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Abstract

This paper considers an application of the Infinitesimal Perturbation Analysis (IPA) gradient-

estimation technique to a class of continuous Petri nets. In particular, it proposes a systematic approach

for computing the derivatives of the sample performance functions with respect to structural and control

parameters. The resulting algorithms are recursive in both time and network flows, and their steps are

computed in response to the occurrence and propagation of certain events in the network. Such events

correspond to discontinuities in the network flow-rates, and their special characteristics are due to the

properties of continuous transitions and fluid places. Following a general outline of the framework we

focus on a simple yet canonical example, and investigate throughput and workload-related performance

criteria as functions of a threshold control variable. Simulation experiments support the analysis and

testify to the potential viability of the proposed approach.
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I. INTRODUCTION AND PROBLEM STATEMENT

In the past decade much of the research on Infinitesimal Perturbation Analysis (IPA) has

focused on fluid queueing networks, whose dynamics are characterized by flow rates rather than

by the movement and storage of discrete jobs. Consequently, certain traffic processes have an

inherent continuity which renders them amenable to the application of IPA (Cassandras (2006)).

More recently, the investigation of IPA was extended to the setting of continuous Petri nets,

whose concept of the continuous transition sets them apart from continuous queueing networks

and poses additional challenges. Xie (2002) derived IPA algorithms for networks with piecewise-

constant flow rates, and Giua et-al. (2010) developed a general algorithmic framework for a

class of networks with piecewise-continuous flow rates. However, this framework (as well as the

algorithms in Xie (2002)) assume that the performance perturbations are generated by exogenous

processes, thereby excluding many forms of feedback control laws. The purpose of this paper is

to initiate an effort to extend that framework to a class of parameterized feedback laws consisting

of threshold-based flow control. Since this is but an initial study, we lay out a general framework

for algorithms but focus the detailed analysis on the specific example shown in Fig. 1; though

simple, it captures many of the salient features of IPA in the setting of continuous Petri nets. A

followup publication will extend the analysis to a more general class of networks and systems.

IPA is a general technique for computing gradients (derivatives) of sample performance

functions defined on stochastic Discrete Event Dynamic Systems (DEDS) (Cassandras and

Lafortune (1999)). Its principal application areas has been in queueing networks and more

recently in fluid queues, due to their special structure yielding simple algorithms for the sample

gradients. These gradients, called the IPA gradients, can be used in sensitivity analysis and

optimization of the related expected-value function via stochastic approximation. Formally, let

J(θ) be a random function whose realization is defined on the sample path of a DEDS and let

`(θ) := E[J(θ)] be its expected value, where θ ∈ Rn is the variable parameter. IPA computes

the sample gradient ∇J(θ) which, under some circumstances, can be used in optimization of

`(θ). In a class of queueing models and performance functions, the IPA gradient ∇J(θ) can be

computed by simple algorithms, and this has provided a major factor motivating research and

development of IPA. For a detailed discussion on IPA and its potential applications, please see

Cassandras and Lafortune (1999).
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Fig. 1. Example of a Continuous Petri Net

Continuous Petri nets are stochastic Petri nets with “fluidized” tokens flowing on their arcs

instead of discrete tokens. Introduced in Alla and David (1998), their algebraic properties subse-

quently were investigated in Silva and Recalde (2004). A typical transition T is characterized by

a given maximum firing (flow) rate, VT (t) ≥ 0, which can be a function of time as the notation

indicates. The actual firing rate, denoted by vT (t), satisfies the inequalities 0 ≤ vT (t) ≤ VT (t). A

typical place is denoted by p, and its fluid level (occupancy) is denoted by mp(t). As in earlier

studies of IPA in the Petri-net setting (Xie (2002); Giua et-al. (2010)), we consider a class of

Petri nets called event graphs, namely networks whose places have each a single input transition

and a single output transition. No further restrictions are made on the topology of the networks,

and they may be closed, open, or neither closed not open.

