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Abstract

Recently there has been a considerable interest in the application of Infinitesimal Perturbation

Analysis (IPA) to continuous queues, where its sample derivatives (gradients) were shown to be unbiased

for a large class of systems. This paper extends the investigation to a class of hybrid Petri nets, where

the special algebraic structure of continuous transitions yields simple algorithms for the IPA derivatives.

We derive such algorithms for the performance functions of throughput and average workload, and show

them to be model-free and easily computable from the sample paths.
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I. INTRODUCTION

Continuous queueing networks have been investigated in the past few years as a suitable

setting for the Infinitesimal Perturbation Analysis (IPA) sensitivity-analysis technique. Their

advantage over the traditional, discrete queueing models is due to the fact that they yield

statistically-unbiased IPA derivatives in a far-larger class of systems and performance functions.

Furthermore, the formulas for the IPA derivatives often are model-free and easily computable

from the sample paths (see, e.g., Cassandras (2006) and references therein). This makes it

possible to compute them not only from a simulation output but also from observation of

an actual system, thereby suggesting their possible use in real-time parameter control and

performance optimization. Examples in various application areas including telecommunications,

manufacturing, traffic networks, and supply chains, have been presented in Miyoshi (2008);

Panayiotou et al. (2004); Yu and Cassandras (2005); Panayiotou and Cassandras (2006); Xie

(2002); Chen et al. (2004); Zhao and Melamed (2007). More recently, a systematic approach to

queueing networks has been developed in Wardi et al. (2010); Cassandras et al. (2009), which

yields iterative distributed algorithms for the IPA derivatives. Our purpose is to extend these

results to a class of event graphs, a kind of Petri nets having a wide scope in manufacturing

applications.

The network-models mentioned above lack the notion of concurrency and synchronization.

These are key concepts in Petri nets, where they are represented by the element of the transition.

The inclusion of fluid transitions alters the structure of the IPA algorithms significantly, and as this

paper will show, yields a different suite of algorithms than those published in the past. Thus, the

focal point of this paper is an investigation of the fluid transition from the standpoint of sensitivity

analysis via IPA. The main results concern simple, iterative algorithms that lend themselves to

distributed, synchronous implementation in a natural way. Two kinds of performance measures

will be considered: throughput-related measures and workload-related measures, and they will

be viewed as functions of structural and distributional parameters such as maximum firing rate

or the duration of “down” periods at a network’s transitions.

Reference Xie (2002) addressed the application of IPA to a general class of continuous

event graphs, and derived algorithms for the IPA derivatives. This paper is different from it

in the following three ways: (1). Xie (2002) assumes piecewise-constant maximum firing speeds
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while this paper allows for general functions. (2). Xie (2002) assumes no direct impact of the

continuous-time dynamics on the discrete-event dynamics, while we make no such assumption.

(3). The variational parameter in Xie (2002) is either the max firing speeds or the initial marking,

while we allow for a general parameter, including a variable of the probability law underlying

the max firing times. As a result, the system discussed in Xie (2002) has evolution equations in

whose terms the IPA derivatives are derived, while this paper does not have such equations and

its IPA derivatives are expressed by other means.

Hybrid and continuous Petri nets have been extensively analyzed in recent years (see, e.g.,

Alla and David (1998); Balduzzi et al. (2000); Silva and Recalde (2004)). They constitute an

abstraction of the traditional (discrete) timed-Petri net model, where token-firing by a transition

is described by a flow-rate process. This can be viewed as tokens consisting of fluid “molecules”,

and their firing by a transition amounts to their continuous elimination from the input places

of the transition at a certain given rate, and concurrent regeneration, at the same rate, at the

transition’s output places. Furthermore, it is possible to dispense with the token-concept entirely,

and characterize the network’s dynamics by fluid flow rates on its arcs.

Continuous Petri nets often are used to evaluate a network’s performance measure such as

throughput or average workload. When the network is stochastic, the performance of interest

typically is an expected-value quantity. In the setting of perturbation analysis, the performance

measure is a function of a variable θ ∈ Rn such as the maximum rate of a transition or a

control parameter regulating fluid flow rates into the network. In this case the performance metric

becomes a performance function of θ. Lacking closed-form expression, such a performance

function may have to be estimated by a sample-path technique like simulation. The role of

IPA is to compute the gradient of the sample performance function with respect to θ, which

possibly can be used in stochastic optimization of the performance function. To be practical,

the IPA gradients have to be statistically unbiased and easily computable from the sample path.

This paper shows that indeed they have these two properties for the systems and performance

functions under study.

II. MODELING AND PROBLEM FORMULATION

A continuous Petri net is a directed graph having two kinds of nodes, transitions and places,

whose arcs can connect a place to a transition or a transition to a place (see, e.g., Xie (2002)
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and references therein). Fluid flows on the network’s arcs are characterized by flow rates, which

we assume to be piecewise continuous functions of time t. The places can store fluid and are

assumed to have unlimited storage capacities. The firing rate of a transition is defined as the

fluid flow rate through it, and generally it is a function of time. The maximum firing rate of

a transition is a given (possibly time-dependent) upper bound on its firing rate. The transitions

will be denoted by the upper-case letters T, U , and W , and the places will be denoted by the

lower-case letters p and q. We assume that the network’s dynamics evolve throughout an interval

[0, T ] for a given T > 0. We next describe the dynamics of flow in such a Petri net.

