
1

A software platform for the integration of

discrete event systems tools

M.P. Cabasino(∗), L. Contini(∗∗), A. Giua(∗), C. Seatzu(∗), A. Solinas(∗∗)

Abstract

This paper presents a software platform for the integration of discrete event systems tools that is

being developed within the FP7 European project DISC “Distributed supervisory control of complex

plants”. The objective of this software platform is to integrate several tools dealing with Petri nets

and automata. The purpose is twofold: first allow for a rigorous comparison of the methods and

algorithms developed by the DISC project partners, second provide a packaged tool which would

facilitate transfer of these techniques to the end users. The interchange format is compliant to the ISO

standard Petri Net Markup Language PNML. The platform includes a series of plug-ins and adapters

to manipulate/transform the different file formats supported by the platform.

Published as:

M.P. Cabasino, A. Giua, C. Seatzu, A. Solinas, L. Contini, ”A software platform for the inte-

gration of discrete event systems tools,” CASE11: 7th IEEE Conference on Automation Science

and Engineering (Trieste, Italy), August 2011.

(*)M.P. Cabasino, A. Giua and C. Seatzu are with the Department of Electrical and Electronic Engineering, Univer-

sity of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy. E-mail:{cabasino,giua,seatzu}@diee.unica.it;

(**) L. Contini and A. Solinas are with Akhela s.r.l, Cagliari. E-mail:{luca.contini,antonio.solinas}
@akhela.com.

This work has been partially supported by the European Community’s Seventh Framework Programme under project DISC

(Grant Agreement n. INFSO-ICT-224498).

January 9, 2012 DRAFT

2

I. INTRODUCTION

The many application areas in which Discrete Event Systems (DES) arise and the different

aspects of behavior relevant in each area have led to the development of a variety of discrete

event models. Thus it is not surprising that the majority of existing tools in the DES domain

are not able to communicate with each other, or can do that only with heavy restrictions. This

means that if a user, for example, wants to simulate a system for which two different models

are available (e.g., a Petri net and a finite state automaton) using different tools pertaining to the

two models, there is no way to convert the input file for one tool into an input file compatible

with the other one in an automated way. This also means that the output of a tool cannot directly

be used as an input for a different tool if the file format is not compatible. A similar situation

also applies if one only considers tools developed for a single model (or family thereof) such

as Petri nets (PNs).

The scope of the FP7 European project DISC “Distributed supervisory control of complex

plants” [1] that will end on 31 December 2011, is the design of discrete event supervisors and

fault detectors for large scale plants exploiting the concurrency and the modularity of the plant

model. The project merges the effort of 2 industrial, 1 governmental and 7 academic partners

and entails a strict collaboration with North-American researchers. It was expected that the same

design techniques will be applied to heterogeneous models, such as timed or fluid PNs, finite

state machines, timed automata, etc. Thus, an important part of the project is the development of

a common software platform that will integrate, along with tools already existing, new algorithms

developed by the partners during the course of the project. The reference model chosen for the

platform was PNs, although some capabilities for other simpler models (such as automata) are

also provided.

The software platform will give the user the ability to integrate into a unique place both

tools from the DISC project and already existing tools. The main problem to be solved was

the fact that each tool has its own file format, so the platform has a specific section in charge

of converting one file format into a different one. The platform also allows the user to convert

a model into a different one, in particular it allows the conversion between a Petri net and an

automaton. These conversions are performed through a combination of plugins and adapters

(small executables). The conversion between a file format and another one, thus the necessary

January 9, 2012 DRAFT

3

combination of plugins and adapters, is predefined but can be easily modified. The user never

needs to know any detail about the file formats. For example, if the user creates a PN using

PIPE3 [2] and wants to simulate it with HYPENS [3], using the File Conversion Section (see

Section III) he/she can directly convert the PIPE3 file format into the HYPENS input file format

without having to know anything about the two file formats. The fact that each plugin or adapter

is capable of making only a single transformation will give the user the necessary flexibility

of combining them in order to make multiple transformations using the scripting section of the

platform. A particular case is when the user wants to convert a Petri net into an automaton. In

this case the tool TINA is used in a completely invisible way to extract the reachability graph of

the net and use it to generate the corresponding automaton. Since the PN model is predominant

in the DISC project, the PNML (Petri Net Markup Language) has been chosen as a starting

point to create a common language to describe PNs all over the platform and across all types

of transformations. The new extended version of PNML has been called PNML DISC and it is

able to handle hybrid PNs and tools dealing with distributed systems.