Following the notation in Giua et-al. (2010) we define, for a transition T , the terms in(T )

and out(T ) to be the set of input places to T and the set of output places from T , respectively.

If in(T ) = ∅ then T is a source transition, and if out(T ) = ∅ then T is a sink transition.

Furthermore, for every place p we denote by in(p) and out(p) the input transition to p and the

output transition from p, respectively.

Continuous Petri nets can be viewed as stochastic DEDS whose state variable is comprised

of all transition-flow rates vT (t) and the place-fluid levels mp(t). Define εT (t) := {p ∈ in(T ) :

mp(t) = 0}, namely the input places to T which are empty at time t. Suppose that the network

evolves in a time-interval [0, T ] for some given T > ′. The state equations are, for every transition

T ,

vT (t) =





VT (t), if εT (t) = ∅
min{vin(p)(t) : p ∈ εT (t)}, if εT (t) 6= ∅;

(1)

and for every place p,

ṁp(t) = vin(p)(t)− vout((p)(t), (2)
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with some given initial condition mp(0). These equations must be satisfied simultaneously for

all of the network’s nodes (transitions and places), and sufficient conditions for the existence of

unique solutions were mentioned in Giua et-al. (2010).

In the IPA setting let θ ∈ Rn be a variable parameter of the traffic processes, which are

therefore denoted by VT (θ, t), vT (θ, t), and mp(θ, t). With this notation, Equations (1) and (2)

are to be understood in the following way: fix θ ∈ Rn, and let the state evolve in the time-

interval [0, T ] according to these equations. Sample performance functions of frequent interest

in applications, like throughput and delay, are related to the following two functions defined,

respectively, for transitions T and places p (see Giua et-al. (2010)):

JT (θ) :=

∫ T

0

vT (θ, t)dt, (3)

and

Jp(θ) :=

∫ T

0

mp(θ, t)dt. (4)

Their sample gradients, ∇JT (θ) and ∇Jp(θ), are the targets of the IPA algorithms, and hence are

called the IPA gradients. We investigate them under the general network-structure considered in

Giua et-al. (2010) except that we assume that the variable θ is not a parameter of an exogenous

process but rather a threshold-control parameter, and this necessitates a new line of analysis. As

mentioned earlier, this being an initial study, we first present our analysis in general and abstract

terms and then apply it to an example involving the particular system shown in Fig. 1.

Section 2 presents a general framework for computing the IPA derivatives, and Section 3

analyzes the aforementioned example. Section 4 contains simulation results, and Section 5

concludes the paper.

II. GENERAL FRAMEWORK FOR IPA

This section considers the IPA gradients of the sample performance functions JT (θ) and Jp(θ)

defined by Equations (3) and (4). To somewhat simplify the exposition we assume that θ ∈ R so

that the IPA gradient is called the IPA derivative and denoted by dJ
dθ

(θ). Throughout the discussion

therein we assume that all of the mentioned derivatives exist and the standard rules of calculus

apply. We also assume that for a given θ ∈ R, transition T , and place p, the function vT (θ, ·)
is piecewise continuous and piecewise continuously differentiable, and the function mp(θ, ·)
is continuous and piecewise continuously differentiable. Furthermore, the discontinuity (jump)
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time-points of vT (θ, ·) are functions of θ and hence are denoted by tk,T (θ), k = 1, . . . , K for

some (random) K, and we assume that, at a given θ, their derivatives dtk,T

dθ
(θ) exist w.p.1. These

assumptions could be verifyable for particular systems as will be seen in the next section.

Consider first the IPA derivative dJT

dθ
(θ). Taking derivatives in (3) we obtain its following

general form,

dJT

dθ
(θ) =

∫ T

0

∂vT

∂θ
(θ, t)dt +

K∑

k=1

(
vT (θ, tk,T (θ)−)− vT (θ, tk,T (θ)+)

)dtk,T

dθ
(θ). (5)

The terms ∂vT

∂θ
(θ, t) typically can be computed directly and easily from the sample path, and hence

the main challenge is to compute the sum-terms in the Right-Hand Side (RHS) of Equation (5).