Consider a transition T having k input places, denoted by p1, . . . , pk, and m output places,

denoted by q1, . . . , qm. Denote the firing rate of the transition at time t by vT (t). This is the

rate at which fluid flows from each one of its input places towards the transition, as well as the

outflow rate from the transition towards each one of its output places. The transition does not

store any fluid, and we note that its aggregate inflow rate from its input places generally is not

equal to its aggregate outflow rate to its output places unless k = m. The maximum firing rate

of the transition (as a function of time) is denoted by VT (t), and it is given as a part of the

transition’s characterization.

In this paper we consider event graphs (Murata, 1989) namely Petri nets each of whose places

has a single input transition and a single output transition. A place p can store fluid, and the

amount of fluid stored in it at time t, called the workload, is denoted by mp(t). For a transition

T and a place p we further define the following notation: in(T ) - set of input places to T ;

in(p) - the input transition to p; pre(T ) - the set of transitions immediately upstream from T ,

i.e., pre(T ) = {U = in(p) : p ∈ in(T )}; out(T ) - set of output places of T ; out(p) - the

output transition of p; and post(T ) - the set of transitions immediately downstream from T .

For example, Figure 1 depicts a path in a network where p ∈ in(T ) and q ∈ out(T ), while

U = in(p) ∈ pre(T ) and W = out(q) ∈ post(T ). The figure does not include all of the input

places and output places of the various transitions. A transition is called a source if in(T ) = ∅,

and a sink if out(T ) = ∅. We define an empty period of the place p to be a maximal time-interval

during which mp(t) = 0, and contiguous complements of empty periods are called nonempty

periods. For a given time t, we denote by εT (t) the set of input places of transition T that are

empty at time t, namely, εT (t) := {p ∈ in(T ) : mp(t) = 0}.

The maximum firing rates at the transitions, VT (t), are assumed to be given and to have the
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Fig. 1. Typical network path

following properties:

Assumption 2.1: For every transition T , the function VT (·) is piecewise continuous and piece-

wise continuously differentiable on the interval [0, T ].

The following two equations, satisfied for every transition T and place p, define the flow-

dynamics in the network:

vT (t) =



VT (t), if εT (t) = ∅
minp∈εT (t){vU(t) | U = in(p)} ∪ {VT (t)}, if εT (t) 6= ∅,

(1)

and

ṁp(t) = vin(p)(t)− vout(p)(t), (2)

where “dot” denotes derivative with respect to time. Note that these equations do not define

the transition rates vT (t) uniquely even if the initial condition mp(0) is specified. For example,

consider a cyclic network consisting of a single place p and a single transition T , with V (t) := V

for a constant V > 0. If mp(0) = 0 then (31) and (2) are satisfied whenever vT (t) < V

∀t ∈ [0, T ]. However, if mp(0) > 0 then these equations have the unique solution vT (t) = V

and mp(t) = mp(0), ∀t ∈ [0, T ]. More generally, define an elementary circuit as a closed path <

t1, p1, t2, p2, . . . , tn, pn, t1 > such that for every i ∈ {1, . . . n}, and for every j ∈ {1, . . . , n}\{i},

ti 6= tj and pi 6= pj (see Xie (2002)). The following result ascertains that Eqs. (31) and (2) jointly

have a unique solutions:

Proposition 2.2: Suppose that Assumption 2.1 is in force. 1). The sum of the workloads in

all places of every elementary circuit in an event graph is a constant function of time t. 2).

Suppose that at time t = 0 every elementary circuit of an event graph contains at least one place

p such that mp(0) > 0. Then Eqs. (31), and (2) together with the initial conditions mp(0), have

a unique solution for every transition T , place p, t ∈ [0, T ].

January 9, 2012 DRAFT



6

Proof. See Xie (2002). 2

The role of IPA. IPA can be applied to stochastic hybrid systems by computing the gradients

(derivatives) of sample performance functions defined on them, with respect to structural or

distributional parameters (see Cassandras and Lafortune (1999)). For the class of Petri nets

considered in this paper, some of the maximum transition firing rates are assumed to be random

functions of time t and a variable parameter θ ∈ Rn, and hence are denoted by VT (θ, t).

Consequently the transitions rates and places’ workloads also are random functions of t and

θ, and hence are denoted by vT (θ, t) and mp(θ, t), respectively. The performance functions of

interest to us are the cumulative firing rate at a particular transition and the cumulative workload

at a particular place, over a given time-interval [0, T ]. Respectively denoted by JT (θ) and Jp(θ),

these performance functions are defined as follows,

JT (θ) :=

∫ T

0

vT (θ, t)dt, (3)

and

Jp(θ) :=

∫ T

0

mp(θ, t)dt, (4)

and we note that they are related to the average firing rate 1
T JT (θ) and average workload 1

T Jp(θ),

respectively. We point out that JT (θ) and Jp(θ) are random functions whose realizations depend

on a drawn sample path. Their respective expected values, denoted by `T (θ) and `p(θ), are closely

related to performance functions of interest in manufacturing applications. We comment that all

of these functions depend on the final time T , but we suppress this notational dependence since

we assume that T is given and fixed. These functions also depend on the initial conditions for

Eq. (2), mp(0) for every place p, which we assume to be given.