Note that, the transformation process performed using plug-ins and/or adapters sometimes

implies a model transformation. In this case the target model may require additional information,

which the user must enter properly during or after the transformation phase. To this aim, the

PNML DISC has been enriched with respect to PNML with a number of tags in order to be able

to describe all models supported by the platform. The software platform, according to the type

of transformation, will ask the user to enter the missing information or will skip the superfluous

information.

Tools currently supported by the platform are: PIPE3 [2], TINA [4], DESUMA [5], HYPENS

[3], Petri toolbox [6], PN DIAG [7], PN Toolbox [8], SimHPN [9].

The literature in this area is sparse. The DISC software platform has similar interchange

objectives to those of the Compositional Interchange Format for Hybrid Systems (CIF) developed

in the framework of other European research activities such as the network of excellence HYCON

[10] and EU FP7 project MULTIFORM [11]: CIF supports inter-operability of a wide range of

tools by means of model transformations to and from the CIF. However, the formats so far

developed by CIF do not address the discrete event models. In fact, CIF does not support PNs

while our software platform is mainly focused on discrete event systems. Moreover, CIF is too

general for our goal and for this reason a tool integrating it would be too complicated.

January 9, 2012 DRAFT

4

II. OBJECTIVES

The software platform aims to integrate, along with other existing tools suggested by the DISC

partners, the algorithms developed during the course of the project. Its purpose is twofold:

• providing a packaged tool which would facilitate transfer of these techniques to end-users;

• allowing the user to compare different methodologies and tools.

To ensure a broad dissemination of the software platform among academia and industry, the

following features are guaranteed:

• releasing the software as open source;

• interfacing to standard DES modeling and analysis tools;

• allowing for import/export of files from/to different tools;

• providing the software platform with a uniform user interface.

To implement the features described in the third item above, an extension of the standard

PNML has been created. As a result, a more complete language to describe PNs has been

integrated into the platform. This language has been used as a central point for all the file

transformations, thus allowing each tool supported by the platform to communicate to the other

tools. The PNML format has many advantages, but it is only able to describe high level, P/T or

symmetric PNs. Since the software platform supports different types of PNs, such as hybrid PNs,

and tools dealing with distributed systems, we need to extend the standard PNML format. The

result is a format called PNML DISC described in detail in Section V. This format includes all

the information needed to describe hybrid, labeled PNs, i.e., PNs where two or more transitions

may share the same label, and other information that will be used by the tools dealing with

distributed systems.

Note that, the fact that the platform will be released as an open source software does not imply

that all the tools used by the platform are actually open source. As an example the platform uses

and supports Matlab which is not open source, but many features of the platform itself can be

used anyway without Matlab. By definition the platform is like a “container” connecting tools

together and this container is actually open source.

III. FUNCTIONALITY

A platform is a crucial element in software development. It might be simply defined as “a

place to launch software”. With this application the intent is to go even further. The idea is to

January 9, 2012 DRAFT

5

create a modular, open and easy application allowing the user to use all the tools available from

the partners starting from a unique place, with a unique graphic user interface.

The platform will be “scalable”, i.e., other plug-ins, adapters and tools can be added to the

platform without the need to change the software. In order to support a new tool the user must

provide a proper plugin/adapter converting the PNML DISC into a proper tool input file format.

The main goals when designing the platform were:

1) The user must be able to interact with the platform through a unique graphical user

interface. The interface must be flexible and allow the user to decide which tools to

include into it.

2) The user must be able to launch the tools directly from the Graphical User Interface

(PIPE3, TINA, and DESUMA) to design/simulate a PN or an automaton.

3) The user must be able to convert the output file format from a tool into a format compatible

with a different tool or simulation software using specifically created plug-ins and adapters.

4) The user must be able to manually edit file formats.

5) The user must be able to call conversion tools from a command line.

6) Display, when possible, the Matlab output of the simulation tools running on Matlab.

The software platform is divided into 4 main areas (see Fig. 1):

• Tools: This area has been developed to transfer different techniques to end users.

• File Conversion: This area allows different tools to communicate each other.

• PNML Analysis: This area helps the user to verify the PN structure described through

PNML.