These terms also arise in the IPA derivative dJp

dθ
(θ). Indeed, taking derivatives in (4) we obtain,

dJp

dθ
(θ) =

∫ T

0

∂mp

∂θ
(θ, t)dt, (6)

and the integrant in this equation has the following form. If t lies in the interior of an empty

period at p then ∂mp

∂θ
(θ, t) = 0. On the other hand, if mp(θ, t) > 0, let ξ(θ) := max{τ ≤ t :

mp(θ, τ) = 0}, then by (2)

mp(θ, t) =

∫ t

ξ(θ)

(
vin(p)(θ, τ)− vout(p)(θ, τ)

)
dτ. (7)

Let tj,in(p)(θ), j = j1, . . . , j(t) denote the jump-points of the function vin(p)(θ, ·) in the interval

(ξ(θ), t), and let t`,out(p)(θ), ` = `1, . . . , `(t) denote the jump-points of the function vout(p)(θ, ·)
in the interval (ξ(θ), t). Suppose that vin(p)(θ, ·) and vout(p)(θ, ·) are continuous at t. Then (7)

January 9, 2012 DRAFT



6

implies that

∂mp

∂θ
(θ, t) =

∫ t

ξ(θ)

(∂vin(p)

∂θ
(θ, τ)− ∂vout(p)

∂θ
(θ, τ)

)
dτ

+

j(t)∑
j=j1

(
vin(p)(θ, tj,in(p)(θ)

−)− vin(p)(θ, tj,in(p)(θ)
+)

)

×dtj,in(p)

dθ
(θ)−

`(t)∑

`=`1

(
vout(p)(θ, t`,out(p)(θ)

−)− vout(p)(θ, t`,out(p)(θ)
+)

)

×dt`,out(p)

dθ
(θ)

−(
vin(p)(θ, ξ(θ)

+)− vout(p)(θ, ξ(θ)
+
)dξ

dθ
(θ). (8)

We see that the terms
(
vT (θ, tk,T (θ)−)− vT (θ, tk,T (θ)+)

)

×dtk,T

dθ
(θ) play a role in both the IPA derivatives dJT

dθ
(θ) and dJp

dθ
(θ), and we next indicate a

recursive way to compute them along a sample path.

To simplify the notation, we define the terms ∆vT (θ, t) := vT (θ, t−)−vT (θ, t+) and ∆VT (θ, t) :=

VT (θ, t−) − VT (θ, t+), and we observe that ∆vT (θ, t) 6= 0 (∆VT (θ, t) 6= 0, resp.) only if t is a

jump point of the function vT (θ, ·) (VT (θ, ·), resp.). Equations (5) and (8) require the computation

of ∆vT (θ, tT (θ))dtT
dθ

(θ), where tT (θ) serves as a generic notation for a jump point of vT (θ, ·).
The computation of these terms is at the heart of the IPA algorithm, and it is based on the notion

of discrete events in the following way. Associated with each transition there is a sequence of

events occurring at random times. Every jump in the function vT (θ, ·) is an event associated

with T , and every event either is such a jump or causes a jump possibly at another transition.

When an event occurs in transition T at time tT (θ), we compute the term ∆vT (θ, tT (θ))dtT
dθ

(θ).

Furthermore, this term may be used in the computation of similar terms associated with other

events, possibly occurring at other transitions, and the specific event at T may indicate how this

can be done.

The various events are classified according to the following definition, where the timing of

an event at transition T is indicated by tT (θ).

Definition 2.1: 1) An exogenous event at transition T is a jump in VT (θ, ·) such that,

conditioned on VT (θ, tT (θ)−) and tT (θ), the term ∆VT (θ, tT (θ))dtT
dθ

(θ) is independent of
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any other past network processes.

2) An event at transition T is a null event if dtT
dθ

(θ) = 0.