The purpose of IPA is to compute the sample gradients ∇JT (θ) and ∇Jp(θ), which then can

be used in sensitivity analysis and stochastic optimization of performance functions involving

`T (θ) and `p(θ). Section 3 derives a simple algorithm for computing the sample gradients (called

the IPA gradients, or IPA derivatives), and Section 4 demonstrates their use in optimization.

III. ALGORITHMS FOR THE IPA DERIVATIVES

Throughout this section we assume, without loss of generality, that the controlled parameter

θ is one-dimensional, and that it is a variable of the maximum firing rates at one or more

transitions. Let us denote by Σ the set of transitions where θ is a parameter of their maximum
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firing rate, and we denote by S a typical transition in Σ. Thus, we denote the maximum transition

rate-process of S ∈ Σ by VS(θ, t), and for T /∈ Σ, we use the notation VT (t) established earlier.

We further assume that θ ∈ Θ for a closed, bounded interval Θ ⊂ R. In this section we develop

an iterative algorithm for computing the IPA derivatives dJT

dθ
(θ) and dJp

dθ
(θ) for every transition

T and place p, and at a fixed θ ∈ Θ.

We assume that for every S ∈ Σ, VS(θ, t) depends θ in the following way, extending

Assumption 2.1.

Assumption 3.1: For every S ∈ Σ, w.p.1, there exists a finite sequence of real-valued functions

of θ, {zi(θ)}KS
i=1, such that (i) zi(θ) is C1 in θ, i = 1, . . . , KS; (ii) for every θ ∈ Θ, 0 ≤ z1(θ) ≤

. . . ≤ zKS
(θ) ≤ T ; (iii) for every θ ∈ Θ and t ∈ (

0, T ) \ {z1(θ), . . . , zKS
(θ)}, there exists an

open neighborhood of (θ, t) where the function VS(·, ·) is C1 and bounded.

In other words, the function VS(θ, t) is C1 in θ, piecewise C1 in t, and the time-points where

it is not C1 (where it may be discontinuous) are C1 functions of θ.

The next assumption is stated in terms of the sample-path functions, and can be verified fairly

easily for a given particular problem.

Assumption 3.2: For every θ ∈ Θ, w.p.1, the following statements hold. 1). For every transi-

tion T the functions vT (θ, t) is C1 in θ, piecewise C1 in t, and the time points where it is not

C1 are C1 functions of θ. 2). (For every place p, the function mp(θ, t) is continuous in (θ, t),

piecewise C1 in θ for a given t, and piecewise C1 in t for a given θ. 3). No empty period

consists of a single point.

Fix θ ∈ Θ, and consider first the IPA derivatives dJT

dθ
for a given transition T ; dJp

dθ
will be

discussed later. Let zi,T (θ), i = 1, . . . , MT , denote the jump-times of vT (θ, ·) in increasing order.

By Eq. (3),

dJT

dθ
(θ) =

∫ T

0

∂vT

∂θ
(θ, t)dt

+

MT∑
i=1

(
vT (θ, zi,T (θ)−)− vT (θ, zi,T (θ)+)

)dzi,T

dθ
(θ). (5)

Let us consider the two main additive terms in the Right-Hand Side (RHS) of (5) separately.

Regarding the first term, we have the following immediate result.

Proposition 3.3: Fix a transition T , and consider θ ∈ Θ and t ∈ [0, T ].

January 9, 2012 DRAFT



8

• Case 1: εT (θ, t) = ∅. Then,

∂vT

∂θ
(θ, t) =





∂VT

∂θ
(θ, t), if T ∈ Σ

0, if T /∈ Σ.
(6)

• Case 2: εT (θ, t) 6= ∅, and t lies in the interior of an empty period at every place p ∈ in(T ).

Then for every p ∈ εT (θ, t), with U = in(p),

∂vT

∂θ
(θ, t) =

∂vU

∂θ
(θ, t). (7)

Proof. In case 1 either T is a source or all of the input places of T are nonempty, and hence,

vT (θ, t) = VT (θ, t); this implies (6) by the definition of Σ. In case 2 vT (θ, t) = vU(θ, t) for every

U ∈ pre(T ), hence (7). 2

Consider next the second main additive term in the RHS of (5). For every transition T and

time t, define

∆vT (θ, t) := vT (θ, t−)− vT (θ, t+). (8)

Obviously, ∆vT (θ, t) = 0 if vT (θ, ·) is continuous at t. But in the last additive term of (5), the

functions vT (θ, ·) are not continuous at t = zi,T (θ), and Eq. (5) becomes

dJT

dθ
(θ) =

∫ T

0

∂vT

∂θ
(θ, t)dt +

MT∑
i=1

∆vT (θ, zi,T (θ))
dzi,T

dθ
(θ). (9)

To analyze the last term in (9) we use the notion of discrete events. The events we define are

manifested by, and co-occur with discontinuities (jumps) in any one of the functions vT (θ, ·), and

therefore, each event is associated with a particular transition T and the time it occurs. We are

concerned with the timing of events, and especially with the terms ∆vT (θ, zi,T (θ))
dzi,T

dθ
(θ) that

arise in Eq. (9). We point out that it may not be possible to compute the terms dzi,T

dθ
(θ), but we

will show that it is possible to compute the terms ∆vT (θ, zi,T (θ))
dzi,T

dθ
(θ). In fact, the main result

of our analysis is a an algorithm, recursive in time as well as in the network’s flow, for computing

these terms. To this end we classify events as exogenous, endogenous, or induced. Exogenous

events are either jumps in the functions VS(θ, ·) under certain circumstances, or jumps in the

functions vT (θ, ·) whose timing is independent of θ in a sense to be defined below. Endogenous

events are the end of nonempty periods at the various places, which generally result in jumps in

the functions vT (θ, ·) at their output transitions. Induced events are those events that are caused

directly by other events. We call the event that causes an induced event the triggering event, and
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as we shall see, the triggering event and its associated induced event occur at the same time. We

next define formally the various types of events; further explanation will follow the definition.