• Script Manager: This area allows rigorous comparison of methods and algorithms.

The other three tabs (areas), namely Conversion Matrix, Plugins/Adapers and File Formats,

are just user information tabs and will be described later.

— The Tools area allows the user to add/remove external tools to/from the software platform.

This creates a unique place where the user can see and launch all the available tools. It is divided

into 3 sub-areas: (a) Graphic Tools; (b) Matlab Tools; (c) Other Tools.

This division has no theoretical relevance and has only been introduced to separate the different

tools in the platform from an usability point of view.

The Graphic Tools sub-area handles all the external tools which usually have a graphical user

interface and then they can be simply used by launching the Graphical User Interface (GUI) and

January 9, 2012 DRAFT

6

Fig. 1. Main application window with tools area selected.

interacting with that.

The Matlab Tools sub-area handles the Matlab-based tools and has an additional field for the

input file. This is necessary because usually a Matlab tool needs an input file to work with, and

that file can be selected by the user.

The Other Tools sub-area has been created in order to integrate tools not having a GUI, for

example command line tools. This section has characteristics similar both to the graphic tools

and the Matlab tools sub-areas. For example a command line tool can be added to the platform

in this area and launched from there passing the parameters through an input file.

When adding a new tool to the platform there are two main scenarios:

1) the tool is already supported by the platform (see platform documentation in [12]);

2) the tool is not currently supported by the platform.

In the first case, the user must simply use one of the 3 sub-areas in the Tools section to

add the tool. If the tool is an executable having a graphic user interface, then the GUI sub-

January 9, 2012 DRAFT

7

section can be used. If the tool is a command-line tool, the “Other Tools” section can be used.

If the tool is a Matlab tool, then the “Matlab tools” section is the right choice. When adding

a Matlab tool, one important thing has to be taken into account: the Matlab tools must have a

single Matlab file calling all the necessary tool functions. This is because the platform is able

the launch one Matlab file at a time. The input file, in this case, is a file containing the input

matrices/vectors/variables for the above Matlab tool.

In the second case, the user must first create the necessary plugin(s) and/or adapter(s) and

add them both to the platform and to the conversion matrix file in order to have the platform

recognize them properly. Then the tool can be added using the first case procedure.

As a future work, two improvements can be implemented: the first one is making easier to

include new plugins and adapters in the platform and simplify the conversion matrix modification

with respect to the new plugins, adapters. The second improvement is the implementation of an

automated file format conversion implemented in order to give a file as an input to a tool even

if not directly compatible with it, having the file conversion done in an invisible way.

As it can be seen in Fig. 1 below each sub-area there is a box for the description of the

corresponding tool. At the bottom of the window there is the output console. This area is

common to all tabs in the application. It shows useful information to the user according to the

current selected tool or area. For example if the user launches a Matlab tool from the Tools area,

the result will be shown in the output console.

— The File Conversion area is the place where the user can select and convert a file produced

by a tool into another file format compatible with a different tool. In this area the user can also

edit both the source file and the target file. In order to convert a file the user can select the

source file on the left side (the file format will be automatically detected by the platform in

most cases, if not, the user must select the input file type manually before proceeding to the

conversion) and then press the button “convert” and select the target file format. Pressing the

button “OK” the file conversion automatically starts. The result of the conversion is presented in

the output console at the bottom of the main window. The editor of the source and target files

is also user-selectable.

This conversion is performed through a combination of plugins and adapters. This combination

is written in a particular file called “conversion matrix.txt” and can be modified by the user

in order to add new file formats to the platform. Anyway, if not needed, the combination is

January 9, 2012 DRAFT

8

completely invisible to the user who has just to choose the starting file format and the target file

format. If the platform does not support a particular file conversion a message is shown to the

user.

— The PNML Analysis area is dedicated to the analysis of the properties of a PN described

with the common interchange format called PNML. Opening a PNML file in this area starts two

processes: the first one extracts the properties which are explicitly present in the PNML file such

as the number of places and transitions of the PN, while the second one uses the tool TINA [4]

in order to perform a more detailed analysis like the boundness of the net. Also in this case the

result is presented in the output console at the bottom.