3) Let γ(θ) be a continuously-differentiable, non-negative-valued function. A Type-1 endoge-

nous event at transition T , with respect to the function γ(θ), is the event that, at some

p ∈ in(T ), mp(θ, tT (θ)) = γ(θ) while mp(θ, tT (θ)−) 6= γ(θ). A Type-2 endogenous event

at transition T , with respect to the function γ(θ), is the event that, at some p ∈ in(T ),

mp(θ, tT (θ)) = mp(θ, tT (θ)−) = γ(θ) while mp(θ, tT (θ)+) 6= γ(θ).

4) A pair of events at transitions U and T is called triggering-induced if the event at U causes

the event at T , tU(θ) = tT (θ), and dtU
dθ

(θ) = dtT
dθ

(θ).

Remark 2.2: 1) The processes VT (θ, t) often are exogenous and hence their jumps are

exogenous events.

2) Null events typically arise as a result of a jump in an exogenous function like VT (t) which

does not depend on θ. Such events contribute nothing to the IPA derivative and hence need

not be considered by an algorithm.

3) By Definition 2.1(3), endogenous events are defined as occurring at an input place p of

a transition T . We will refer to such events as occurring at either T or p ∈ in(T ), as

convenient.

4) Type-1 endogenous events mean that mp(θ, t) is becoming equal to γ(θ) at the time t =

tT (θ), and it may stay at that value for a positive amount of time (mp(θ, tT (θ)+) = γ(θ))

or just cross that value (mp(θ, tT (θ)+) 6= γ(θ)). On the other hand, a type-2 endogenous

event signifies that mp(θ, t) departs from the value of γ(θ) after being there for a positive

amount of time (mp(θ, tT (θ)−) = γ(θ)).

5) A special case of endogenous events is when γ(θ) = 0; in this case a type-1 endogenous

event is the start of an empty period while a type-2 endogenous event is the end of an

empty period.

6) Definition 2.1(4) specifies that an induced event occurs at the same time as its triggering

event. It could be extended to include the case where the induced event occurs after its

triggering event, but its present form suffices for the purpose of his paper.

7) It is possible to have a chain of events, e1, . . . , en, such that e1 is a triggering event; for

all i = 1, . . . , n − 1, ei triggers ei+1; and en is an induced event. Such a chain is called

an induced chain. General sufficient conditions for the finiteness of induced chains were
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mentioned in Giua et-al. (2010).

This classification of events extends the one in Giua et-al. (2010) by having a far-more general

notion of endogenous events, which in Giua et-al. (2010) is restricted to the boundaries of empty

periods. Consequently the variable θ must be a parameter of an exogenous process in Giua et-al.

(2010), while here it can be a tunable parameter of a control policy as well.

The analysis below is carried out under the following assumption, variants of which are often

made in the literature on IPA in fluid queues; see Cassandras (2006) and references therein.

Assumption 2.3: 1) For a fixed θ, w.p.1 no two events occur at the same time unless they

are part of an induced chain.

2) No type-1 endogenous event can be induced. Furthermore, if such event occurs in transition

T then for every p ∈ in(T ) the function vin(p)(θ, ·) is continuous at its occurrence time.

3) All the derivatives mentioned in the sequel exist and the standard rules of calculus apply.

The computation and propagation of the terms

∆vT (θ, tT (θ)) in time and network flows are carried out according to the following guidelines

and rules associated with the various events.

• Exogenous events. Typically VT (θ, t) is an exogenous process and hence, at any its jump

points tT (θ), the term ∆VT (θ, tT (θ))dtT
dθ

(θ) is easily computable from the sample path. This

paper does not have exogenous events and hence they will not be discussed further.

• Null events. By Definition 2.1(2) ∆VT (θ, tT (θ))dtT
dθ

(θ)

= 0, and hence such events contribute nothing to the IPA derivative and need not be

considered by an algorithm.