As a matter of notation, we will use the generic term zT (θ) to denote the occurrence time of an

event at transition T .

Definition 3.4: 1) A type-I exogenous event at transition T is an event at T whose occur-

rence time satisfies the condition dzT

dθ
(θ) = 0.

2) A type-II exogenous event at a transition S ∈ Σ is a jump in the function VS(θ, ·) at a

time t = zS(θ) such that εS(θ, zS(θ)+) = ∅.

3) An endogenous event at transition T is the end of a nonempty period at one or more places

p ∈ in(T ).

4) An induced event at transition T is an event that occurs at the same time as an event at

a transition U ∈ pre(T ) at a time the place p ∈ in(T ) ∩ out(U) is empty. In this case we

say that the event at U is the triggering event of the induced event at T .

A few remarks are due.

1) The aforementioned events’ categories are not mutually exclusive since, for instance, an

event can be both type-I exogenous, and endogenous or induced.

2) As earlier mentioned, the main purpose of the analysis is to develop a recursive algo-

rithm for computing the quantities ∆VT (θ, zT (θ))dzT

dθ
(θ) throughout the network. It is

evident that if zT (θ) is the timing of a type-I exogenous event at transition T then

∆VT (θ, zT (θ))dzT

dθ
(θ) = 0, and therefore, type-I exogenous events need not be considered

by the algorithm.

3) By Eq. (31), for S ∈ Σ, a jump in VS(θ, ·) at time t causes a jump in vS(θ, ·) at the same

time if no place p ∈ in(S) is empty at time t+. Thus, type-II exogenous events are such

jumps in VS(θ, ·) that result in a jump in vS(θ, ·) at the same time.

4) A triggering event and its associated induced event occur at the same time, but the induced

event occurs at the transition that is immediately downstream from that where the triggering

event occurs.

5) Induced events can form chains. Specifically, we say that a finite sequence of events,

e1, . . . , en, is an induced chain of events if e1 is a triggering but not an induced event; for

all i = 1, . . . , n− 1, ei triggers ei+1; and en is not a triggering event.

The following assumption implies that induced chains are loop-free.
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Assumption 3.5: For every θ ∈ Θ, at time t = 0, every elementary circuit in the network

contains a place p such that mp(θ, 0) > 0.

Proposition 3.6: For every θ ∈ Θ, the sequence of transitions associated with an induced

chain at any time t ∈ [0, T ] does not contain loops.

Proof. Immediate from Assumption 3.2 and Proposition 2.1. 2

The following assumption practically excludes the co-occurrence of multiple events except

for induced chains. Variants thereof are routinely made in the literature on IPA.

Assumption 3.7: For every θ ∈ Θ, w.p.1, the following statements hold. 1). No two or more

events can occur at the same time unless they belong to the same induced chain. 2). No induced

event can be type-II exogenous or endogenous.

The recursive nature of the algorithm gives it the structure of a discrete event dynamical

system whose inputs are generated by the type-II exogenous events and whose state trajectory

consists of the sequence of variables ∆vT (θ, zT (θ))dzT

dθ
(θ), computed at the times of endogenous

and induced events at the network’s transitions. Thus, we assume that when a type-II exogenous

event occurs at a transition S ∈ Σ, it is possible to compute the term ∆VS(θ, zS(θ))dzS

dθ
(θ) :=

(
VS(θ, zS(θ)−) − VS(θ, zS(θ)+)

)
dzS

dθ
(θ). By definition of type-II exogenous events, none of the

input places of S is empty at time zS(θ)+, and this means that either none of the input places

of S is empty at time t = zS(θ), or an empty periods ends at some of the input places of S.

In the first case εS(θ, zS(θ)) = ∅, and in the latter case εS(θ, zS(θ)) 6= ∅. Accordingly, the term

∆vS(θ, zS(θ))dzS

dθ
(θ) is related to ∆VS(θ, zS(θ))dzS

dθ
(θ) in the following ways.

Proposition 3.8: Consider a type-II exogenous event at a transition S ∈ Σ occurring at time

z = zS(θ). If εS(θ, zS(θ)) = ∅ then

∆vS(θ, zS(θ))
dzS

dθ
(θ) = ∆VS(θ, zS(θ))

dzS

dθ
(θ). (10)

On the other hand, if εS(θ, zS(θ)) 6= ∅ then

∆vS(θ, zS(θ))
dzS

dθ
(θ) =

vS(θ, zS(θ)−)− VS(θ, zS(θ)+)

VS(θ, zS(θ)−)− VS(θ, zS(θ)+)
∆VS(θ, zS(θ))

dzS

dθ
(θ) (11)

and the ratio vS(θ,zS(θ)−)−VS(θ,zS(θ)+)
VS(θ,zS(θ)−)−VS(θ,zS(θ)+)

satisfies the inequalities

0 ≤ vS(θ, zS(θ)−)− VS(θ, zS(θ)+)