— The fourth area is the Script Manager. In this area the user can create and run scripting

files (e.g. batch files, Matlab files, sh). This area is really useful when the user wants to take

advantage of the modularity of the software platform. For example, when performing a file

format conversion, the platform combines a number of plug-ins and/or adapters in order to go

from the original file format to the target file format. This sequence is normally embedded into a

conversion matrix (see also the fifth tab in Fig. 1). But if the user wants to combine the plug-ins

and the adapters in a custom way, he/she can create a script to solve the problem. Furthermore,

the user can combine conversion sequences and tool launching all in the same script, making

possible the creation of repetitive and complex tasks.

Moreover, this area supports a drag&drop system in order to drag the plugins/adapters directly

into the script. This action causes the plugin or adapter to be copied into the script folder thus

simplifying the script readability itself. Also, an “add file” button has been added to allow the

user to add to the script whatever type of file (both ascii, Matlab and executables) having the

corresponding script line added automatically to the script.

Finally, the Script Manager area can also be useful to make a comparison between different

tools. This comparison is currently done manually by the user using the output console.

— The remaining 3 areas are: Conversion Matrix, Plugins/Adapers and File Formats. They

currently have only descriptive purposes. The Conversion Matrix shows the combination of plug-

ins and adapters necessary to go from a file format to another. The file formats are described in

the last tab. The Plugins/Adapers (P/A) tab contains a list of the available plug-ins and adapters

and the directory path where the P/A are located.

January 9, 2012 DRAFT

9

IV. ARCHITECTURE

Most of the tools developed by the partners are Matlab based, while the tools developed by

third partners run on Windows. To integrate these two environments, interaction mechanisms

from the user-interface and Matlab/Windows tools have been created.

The software platform runs on Windows, and requires Matlab only if a Matlab based software

tool is to be used.

A graphical user interface has been created in Windows and offers the following functionalities:

• Menus for adding, removing and interacting with all different tools;

• Transformation of PNs and automata models in different input/output formats corresponding

to different models and tools.

The executable files that convert from (resp., to) the platform standards are called adapters

(resp., plug-ins). If required, the user may also choose to interact with the software platform

with a shell that accepts commands lines or by means of running batch files (scripting).

In order to satisfy the concepts described in Section III, the software architecture sketched in

Fig. 2 has been designed and it can be considered as divided into 4 main blocks.

— Block 1 represents the input files to the software platform. These files can be created by

the user in many ways or can be created by the tools supported by the platform. This feature

can be found in all the 4 main areas described in Section III.

— Block 2 represents the way the platform handles the input files and transforms them to be

input for the other tools. This block also shows that the main component in the transformation

process is the PNML file format. Moreover it shows that the platform can convert an automaton

into a bounded PN and vice versa. This feature is basically implemented in the File Conversion

area described in the previous section.

— Block 3 represents the tools supported by the platform. As can be seen in Fig. 2, the input

file for a tool can be obtained as a transformation of a different file format and this transformation

is done by Block 2. The tools management is implemented in the tools area (see Section III).

— Block 4 represents the GUI of the platform, and, as can be seen in the diagram it basically

interacts with all the other 3 blocks, since almost each aspect of the platform can be handled

by the GUI.

Note that the output of Block 3 can be an input for Block 2, i.e., a file produced by a tool

January 9, 2012 DRAFT

10

Fig. 2. Software architecture main blocks.

can be transformed into an input file for a different tool. Moreover Block 1 interacts with Block

4 since the GUI can directly handle the input files.

V. THE PNML DISC

The PNML format has many advantages, but is only able to describe high level, P/T or

symmetric Petri nets. Since the software platform will support different types of Petri nets,

such as hybrid Petri nets, and tools for the diagnosis of distributed systems, we need to extend

the standard PNML format. The result is a format called PNML DISC. In the following, we

briefly describe each object composing a Petri net (places, transitions and arcs) specifying which

elements are mandatory for the standard format (PNML) and which have been added in the

extended format (PNML DISC) in order to support the integrated tools. For more details we

refer to [13].

A place in the PNML format is described by the following tags:

• id: identifier of the object place;

• name: contains the place text and its coordinates;

January 9, 2012 DRAFT

11

• initial marking: initial marking of the place;

• graphics: coordinates of graphics description of the place.

The following tags have been added introducing the PNML DISC:

• type: type of place (continuous or discrete). It is used for hybrid PNs;

• observable: defines the observability property of a place;

• controllable: defines the controllability property of a place;

• site observability: the set of sites from which the place is observable. It is used for tools

dealing with distributed systems;

• site controllability: the set of sites from which the place is controllable. It is used for tools

dealing with distributed systems.