• Triggering-induced events. Consider an event at transition U that triggers an event at another

transition T . Then, by Definition 2.1(4), tU(θ) = tT (θ) and dtU
dθ

(θ) = dtT
dθ

(θ). Now the

relationships between the terms ∆vU(θ, tU(θ)) and ∆vT (θ, tT (θ)) may have to be determined

by ad-hoc ways according to the specific characteristics of the two events. One case that

frequently arises is when T is immediately downstream from U , namely there exists a place

p ∈ out(U)∩ in(T ), and tU(θ) lies in the interior of an empty period at p. Then a jump in

vU(θ, ·) triggers a similar jump in vT (θ, ·), and by (1), ∆vT (θ, tT (θ)) = ∆vU(θ, tU(θ)) and

hence ∆vT (θ, tT (θ))dtT
dθ

(θ) = ∆vU(θ, tU(θ))dtU
dθ

(θ).

• Type-1 endogenous events. Suppose that mp(θ, t) becomes equal to γ(θ) for some p ∈ in(T ),

namely mp(θ, tT (θ)) = γ(θ) while mp(θ, tT (θ)−) 6= γ(θ). Such events naturally occur when
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an empty period begins at p, i.e. γ(θ) = 0, and in this case the function vT (θ, t) may have a

jump at the time t = tT (θ). In this paper we are also interested in the case where γ(θ) > 0

is a threshold variable which controls the maximum flow rate at another transition, W .

In this case the function vT (θ, ·) may or may not have a jump at t = tT (θ), but this

event triggers an induced event in some transition W , namely a jump in vW (θ, ·). The

relationship between ∆vW (θ, tW (θ)) and ∆vT (θ, tT (θ)) has to be determined according

to each specific case, but dtW
dθ

(θ) = dtT
dθ

(θ), and this term has the following form. Define

ξp(θ) := min{τ < tT (θ) : mp(θ, τ) = 0} (we assume, for the sake of notational consistency,

that mp(θ, 0) = 0). Furthermore, let U := in(p), let τ`,U(θ), ` = 1, . . . , L denote the jump-

times of the function vU(θ, ·) in the interval (ξp(θ), tT (θ)), and let τm,T (θ), m = 1, . . . , M

denote the jump times of the function vT (θ, ·) in the same interval.

Proposition 2.4: The following relation holds:

dtT
dθ

(θ) =

1(
vU(θ, tT (θ))− vT (θ, tT (θ)−)

) ×
[dγ

dθ
(θ)

−
∫ tT (θ)

ξp(θ)

(∂vU

∂θ
(θ, τ)− ∂vT

∂θ
(θ, τ)

)
dτ

−
L∑

`=1

∆vU(θ, τ`,U(θ))
dτ`,U

dθ
(θ)

+
M∑

m=1

∆vT (θ, τm,T (θ))
dτm,T

dθ
(θ)

+
(
vU(θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξp

dθ
(θ)

]
. (9)

Proof. Since place p is nonempty throughout the interval (ξp(θ), tT (θ)), (2) implies that

mp(θ, tT (θ)) =

∫ tT (θ)

ξp(θ)

(
vU(θ, τ)− vT (θ, τ)

)
dτ. (10)

Moreover, mp(θ, tT (θ)) = γ(θ). Plugging this in (10) and taking derivatives with respect to
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θ we obtain,

dγ

dθ
(θ) =

(
vU(θ, tT (θ))− vT (θ, tT (θ)−)

)dtT
dθ

(θ)

+

∫ tT (θ)

ξp(θ)

(∂vU

∂θ
(θ, τ)− ∂vT

∂θ
(θ, τ)

)
dτ

+
L∑

`=1

∆vU(θ, τ`,U(θ))
dτ`,U

dθ
(θ)

−
M∑

m=1

∆vT (θ, τm,T (θ))
dτm,T

dθ
(θ)

−
(
vU(θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξT

dθ
(θ), (11)

where we recall that vU(θ, ·) is continuous at t = tT (θ) by Assumption 2.3.2. Now Equation

(9) follows from (11) after some algebra. 2

We point out that for the case where the endogenous event is the start of an empty

period at a place p ∈ in(T ), we have that vU(θ, tT (θ)) − vT (θ, tT (θ)−) = −∆vT (θ, tT (θ))

(since vU(θ, tT (θ)+) = vT (θ, tT (θ)+)), and plugging this in (9), we can compute the term

∆vT (θ, tT (θ)).

