to c, i.e., (t3, t
1
3, t

2
3) and such a transition is labeled

(c, c, c). ¥
Proposition 5.3: Given a PN system 〈N,M0〉, a set of ν local sites, and the corresponding

MVN, if a sequence

σ̃ = (γi1 , γ
1
i1
, . . . , γν

i1
)(γi2 , γ

1
i2
, . . . , γν

i2
) . . .

. . . (γik , γ
1
ik
, . . . , γν

ik
) ∈ T̃ ∗

is repetitive in the MVN2, then there exists a repetitive sequence σ = γi1γi2 . . . γik in 〈N, M0〉
and a repetitive sequence σj = γj

i1
. . . γj

ik
in 〈N j, M j

0 〉, for all j = 1, . . . , ν.

Proof: It follows from the definition of MVN. In fact, the existence of a sequence σ̃ ∈
L(Ñ , M̃0) implies that σ ∈ L(N, M0) and σj ∈ L(N j,M j

0 ), for all j = 1, . . . , ν. The firing

2The symbol λ denotes the sequence of length zero, hence σ′λσ′′ = σ′σ′′.
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sequences σ and σj , j = 1, . . . , ν, are repetitive respectively in 〈N,M0〉 and in 〈N j,M j
0〉, given

that σ̃ is repetitive in the MVN. ¤

B. Detection of failure ambiguous strings

We now provide a constructive criterion to establish if a given net system presents failure

ambiguous strings of arbitrary length by looking at the MVN. In particular, we make the

following assumption.

A2 The net system 〈N, M0〉 with set of observable transitions To, labeling function L̄ and set

of regular unobservable transitions Treg, is diagnosable in a centralized framework.

Note that this is not a restrictive assumption because if the system is not diagnosable in a

centralized framework there is no interest in determining the existence of failure ambiguous

strings.

The criterion we propose is based on the following proposition.

Proposition 5.4: Let 〈N,M0〉 be a PN system monitored by a set J = {1, . . . , ν} of local

sites. Let To,j ( To be the set of locally observable transitions for the generic site j ∈ J and

To = ∪j∈JTo,j . Let assumptions A1 and A2 be verified.

Assume for simplicity that there exists only one fault class Tf having only one fault transition,

i.e., Tf = {tf}.

There exist no failure ambiguous strings of arbitrary length wrt the above set of sites and wrt

Tf iff starting from any node of the reachability/converability graph (R/CG) of its MVN reached

by firing the fault there does not exist any cycle associated with a repetitive sequence in the

MVN.

Proof: Let us preliminary observe that by assumption A1 the system does not enter a deadlock

after the firing of any fault transition, i.e., for any fault transition, there exists at least one sequence

of arbitrary length containing it. Therefore, a deadlock in the MVN occurring after tf , cannot

be due to the fact that the deadlock really occurs in the net after the firing of tf .

Let us now prove the if and only if statements separately.

(If) We prove this by contradiction. By Proposition 5.3, if the R/CG of the MVN has a cycle

associated to a repetitive sequence after some occurrence of tf , it means that there exists at least

one sequence of arbitrary length σ ∈ T ∗ containing tf that is enabled by 〈N, M0〉, and other

sequences σj ∈ (T j)∗, one for each site j ∈ J , having the same observable projection of σ, i.e.,

January 9, 2012 DRAFT



15

Lj(σ) = Lj(σ
j), that are enabled by 〈N j,M j

0〉. However, by assumption A2, this implies that

σ is a failure ambiguous string of arbitrary length wrt the considered set of local sites and the

fault transition tf , thus leading to a contradiction.

(Only if) We now show that if there do not exist failure ambiguous strings of arbitrary length

wrt the set of sites J = {1, . . . , ν} and wrt Tf , then the R/CG of the MVN has no cycle

associated to a repetitive sequence after some occurrence of tf .

If there do not exist failure ambiguous strings wrt the local sites and wrt Tf , it means that

we may have a string σ containing tf and other ν strings σj that do not contain tf and such

that Lj(σ) = Lj(σ
j), but we will never be able to extend them arbitrarily while keeping their

projections identical. However, by construction of the MVN, this means that the R/CG of the

MVN will have no cycle associated to a repetitive sequence after any occurrence of tf , thus

proving the statement. ¤
Obviously, in the case of more than one fault class, a different MVN should be constructed

for each fault class. Moreover, when studying the diagnosability wrt a given fault class, all fault

transitions apart from those that belong to the class at hand, should be considered as regular but

unobservable transitions.

Finally, we observe that the problem of finding repetitive sequences that can be enabled after

a given transition can be studied in order to look for easier approaches; however this problem

is not addressed in this paper.

Example 5.5: Let us consider again the bounded PN system reported in Fig. 2. Assume that

the fault diagnosis is carried out using two local sites as described in Example 5.2.

First, we observe that this system is diagnosable in a centralized framework, e.g., following the

approach we proposed in (24). Then, we analyze its diagnosability in a decentralized framework

using Proposition 5.4. To this aim we consider the MVN reported in Fig. 3.

By looking at the reachability graph of the MVN, that is not reported here for the sake of

brevity, we state that the system has failure ambiguous strings when the two sites are defined

as in Example 5.2. In particular, it can be shown that all paths starting from the initial marking

and containing the fault tf end in a cycle labeled c. ¥
Note that the approach here presented can be applied to the centralized case when considering

ν = 1 and labeling function Lj = L̄. In fact, it is perfectly equivalent to the approach we proposed

in (22) for the centralized case.
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VI. CONCLUSIONS

In this paper we focused on the problem of analyzing the diagnosability of Petri net systems

in the case of diagnosis carried out by a set of local sites and a central coordinator, defined

according to a given architecture.

We proved that, regardless of the protocol the different sites use to exchange information

with the coordinator and/or among them, the property of diagnosability is strictly related to

the presence of particular strings, called failure ambiguous strings. A procedure to detect the

presence of failure ambiguous strings is proposed based on the construction of a particular net,

denoted as Modified Verifier Net, and on the analysis of cycles associated to repetitive sequences

after the occurrence of fault transitions on such a net.
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