A transition in the PNML format is described by the following tags:

• id: identifier of the object transition;

• name: contains the transition text and its coordinates;

• graphics: coordinates of graphics description of the place.

The following tags have been added introducing the PNML DISC:

• type: type of transition (continuous or discrete). It is used for hybrid PNs;

• observable: defines the observability property of a transition;

• controllable: defines the controllability property of a transition;

• site observability: the set of sites from which the transition is observable. It is used for

tools dealing with distributed systems;

• site controllability: the set of sites from which the transition is controllable. It is used for

tools dealing with distributed systems.

• site membership: the set of sites to which the transition belongs;

• firing speed min: minimum firing speed of the continuous transition;

• firing speed max: maximum firing speed of the continuous transition;

• time distribution: specifies the timing structure of discrete transition;

• delay: discrete transition temporization parameter (temporization delay);

• number of servers: number of servers associated to discrete transition;

• priority: specifies the conflict resolution policy among discrete transitions;

• fault: specifies to which fault class the transition belongs;

January 9, 2012 DRAFT

12

• label: label associated to the transition;

• memory: used memory policy.

We had no need to extend the tags of the PNML format for the object arc. These tags are:

• id: identifier of the object arc;

• source: object id of the arc start point;

• target: object id of the arc end point;

• text: weight of the arc;

• graphics: coordinates of graphic description of the arrow.

VI. TOOLS OF THE SOFTWARE PLATFORM

In this section a list of the tools supported by the software platform is reported. The tools

supported by the platform are those which the partners have used/use/will use during the DISC

project.

• PIPE3 [2]: it is a tool to model Place/Transition nets and generalized stochastic PNs. It has

many analysis modules including advanced generalized stochastic PN analysis. This tool

has not been developed by DISC partners and it is free, but not distributable. Thus it has

to be downloaded by the user after installing the software platform.

• TINA [4]: it is an editor for graphically or textually described PNs, timed PNs and automata.

It builds reachability graphs and perform structural analysis of PNs. This tool has not been

developed by DISC partners and it is free, but not distributable. Thus it has to be downloaded

by the user after installing the software platform.

• DESUMA [5]: it is an integration of the UMDES library with the graphical environment

for visualizing discrete event systems. It allows manipulations of discrete event systems

modeled by finite state automata related to model building, fault diagnosis, verification,

control under full and partial observation, and decentralized control. This tool has not been

developed by DISC partners and it is free, but not distributable. Thus it has to be downloaded

by the user after installing the software platform.

• HYPENS [3]: it is a tool for analysis and simulation of timed discrete, continuous and

hybrid PNs. The large set of plot functions available in Matlab allows one to represent the

results of the simulation in a clear and intuitive way. This tool has been developed by a

DISC partner, it is free and integrated in the platform.

January 9, 2012 DRAFT

13

• Petri toolbox [6]: it is a collection of MATLAB functions specifically designed to extract

properties from a Petri net. These functions are divided in four parts to analyze a specific

property of the net: general purpose, behavioral analysis, structural analysis and control

with GMEC. This tool has been developed by a DISC partner, it is free and integrated in

the platform.

• PN DIAG [7]: it is a tool for the diagnosis and diagnosability of labeled Petri nets. This

tool has been developed by a DISC partner, it is free and integrated in the platform.

• PN DIAG DISC: it is a tool for diagnosis of decentralized labeled Petri nets. It is being

developed and it will be integrated by the end of the project.

• PN Toolbox [8]: it us a tool to draw PNs in a natural fashion, to store, retrieve and

resize drawings. It allows simulation, analysis and design of PNs, by exploiting all the

computational resources of the environment, via the global variables stored in the Matlab’s

workspace. This tool has been developed by a DISC partner. A demonstration version is

free but not distributable. Thus it has to be downloaded by the user after installing the

software platform.

• SimHPN [9]: it is a continuous and hybrid PNs simulator. This tool has been developed

by a DISC partner. A demonstration version is free but not distributable. Thus it has to be

downloaded by the user after installing the software platform.

Other tools, e.g. PN DIAG DISC and another one about decentralized supervisory control

with coordination, will be integrated in the platform as soon as they will be developed by DISC

partners.