All of these formulas indicate how the terms ∆vT (θ, tT (θ)) can be computable recursively in

the network once we specify the relevant laws associated with endogenous events. Rather than

describe them in general terms, we present an example that illustrates the general principle.

III. EXAMPLE: SIMPLE MANUFACTURING-SYSTEM MODEL

Consider the Petri net shown in Fig. 1, representing a manufacturing process whose inventories

are controlled by the backorders. Transition T1 represents the source of product orders, T2

represents the source of raw material (parts), and T3 stands for the production operation. The

maximum flow rates through these transitions represent the product-order rate, parts’ arrival rate,

and production capacity rate, respectively. Place p1 contains the amounts of backorders while

p2 represents a storage facility for inventory parts. The product-order rate is assumed to be an

exogenous process denoted by {V1(t)}. The parts’ arrival rate is denoted by V2(θ, t), where θ

will be defined shortly. The production capacity rate is assumed to be a constant V3 > 0 for the

sake of simplicity of exposition. The contents at the places p1 and p2 are denoted by m1(θ, t)

and m2(θ, t), respectively.
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Our objective in this example is to investigate the application of IPA to threshold-based flow

control, and therefore we consider only the case of controlling V2(θ, t) by a threshold parameter

at the place p1. We are cognizant of the fact that typically additional controls are implemented

as well (e.g., controlling V2(θ, t) by the inventory level m2(θ, t)), and they will be considered

in a later, more comprehensive study.

In the system under study here, V2(θ, t) is controlled by m1(θ, t) in the following way. Let

θ > 0 be a threshold control parameter of p1, and suppose that V2(θ, t) is equal to a given low

value V2,1 > 0 if m1(θ, t) < θ, and to a given higher value V2,2 > V2,1 as long as m1(θ, t) > θ.

We make the (reasonable) assumption that V2,1 < V3 ≤ V2,2. Now the idea is to have V2 switch

from V2,1 to V2,2 whenever m1 crosses the threshold value θ in the upward direction, and vice

versa if m1 crosses θ downwards. However, it may happen that m1 rises to θ and then it attempts

to decline due to the resulting increase in V2; consequently it tries to rise again, etc. This causes

a jitter over some time-interval, or a sliding mode, and it is due to the fact that the traffic flows

are characterized by rates as opposed to the movement of discrete entities such as parts. This

situation can arise only whenever m1 = θ while m2 = 0 and V2,1 ≤ V1 ≤ V3. In this case, of

course, V2 = V1 as long as the jitter continues, and m1 remains equal to θ. To put all of this

formally, V2(θ, t) is defined via the following threshold-control law,

V2(θ, t) =





V2,1, if m1(θ, t) < θ

V2,2, if m1(θ, t) > θ

V1(t), if m1(θ, t) = θ, m2(θ, t) = 0,

and V2,1 ≤ V1(t) ≤ V3

V2,1, under all other circumstances.

(12)

Cost functions of interest are Ji(θ) :=
∫ T

0
mi(θ, t)dt, i = 1, 2, and we will analyze their IPA

derivatives in the following paragraphs.

In the simulation example that we consider it is assumed that the product orders arrive in

batches according to a point process, and hence {V1(t)} is modeled as a sequence of impulses.

Regarding the parts’ arrival rates, we assume that V2,2 = V3 (as well as that V2,1 < V3), thereby

checking the growth of the parts’ inventories during periods of large backorders. We make the

following assumption about V1(t).