VS(θ, zS(θ)−)− VS(θ, zS(θ)+)
≤ 1. (12)
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Proof. Consider first the case where εS(θ, zS(θ)) = ∅. Then (10) follows immediately from (8)

and (31). Next, suppose that εS(θ, zS(θ)) 6= ∅. By definition εS(θ, zS(θ)+) = ∅ and hence, by

(31), vS(θ, zS(θ)+) = VS(θ, zS(θ)+). Consequently ∆vS(θ, zS(θ)) = vS(θ, zS(θ)−)−VS(θ, zS(θ)+),

and by dividing and multiplying this term by ∆VS(θ, zS(θ)), Eq. (11) follows. Furthermore, by

Assumption 3.4 there is no event at any transition U ∈ pre(S) at time t = zS(θ), and hence,

the only way zS(θ) is the end-time of an empty period at some p ∈ in(S) is if vS(θ, zS(θ)−) >

vS(θ, zS(θ)+). But by assumption εS(θ, zS(θ)+) = ∅ and hence vS(θ, zS(θ)+) = VS(θ, zS(θ)+),

while vS(θ, zS(θ)−) ≤ VS(θ, zS(θ)−) by definition of the maximum transition-flow rate. All of

this implies (12). 2

Remark: The fraction term in Eq. (11) requires exact flow rates at certain times, which may

be either available from the underlying model or approximated via moving averages from the

sample path. Similar terms also arise in other quantities later in the sequel, and more generally,

in networks of fluid queues. In practical situations it may be desired to avoid them, and this

can be done by replacing them by a number (random or deterministic) ζ ∈ [0, 1]. This was

done in Wardi et al. (2010) with little impact on the convergence of an algorithm for optimizing

performance of a queueing network.

Next, consider an induced event at transition T occurring at a time z = zT (θ). Let U ∈ pre(T )

be the transition where the triggering event occurs, and let p ∈ in(T ) ∩ out(U) be the place

connecting U to T . Observe that zT (θ) is also the time of the triggering event at U , and we

note this fact by the notation zU(θ) := zT (θ). By definition of induced events, mp(θ, zT (θ)) = 0,

namely zT (θ) lies in an empty period at p. Now there are two possibilities: either zT (θ) lies in

the interior of an empty period, or it is an end-point of an empty period. In the latter case, by

Assumption 3.4 precluding the co-occurrence of events, zT (θ) must be the end-time of an empty

period at p. The following result relates ∆vT (θ, zT (θ))dzT

dθ
(θ) to ∆vU(θ, zU(θ))dzU

dθ
(θ) according

to these two situations.

Proposition 3.9: Consider an induced event at transition T occurring at time zT (θ), and let

U ∈ pre(T ) be the transition where the triggering event occurs. Let p ∈ in(T ) ∩ out(U) be the

place connecting U to T . If zT (θ) lies in the interior of an empty period at p then

∆vT (θ, zT (θ))
dzT

dθ
(θ) = ∆vU(θ, zU(θ))

dzU

dθ
(θ). (13)
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On the other hand, if zT (θ) is the end-time of an empty period at p then

∆vT (θ, zT (θ))
dzT

dθ
(θ) =

vT (θ, zT (θ)+)− vU(θ, zU(θ)−)

vU(θ, zU(θ)+)− vU(θ, zU(θ)−)
∆vU(θ, zU(θ))

dzU

dθ
(θ) (14)

and the term vT (θ,zT (θ)+)−vU (θ,zU (θ)−)
vU (θ,zU (θ)+)−vU (θ,zU (θ)−)

satisfies the following inequalities,

0 ≤ vT (θ, zT (θ)+)− vU(θ, zU(θ)−)

vU(θ, zU(θ)+)− vU(θ, zU(θ)−)
≤ 1. (15)

Proof. If zT (θ) lies in the interior of an empty period of p then (13) follows directly from (31).

Suppose that zT (θ) is the end-point of an empty period at p. Then vT (θ, zT (θ)−) = vU(θ, zT (θ)−),

and recalling that zT (θ) = zU(θ), (14) follows from (31). Regarding (8), since zT (θ) is the end-

point of an empty period at p, it follows that (i) the triggering event at U raises vU(θ), ·) at t =

zT (θ), which causes vT (θ, ·) to rise there as well, implying that vT (θ, zT (θ)−) ≤ vT (θ, zT (θ)+);

and (ii) vU(θ, zU(θ)+) − vT (θ, zT (θ)+) ≥ 0. Recalling that vT (θ, zT (θ)−) = vU(θ, zU(θ)−), this

implies, after some algebra, that the inequalities in (15) are satisfied. 2

Next, consider an endogenous event at transition T occurring at time zT (θ). By definition of

endogenous events, there exists p ∈ in(T ) such that an nonempty period ends at p at time zT (θ).