Note that, the software platform does not require the Matlab installation to work. However,

since most of the tools integrated are developed in Matlab it is strongly recommended to test its

functionalities.

VII. USE CASES

In this section we present an example on how to use the functionalities of the software platform.

In particular, we want to use the platform to compare two different diagnostic approaches, one

based on automata [14] and the other one based on PNs [15], [16]. Both approaches allow one to

perform diagnosis and know if the considered system is diagnosable. Solving a diagnosis problem

means that we associate to each observed string of events a diagnosis state, such as “normal”

January 9, 2012 DRAFT

14

‹N,M0›

Reachability

Graph
Automaton.fsm

Diagnoser

Diagnosability

Dcycle

Basis Reachability Graph

Modified BRG

Basis Reachability Diagnoser

Diagnosability

PIPE3

PN_DIAG

TINA

UMDES

P7

P1+A1+A9

Fig. 3. Diagnosis process description.

or “faulty” or “uncertain”. Solving a problem of diagnosability is equivalent to determine if

the system is diagnosable, i.e., once a fault has occurred, the system can detect its occurrence

in a finite number of steps. A diagram that summarizes the main steps to perform the above

comparison is represented in Fig. 3. The symbols Pi and Aj in the arcs represent respectively

the plugins and the adapters used for the conversions.

This comparison can be done using the software platform since both tools implementing the

automata and the PN diagnosis approach are implemented in the software platform. They are

respectively DESUMA [5] and PN DIAG [7]. Since we need to compare two approaches: one

based on PNs and the other one based on automata, the input that the user has to specify is

a labeled bounded PN, i.e., a labeled PN whose state space is finite. Note that the automaton

will not be specified by the user since given a bounded PN system 〈N, M0〉 the corresponding

automaton can be obtained computing the reachability graph of the considered PN.

The Matlab based batch file executed in the Script Manager area is reported in Fig. 4.

The first line command “clear all” removes all variables, globals, functions and MEX links

from the Matlab environment. The second line command uses the tool TINA to compute the

reachability graph starting from a PNML file describing the input Petri net. Line command 3

converts the reachability graph created by TINA at the previous step into an automaton described

in a fsm format using the plugin 7 (P7). Line command 4 starts a stopwatch timer. Line command

5 generates the diagnoser for the corresponding input file fsm and the input failure transition file.

January 9, 2012 DRAFT

15

1. clear all

2. !tina -R -PNML PN_Diag_PetriNet.xml
"Output_Files\PN_Diag_PetriNet_reach_graph.txt"

3. !pluginP7.exe "Output_Files\PN_Diag_PetriNet_reach_graph.txt"
"Output_Files\PN_Diag_PetriNet_reach_graph.fsm"
4. tic

5. !diag_UR.exe "Output_Files\PN_Diag_PetriNet_reach_graph.fsm"
failure.ft "Output_Files\diagnoser.diag" "Output_Files\diagnoser.fsm" 2
6. !dcycle.exe "Output_Files\PN_Diag_PetriNet_reach_graph.fsm"
failure.ft "Output_Files\inputFile.cycles"

7. t_UMDES = toc
8. !pluginP1.exe PN_Diag_PetriNet.xml
"Output_Files\PN_Diag_PetriNet.pnml"
9. !adapterA1.exe "Output_Files\PN_Diag_PetriNet.pnml"

"Output_Files\PN_Diag_PetriNet_Matlab_Disc.m
10. !adapterA9.exe "Output_Files\PN_Diag_PetriNet_Matlab_Disc.m"
"Output_Files\PN_Diag_PetriNet.m"
11. run('C:\Users\Luca\Desktop\Demo2 - Script

Manager\Output_Files\PN_Diag_PetriNet.m')

12. tic
13. run('D:\Progetti

Akhela\rseps\PAEH003\HMI\Windows\WP4_Software_Platform\WP4_S
oftware_Platform\bin\Debug\Tools\PN_DIAG_2010_07

(DISC)\main_PN_DIAG.m')
14. PN_DIAG = toc

Fig. 4. Matlab based batch file.