January 9, 2012 DRAFT



12

Assumption 3.1: The product-order process has the form

V1(t) =
∞∑

n=1

αnδ(t− sn), (13)

where δ(·) is the Dirac delta function, αn, n = 1, . . ., are positive-valued, independent and iden-

tically - distributed (iid) random variables, and ηn := sn− sn−1, n = 2, . . ., are iid. Furthermore,

all of the random variables αn and ηn are mutually independent, and their distributions have

finite first moments and bounded probability-density functions.

This assumption serves as an adequate approximation to bulk arrivals. The presence of im-

pulses implies that V1(t) can have only the point-values of 0 or ∞, thereby precluding the

possibility of the third case in the RHS of Equation (12). Now the assumptions about mutual

independence of αn and ηn is made here to ensure that Assumption 2.3 is satisfied, as will

be evident from the discussion in the sequel. Of course it can be relaxed to allow various

dependencies while achieving the same goal, and this will be done in a followup paper which

will extend the results in this one in several ways. Finally, we mention that while the product-

arrival process is defined over an infinite time-horizon, we consider of course only the impulses

that occur during the interval [0, T ].

The following proposition summarizes the events that may occur and points out related

quantities; its proof is straightforward and hence will be omitted.

Note that we denote by ti(θ) the timing of the described event which is associated with

transition Ti.

Proposition 3.2: The following list exhausts the possible events in the system and the related

quantities are computed accordingly.

1) Exogenous and null events. All jumps in v1(·) are null events, and hence dt1
dθ

(θ) = 0.

2) Type-1 endogenous events. There are three possibilities, as listed below.

(2.1) Start of an empty period at p1. v1(t3(θ)) = 0, and

v3(θ, t3(θ)
−) =





V2,1, if m2(θ, t3(θ)) = 0

V3, if m2(θ, t3(θ)) > 0.
(14)

Next, in the RHS of (9), dγ
dθ

(θ) = 0, and all of the other terms there can be assumed to

be known (having been computed) by time t = t3(θ). Furthermore, if m2(θ, t3(θ)) = 0,

this event triggers the end of an empty period at p2, and in this case v3(θ, t3(θ)
+) = 0 and
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v2(θ, t3(θ)
+) = V2,1. (These quantities can serve as the term vT (θ, ξp(θ)

+) at the end of

Equation (9).)

(2.2) Start of an empty period at p2. Then

v2(θ, t3(θ)) = V2.1, and v3(θ, t3(θ)
−) = V3. It is impossible to have m1(θ, t3(θ)) = 0. In

the RHS of (9), dγ
dθ

(θ) = 0.

(2.3) m1(θ, ·) crosses θ downwards, namely

m1(θ, t3(θ)
−) > θ while m1(θ, t3(θ)

+) < θ. Then v1(θ, t3(θ)) = 0, and v3(θ, t3(θ)
−) = V3.

Furthermore, this event triggers an induced event at T2, where v2(θ, t2(θ)
−) = V3 and

v2(θ, t2(θ)
+) = V2,1. In the RHS of (9), dγ

dθ
(θ) = 1.

3) Type-2 endogenous events. There are two possibilities, as listed below.

(3.1) End of an empty period at p1. This is the result of a jump in V1(·) which is a null

event, and hence dt3
dθ

(θ) = 0.

(3.2) End of an empty period at p2. This must be triggered by the start of an empty period

at p1, as described in case (2.1), above.

4) Induced events. Only the following events are possible.

(4.1) Jump in v3(θ, ·) triggered by a jump in v1(·) while p1 is empty. This is a null event

and hence dt3
dθ

(θ) = 0.

(4.2) Jump in v3(θ, ·) triggered by a jump in v2(θ, ·) while p2 is empty. A jump down in

v2(θ, ·) is triggered by the type-1 endogenous event described in case (2.3), above. This

must happen in the interior of an empty period at p2, and hence, v3(θ, t3(θ)
−) = V3 while

v3(θ, t3(θ)
+) = V2,1. On the other hand, a jump up in v2(θ, ·) must be triggered by a jump

in m1(t) upward across θ; it is a null event and hence dt3
dθ

(θ) = 0.