Let us denote by ξ(θ) the starting time of that nonempty period, which therefore is comprised of

the interval
(
ξ(θ), zT (θ)

)
. Furthermore, let ηk,T (θ), k = 1, . . . , K denote the times of all events

except for type-I exogenous events that occurred at T during the nonempty period
(
ξ(θ), zT (θ)

)

in increasing order. Let U := in(p), and denote by ηj,U(θ), j = 1, . . . ,M , the times of all events

except for type-I exogenous events that occurred during the nonempty period
(
ξ(θ), zT (θ)

)
in

increasing order.
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Proposition 3.10: The term ∆vT (θ, zT (θ))dzT

dθ
(θ) has the following form,

∆vT (θ, zT (θ))
dzT

dθ
(θ) =

∫ zT (θ)

ξ(θ)

(∂vU

∂θ
(θ, t)− ∂vT

∂θ
(θ, t)

)
dt

+
M∑

j=1

∆vU(θ, ηj,U(θ))
dηj,U

dθ
(θ) −

K∑

k=1

∆vT (θ, ηk,T (θ))
dηk,T

dθ
(θ) +

vU(θ, ξ(θ)+)− vT (θ, ξ(θ)+)

vU(θ, ξ(θ)+)− vU(θ, ξ(θ)−)
∆vU(θ, ξ(θ))

dξ(θ)

dθ
(θ), (16)

where the term vU (θ,ξ(θ)+)−vT (θ,ξ(θ)+)
vU (θ,ξ(θ)+)−vU (θ,ξ(θ)−)

satisfies the following inequalities,

0 ≤ vU(θ, ξ(θ)+)− vT (θ, ξ(θ)+)

vU(θ, ξ(θ)+)− vU(θ, ξ(θ)−)
≤ 1.

Proof. Since (ξ(θ), zT (θ)) is a nonempty period at p, we have that
∫ zT (θ)

ξ(θ)
ṁp(θ, t)dt = m(θ, zT (θ))−

m(θ, ξ(θ)) = 0. By (2),
∫ zT (θ)

ξ(θ)

(
vU(θ, t) − vT (θ, t)

)
dt = 0. Taking derivatives with respect to

θ we obtain,
(
vU(θ, zT (θ)−)− vT (θ, zT (θ)−)

)dzT

dθ
(θ) +

∫ zT (θ)

ξ(θ)

(∂vU

∂θ
(θ, t)− ∂vT

∂θ
(θ, t)

)
dt

+
M∑

j=1

∆vU(θ, ηj,U(θ))
dηj,U

dθ
(θ)

−
K∑

k=1

∆vT (θ, ηk,T (θ))
dηk,T

dθ
(θ)

−(
vU(θ, ξ(θ)+)− vT (θ, ξ(θ)+)

)dξ

dθ
(θ) = 0. (17)

By Assumption 3.4 there is no event at U at time zT (θ) and hence vU(zT (θ)−) = vU(zT (θ)+),

and since zT (θ) is the starting time of an empty period at p, vU(θ, zT (θ)+) = vT (θ, zT (θ)+);

consequently, ∆vT (θ, zT (θ)) = vT (θ, zT (θ)−) − vU(θ, zT (θ)−). Plug this in (18) to obtain (16).

Next, Eq. (17) is provable by similar arguments to those used in proving (12) and (15). 2

We next describe a procedure for computing the IPA derivative dJ
dθ

(θ) as given in Eq. (9). Fix

θ ∈ Θ. The integrant term ∂vT

∂θ
can be computed iteratively by Proposition 3.1 as follows. For
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every transition T , (i) if every place p ∈ in(T ) is nonempty then ∂vT

∂θ
= ∂VT

∂θ
; and if there exists

p ∈ in(T ) which is non-empty at time t, then, with U = in(p), ∂vT

∂θ
= ∂vU

∂θ
.

The more-complicated term in the RHS of (9) is the second term, namely the sum-term
∑MT

i=1 ∆vT (θ, zi,T (θ))
dzi,T

dθ
(θ), and we describe its computation by a formal, recursive algorithm.

The algorithm follows Propositions 3.8 - 3.10 according to the events that occur, and in doing

so it uses transition-related and place-related accumulators, denoted by DT , Bp, and Ap, whose

role will become evident from the sequel. The algorithm is assumed to be run synchronously

for all of the network’s transitions according to the order of the events occurring in them. In

its description we define a null event at a transition T to be the start of an empty period at a

place p ∈ in(T ) that is not caused by a type-II exogenous event, an endogenous event, or an

induced event occurring at the same time at T . Strictly speaking this is not an event according

to Definition 3.1, but the algorithm has to record the timing of these null events in order to

compute the first term in the RHS of (16). To this end, we use a running variable, ξp, for every

place p. Furthermore, the algorithm uses the term “unprocessed event” to mean an event at any

transition T for which the corresponding term ∆vT (θ, zT (θ))dzT

dθ
(θ) has not yet been computed.

To reflect the order of induced events in an induced chain, the algorithm defines an identified

event as the next event in the chain, as will be made clear in its Step 7. Figure 1 and its notation

can be used as a visual aid in the forthcoming discussion.

Algorithm 1:

Initialize: For every transition T , set DT = 0; for every place p, set Ap = Bp = 0 and set

ξp = 0; and set t = 0. No induced event is labeled as identified.

Step 1: If there are no unprocessed events in the time-interval [t, T ], then stop and exit.

Otherwise, define tnext to be the next time τ ≥ t when an unprocessed event occurs at some

transition. Let T be the transition where this event occurs; in case of induced events, T must

be the transition where the event occurring at it is identified. Set zT (θ) := tnext to denote the

timing of that event at T . Depending on whether this event is type-II exogenous (in which case

T ∈ Σ), endogenous, identified induced, or a null event, go to Step 2, Step 3, Step 4, or Step 5,

respectively.