Line command 6 returns the diagnosability property of the system. Line command 7 saves the

value of the stopwatch timer and saves it in a variable called t UMDES. Line command 8 converts

the XML PIPE3 format into a PNML file using the plugin 1 (P1). Line command 9 converts the

PNML file into the corresponding MATLAB DISC file using the adapter 1 (A1). Line command

10 converts the MATLAB DISC file into a MATLAB based input file for PN DIAG using the

adapter 9 (A9). Line command 11 loads the input file for the PN DIAG tool. Line command 12

starts a stopwatch timer. Line command 13 launches the PN DIAG tool that computes the basis

reachability graph, the modified basis reachability graph, the diagnoser and the diagnosability

properties of the considered PN system. Line command 14 saves the value of the stopwatch

timer and saves it in a variable called PN DIAG.

This batch file shows that it is possible for the user to compare two different tools starting

from the same file in an automated way. The necessary plug-ins and adapters are recalled by

the user in a proper way according to the specific tools needs. This task could be performed

also in the Tools area. However, in such a case this task cannot be automatized and the tools

has to be launched one at a time manually. Moreover, the necessary file transformation must be

January 9, 2012 DRAFT

16

performed individually in the File Conversion area.

As a further Demo, the user can create a new Test script project and try to create a script

similar to the one reported above, but using the drag&drop functionality for plugins and adapters

and the “add file” button for the other types of files. For example, the line 3 of the above script

can be created following this procedure:

1. Drag and drop the plugin P7 from the right side of the Script Manager section.

2. Press the “add file button” and select the file “PN Diag PetriNet reach graph.txt”.

3. Copy and paste the line with the file name into the “input file” place holder created at

point 1.

4. Change the “output file” place holder created at point 1 with “PN Diag PetriNet reach

graph.fsm”.

The whole script can be recreated using a similar procedure.

Note that, this case study requires the installation of the Matlab tool. Others use cases, also

that do not require Matlab, are reported in [12].

VIII. INSTALLATION

The software platform is downloadable at the webpage http://www.disc-project.eu/software platform.html.

Here the user can also find detailed information on how to install and get started with the platform,

a software platform manual and some case studies that can be used to test the functionalities of

the platform.

IX. CONCLUSIONS

In this paper a software platform for the integration of discrete event systems tools has been

presented. Its main goal is that of integrating several tools dealing with Petri nets and automata.

An interchange format based on PNML has been defined. A series of plug-ins and adapters have

been created to manipulate/transform the different file formats supported by the platform.

By the end of the project the platform will be tested with different use cases to prove the

robustness of plugins and adapters. Moreover the part regarding that integration of new external

tools will be improved and tested.

January 9, 2012 DRAFT

17

REFERENCES

[1] DISC website, “http://www.disc-project.eu.”

[2] PIPE2 website, “http://pipe2.sourceforge.net/.”

[3] HYPENS website, “http://www.diee.unica.it/automatica/hypens/.”

[4] TINA website, “http://homepages.laas.fr/bernard/tina.”

[5] DESUMA, “http://www.eecs.umich.edu/umdes/toolboxes.html.”

[6] Petri net toolbox website, “http://www.diee.unica.it/giua/ARP/.”

[7] PN DIAG tool, “http://www.diee.unica.it/giua/TESI/09 Marco.Pocci/.”

[8] M. Matcovschi, C. Mahulea, and O. Pastravanu, “Petri net toolbox for MATLAB,” in 11th IEEE Mediterranean Conference

on Control and Automation MED’03, june 2003.

[9] J. Júlvez and C. Mahulea, “SimHPN: a MATLAB toolbox for continuous Petri nets,” in Proceedings of the 10th Workshop

on Discrete Event Systems, Berlin, Germany, August 2010, pp. 24–29.

[10] HYCON Network of Excellence (2005), “http://www.ist-hycon.org/.”

[11] MULTIFORM consortium (2008). Integrated multi-formalism tool support for the design of networked embedded control

systems MULTIFORM., “http://www.multiform.bci.tu-dortmund.de/.”

[12] Software Platform webpage, “http://www.disc-project.eu/software platform.html.”

[13] PNML DISC format, “http://www.disc-project.eu/PNML DISC.pdf.”

[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-event systems,”

IEEE Trans. Automatic Control, vol. 40 (9), pp. 1555–1575, 1995.

[15] M. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event systems using Petri nets with unobservable

transitions,” Automatica, vol. 46, no. 9, pp. 1531–1539, 2010.

[16] ——, “Diagnosability of bounded Petri nets,” in Proc. 48th IEEE Conf. on Decision and Control, Shanghai, China, dec

2009.

January 9, 2012 DRAFT