(4.3) Jump in v2(θ, ·) induced by m1(θ, ·) crossing the value of θ. A jump up in v2(θ, ·)
must be triggered by a jump up in m1(θ, t) across θ, is a null event and hence dt2

dθ
(θ) = 0.

On the other hand, a jump down in V2(θ, t) is described in case (2.3), above. 2

Consider now the IPA derivatives dJpi

dθ
(θ), i = 1, 2, defined by Equation (6), in whose RHS

the integrant is given by Equation (8). In the RHS of (8) the integral term is 0, and the other

terms can be computed (recursively) according to the guidelines established in Proposition 3.2.
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IV. NUMERICAL SIMULATIONS

To illustrate the effectiveness of the presented approach we now illustrate the results of an

optimization problem carried out on the simple Petri net system defined above, assuming as cost

function

J(θ) :=

∫ T

0

(m1(θ, t) + m2(θ, t)) dt.

In order to maximize E[J(θ)] we use a stochastic approximation algorithm of the Robbins-

Monro type (see Kushner and Clark (1978)) that computes an iteration-sequence θ(k) ∈ R. The

algorithm has the following form:

Algorithm 4.1: Data: θmax > 0, θ(1) ∈ R such that θ(1) ∈ [0, θmax], a small ε > 0, an upper

bound IPAmax on the absolute value of dJ
dθ

(θ(k)), and a positive step-size sequence {λk}∞k=1

satisfying the convergence conditions for Robbins-Monro algorithms, namely
∑∞

k=1 λk = ∞ and
∑∞

k=1 λ2
k < ∞.

Step 1: Set k = 1.

Step 2: Simulate the system for a T -second horizon, and compute the sample derivative dJ
dθ

(θ(k)),

by using equations (8)-(9) and Proposition 3.2.

Step 3: If
∣∣dJ

dθ
(θ(k))

∣∣ < IPAmax, set

θ(k + 1) = θ(k)− λk
dJ

dθ
(θ(k)); (15)

otherwise, set

θ(k + 1) = θ(k)− λk IPAmax sign
(

dJ

dθ
(θ(k))

)
. (16)

If θ(k + 1) /∈ (ε, θmax − ε), set θ(k + 1) = θ(k).

Step 4: Set k = k + 1, and go to Step 1. ¥
We remark that Step 3 ensures that θ(k) remains feasible for all k = 1, 2, . . ., namely θ(k) ∈

[0, θmax].

Simulations were run with the following parameters. The maximum transition firing rates are

equal to V2,1 = 2 and V2,2 = V3 = 6. The product-order process is defined according to eq. (13)

assuming that batches arrive at time intervals having constant spacing of 10 time units, i.e.,

sn = 10n, n = 1, . . . ,. The batch-sizes αn are assumed to be random variables with exponential

distribution and average value equal to 50. The step size in Step 3 of the algorithm was chosen

to be λk = 0.5/k0.6. Finally, the time-horizon T has been taken equal to T = 1000 time units.
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Fig. 2. The graphs of θ vs. k.

The values of θ for k = 1, . . . , kmax are shown in Fig. 2 assuming two different values of θ(1),

namely θ(1) = 50 and θ(1) = 10. As it can be observed in both cases the value of θ converges

to about 21.6. This was supported by extensive simulations and plots J(θ), not shown here.

V. CONCLUSIONS

The main contribution of this paper consists of the application of IPA to a class of continuous

Petri nets. A systematic approach for computing the derivatives of the sample performance

functions with respect to structural and control parameters has been proposed. An example of

a threshold-control variable in a simple yet canonical example has been investigated in detail.

Simulation experiments support the theoretical developments and suggest a potential viability

of our proposed approach. Future work will consist of extending the results to more general

net structures and control variables, and providing a systematic approach for computing the IPA

derivatives.
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