Step 2: type-II exogenous event. Compute
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∆VT (θ, zT (θ))dzT

dθ
(θ) from the sample path. If εT (θ) = ∅ then set

∆vT (θ, zT (θ))
dzT

dθ
(θ) = ∆VT (θ, zT (θ))

dzT

dθ
(θ). (18)

Otherwise, if εT (θ) 6= ∅, then set

∆vT (θ, zT (θ))
dzT

dθ
(θ) =

vT (θ, zT (θ)−)− VT (θ, zT (θ)+)

VT (θ, zT (θ)−)− VT (θ, zT (θ)+)
∆VT (θ, zT (θ))

dzT

dθ
(θ). (19)

Step 3: Endogenous event. Let p ∈ in(T ) be the place where an empty period starts at time

zT (θ), and let U := in(p). Set

∆vT (θ, zT (θ))
dzT

dθ
(θ) =

∫ zT (θ)

ξp

(∂vU

∂θ
(θ, t)− ∂vT

∂θ
(θ, t)

)
dt + Bp − Ap. (20)

Step 4: Identified induced event. Let U be the transition where the inducing event occurs, and

let p be the place connecting U to T . Then zT (θ) = zU(θ). If zT (θ) lies in the interior of an

empty period at p, then set

∆vT (θ, zT (θ))
dzT

dθ
(θ) = ∆vU(θ, zU(θ))

dzU

dθ
(θ). (21)

On the other hand, if zT (θ) is the end-time of an empty period at p, then set

∆vT (θ, zT (θ))
dzT

dθ
(θ) =

vT (θ, zT (θ)+)− vU(θ, zT (θ)−)

vU(θ, zT (θ)+)− vU(θ, zT (θ)−)
∆vU(θ, zU(θ))

dzU

dθ
(θ). (22)

Step 5: Null event. Set ∆vT (θ, zT (θ))dzT

dθ
(θ) = 0. With p ∈ in(T ) the place where the end of

an empty period is the null event, set ξp = zT (θ).

Step 6: Updating the variables Ap, Bp, and ξp. Do substeps (1) and (2), below.

1) For every p ∈ in(T ): If zT (θ) lies in a nonempty period at p, then set

Ap = Ap + ∆vT (θ, zT (θ))
dzT

dθ
(θ). (23)

Alternatively, if zT (θ) is the end-point of an empty period at p, then set ξp = zT (θ).

Furthermore, set Bp = 0 unless the event at T is induced and the triggering event is at
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U := in(p), in which case set

Bp = ∆vU(θ, zU(θ))
dzU(θ)

dθ
(θ)−

∆vT (θ, zT (θ))
dzT (θ)

dθ
(θ). (24)

2) For every q ∈ out(T ): If zT (θ) lies in a nonempty period at q, then set

Bq = Bq + ∆vT (θ, zT (θ))
dzT

dθ
(θ). (25)

Step 7: Check if the event is triggering. For every q ∈ out(T ), if zT (θ) either lies in an empty

period at q (including its starting point) then label the corresponding induced event at transition

W := out(q) as identified.

Step 8. Set

DT = DT + ∆vT (θ, zT (θ))
dzT

dθ
(θ), (26)

set t = zT (θ), and go to Step 1.

Tracing through the steps of this algorithm it can be seen that indeed it yields the sum-term

in the RHS of Eq. (9).

Consider next the IPA derivative dJp

dθ
for a given place p. Let us denote by Bm := (ξm(θ), ηm(θ))

the mth nonempty period at p in the interval [0, T ], m = 1, . . . , M . Let U = in(p) and

T = out(p), as in Figure 1. For every t ∈ Bm, let ηm,j,U(θ), j = 1, . . . , Jm(t) be the times of

events at U , in increasing order, in the interval (ξm(θ), t) (excluding type-I exogenous events),

and let ζm,k,U(θ), k = 1, . . . , Km(t) be the times of events at T , in increasing order, in the

interval (ξm(θ), t) (excluding type-I exogenous. The following result follows from Eq. (4) and

some algebra, and its proof is omitted since it uses the same arguments as for the proofs of

Propositions 3.3-3.5.

Proposition 3.11: Fix a place p and θ ∈ Θ.

1). The IPA derivative dJp

dθ
(θ) has the following form.

dJp

dθ
(θ) =

∫ T

0

∂mp

∂θ
(θ, t)dt. (27)
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2). If t lies in the interior of an empty period at p. Then ∂mp

∂θ
(θ, t) = 0.

3). For every m = 1, . . . , M , and for every t ∈ Bm,

∂mp

∂θ
(θ, t) =

∫ t

ξm(θ)

(∂vU

∂θ
(θ, τ)− ∂vT

∂θ
(θ, τ)

)
dτ +

Jm(t)∑
j=1

∆vU(θ, ηm,j,U(θ))
dηm,j,U

dθ
(θ)−

Km(t)∑

k=1

∆vT (θ, ζm,k,T (θ))
dζm,k,T

dθ
(θ) +

vU(θ, ξm(θ)+)− vT (θ, ξm(θ)+)

vU(θ, ξm(θ)+)− vU(θ, ξm(θ)−)
∆vU(θ, ξm(θ)), (28)

and the last fraction-term satisfies the following inequalities,

0 ≤ vU(θ, ξm(θ)+)− vT (θ, ξm(θ)+)

vU(θ, ξm(θ)+)− vU(θ, ξm(θ)−)
≤ 1. (29)

Note that all the computation of all the terms in the RHS of (28) has been discussed earlier,

and in particular, the ∆u and ∆T terms are computable via Algorithm 1.

IV. NUMERICAL EXAMPLE

Let us consider the Petri net system in Fig. 2. Here the firing of transition t1 models the arrival

of orders, while the firing of t2 represents the arrival of the supplies. Finally, t3 represents a

production facility.

The instantaneous firing speed of t1, v1(t), that coincides with its maximum firing speed V1(t),

is a random process that alternates between values of V1 > 0 that are random, and 0. We assume

that the 0 periods are long and random, while the V1 periods are short and the mean value E[V1]

is large.

The instantaneous firing speed of t2, v2(t), that coincides with its maximum firing speed

V2(θ, t), is a function of the time t and of a parameter θ. In particular, we assume that it is

deterministic and cyclical. Let C be the duration of a cycle. Within a cycle, V2(θ, t) = V2 (for a

given V2 > 0) during the first θ time units of the cycle, and V2(θ, t) = 0 for the last C − θ time

units of the cycle.

Finally, we assume V3 < V2 << E[V1].

Note that all kind of events may occur in this system. In particular, we have exogenous events

of type I when v1 switches from V1 to 0 and viceversa. We have exogenous events of type I
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t1 
t3 

t2 

p1 

p2 

Fig. 2. The Petri net system considered in Section IV.

when v2 switches from 0 to V2, while the switch of v2 from V2 to 0 is an exogenous event of

type II being it dependent on θ. Places p1 and p2 becoming empty correspond to endogenous

events. Finally, v3 switching from 0 to V3 corresponds to an induced event.

Our goal is that of minimizing the integral, over a given time horizon T , of m1(θ, t) and

m2(θ, t), i.e., we assume that our performance index to be minimized is

J(θ) =

∫ T

0

(C1m1(θ, t) + C2m2(θ, t))dt. (30)

In words, we want to minimize, possibly with different weights, the amount of orders that are

waiting to be satisfied and the inventory of supplies.

We now show how to use the IPA formulas introduced in the previous section to compute the

derivative dJ(θ)/dθ. To this aim we first observe that, given a generic time instant t belonging

to a busy period of pi, i = 1, 2, starting at time ξi, it is

mi(θ, t) =

∫ t

ξi

(Vi(θ, τ)− v3(θ, τ))dτ,

therefore
∂mi(θ, t)

∂θ
=

∫ t

ξi

(
∂Vi(θ, τ)

∂θ
− ∂v3(θ, τ)

∂θ

)
dτ

−(Vi(θ, ξ
+
i )− v3(θ, ξ

+
i ))

dξi

dθ

+

Ni∑

k=1

∆Vi(θ, zi,k)
dzi,k

dθ

−
N3∑

k=1

∆v3(θ, z3,k)
dz3,k

dθ

(31)

where zi,k is the k-th jump-time of vi and Ni is the number of jumps of vi during the time

period [ξi, t], for all i = 1, 2, 3.

Now, it is easy to verify that∫ t

ξi

(
∂Vi(θ, τ)

∂θ
− ∂v3(θ, τ)

∂θ

)
dτ = 0,

dξi

dθ
= 0,

January 9, 2012 DRAFT



19

∆Vi(θ, zi,k) = ±Vi, ∆v3(θ, z3,k) = V3,

The computation of the terms dz3,k/dθ should be done recursively as explained in Section III.

Now, to show the effectiveness of the above IPA formulas, we present the results of a series of

numerical simulations carried out on the system at hand. In particular, we assumed E[V1] = 10,

V2 = 1.5, V3 = 1, m1(0) = m2(0) = 0, C = 4, C1 = C2 = 1, T = 40, and θ varying from 0.5

to 3.5. Table I enables us to compare the values of dJ(θ)/dθ|sim computed numerically, as an

incremental ratio, and the values of dJ(θ)/dθIPA using the IPA formulas. Note that in all cases

the values of dJ(θ)/dθsim are determined using an increment of θ equal to ∆θ = 0.4. Moreover,

in all cases the same evolution of v1(t) has been considered. In the last column of Table I err%

is equal to the absolute value of the percentage error in the computation of the derivatives using

IPA, namely

err% =

∣∣∣∣
dJ(θ)/dθ|sim − dJ(θ)/dθIPA

dJ(θ)/dθ|sim

∣∣∣∣ · 100.

As it can be easily verified the derivative computed using IPA are absolutely satisfactory, since

they differ at most of 10.81% wrt those computed numerically.

We conclude that the optimal value of θ is equal to 2.25 that leads to a performance index

equal to J∗ = 262.876.

V. CONCLUSIONS

This paper presented a systematic approach for computing the IPA derivatives of sample

performance functions defined on event graphs. The approach consists of recursive algorithms

that propagate the perturbations in the system’s state. It is expressed in abstract and general

terms and hence its description appears complicated, but its applications to specific examples

can be quite simpler depending on their special characteristics. Future research will be pursued

in two directions: applications of the approach to classes of applications, and its extension to

Petri nets that are not event graphs.
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