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Abstract

In this paper we deal with the problem of failure diagnosis of discrete event systems with decentral-

ized information. The decentralized architecture that we use is composed by a set of sites communicating

their diagnosis information with a coordinator that is responsible of detecting the occurrence of failures

in the system. In particular, first we present a protocol that defines the communication rules between the

sites and the coordinator. Secondly, we prove that this protocol does not produce false alarms. Moreover,

we give sufficient conditions for diagnosability based on the notion of failure ambiguous strings. Finally,

we compare the protocol here presented with two other protocols that we presented in a previous work.
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I. INTRODUCTION

The problem of failure detection has received a lot of attention in industrial systems in the

past few decades. Solving a problem of diagnosis means that we associate to each observed

string of events a diagnosis state, such as “normal” or “faulty” or “uncertain”. In the literature

a lot of contributes have been presented for discrete event systems in the centralized framework

(1; 2; 3; 4; 5). Due to the intrinsic distributed nature of real systems, distributed diagnosis

techniques, that take advantage of the natural decompositions of a modular system, have been

proposed both in the automata framework (6; 7; 8; 9; 10) and in the Petri net (PN) framework

(11; 12; 13; 14).

In particular, (11) solves a problem of alarm supervision in telecommunication networks. They

use an unfolding approach and restrict their attention to safe PNs. (13) proposes a diagnoser on the

basis of a modular approach that performs the diagnosis of faults in each module. Subsequently,

the diagnosers recover the monolithic diagnosis information obtained when all the modules are

combined into a single module that preserves the behavior of the underlying modular system.

A communication system connects the different modules and updates the diagnosis information.

In (12) is proposed an algorithm for the model based design of a distributed protocol for fault

detection and diagnosis for very large systems. The overall process is modeled as different

timed PN models that interact with each other via guarded transitions that become enabled only

when certain conditions are satisfied. Different local agents receive local observation as well

as messages from neighboring agents. Each agent estimates the state of the part of the overall

process for which it has model and from which it observes events by reconciling observations

with model based predictions.

In (14) we presented two different protocols for decentralized diagnosis of labeled Petri nets

based on a particular architecture, that is the same we consider in this paper. In particular, we

assume that the system can be observed by different local sites that have the perfect knowledge

of the net system, but observe its evolution with different masks. On the basis of its own

observations, each site performs diagnosis locally.

Here we present a third protocol that defines the communication rules between the local sites

and the coordinator. It differs from the ones defined in (14) because it leads to more accurate

diagnosis. The price to pay for this improvement in the performances is that a larger amount
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of information should be exchanged between the sites and the coordinator. We prove that this

protocol, as well as those introduced in (14), never produces false alarm.

Furthermore, we analysis diagnosability. To this aim, we recall the definition of failure am-

biguous strings, and show that the absence of such kind of strings is only a sufficient condition

for the diagnosability of a Petri net system using Protocol 3.

We conclude this section observing that both the problem formulation and the objectives

considered in (11) are significantly different from those in this paper. More strict analogies exist

between our approach and the approaches of (13) and (12). However, also in this case there

exist a main difference that can be summarized as follows. In these works the authors assume

the PN divided into different sub-modules or sites: each site is modeled by a different subset of

places and transitions and can interact with the other sites via a restricted interface consisting in

bordered places (13) or guard transitions (12). On the contrary, in our approach each site has the

perfect knowledge of the whole PN system but observes the system with a different observation

mask and no special interfaces are required.

II. BACKGROUND ON LABELED PETRI NETS

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is the set of

m places, T is the set of n transitions, Pre : P × T → N and Post : P × T → N are the

pre and post incidence functions that specify the arcs. The function C = Post− Pre is called

incidence matrix.

A marking is a vector M : P → N that assigns to each place a nonnegative integer number

of tokens; the marking of a place p is denoted with M(p). A net system 〈N, M0〉 is a net N

with initial marking M0.

A transition t is enabled at M iff M ≥ Pre(·, t) and may fire yielding the marking M ′ =

M + C(·, t). The notation M [σ〉 is used to denote that the sequence of transitions σ = t1 . . . tk

is enabled at M ; moreover we write M [σ〉M ′ to denote the fact that the firing of σ from M

yields to M ′. Given a sequence σ ∈ T ∗ we write t ∈ σ to denote that a transition t is contained

in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted with L(N, M0).

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector

y ∈ Nn, named firing vector, such that y(t) = k if the transition t is contained k times in σ.
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A marking M is said to be reachable in 〈N,M0〉 iff there exists a firing sequence σ such that

M0[σ〉M . The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉
and is denoted with R(N, M0). Finally we define PR(N, M0) the potentially reachable set, i.e.,

the set of all markings M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state

equation M = M0 + C · y. It holds that R(N, M0) ⊆ PR(N, M0).

A PN having no directed circuits is called acyclic. For such nets if the vector y ∈ Nn satisfies

the equation M0 + C · y ≥ 0, there exists a firing sequence σ firable from M0 and such that the

firing vector associated with σ is equal to y. Moreover for acyclic nets R(N,M0) = PR(N, M0).

A labeling function L : T → L∪{ε} assigns to each transition a symbol from a given alphabet

L or the empty string ε. We denote as L−1 the inverse operator of L. The set of transitions sharing

the same label l is denoted as Tl. Transitions whose label is ε are called silent and are denoted

by the set Tu. The set To = T \ Tu is the set of observable transitions, i.e., when an observable

transition fires we observe its label. We denote as Cu (Co) the restriction of the incidence matrix

to Tu (To). We define the projection over To (projection over Tu) Po : T ∗ → T ∗
o (Pu : T ∗ → T ∗

u )

as: (i) Po(ε) = ε (Pu(ε) = ε); (ii) for all σ ∈ T ∗ and t ∈ T , Po(σt) = Po(σ)t if t ∈ To

(Pu(σt) = Pu(σ)t if t ∈ Tu), and Po(σt) = Po(σ) (Pu(σt) = Pu(σ)) otherwise.

We denote as w = L(σ) the word of events associated to the sequence σ. We define

S(w) = {σ ∈ L(N,M0) | L(σ) = w}

the set of sequences consistent with w ∈ L∗. In plain words, given an observation w, S(w) is

the set of sequences that may have fired.

Finally, given a net N = (P, T, Pre, Post) and a subset T ′ ⊆ T of its transitions, we define

the T ′-induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′), where Pre′ and Post′

are the restrictions of Pre and Post to T ′, i.e., N ′ is the net obtained from N removing all

transitions in T \ T ′. We write that N ′ ≺T ′ N .

III. PROBLEM STATEMENT

We model anomalous or faulty behavior using the set of silent transitions Tf ⊆ Tu. The set

Tf includes all fault transitions and is further decomposed into r different subsets T i
f , where

i ∈ F = {1, . . . , r}, that model different fault classes. The transition set Treg = Tu\Tf represents

the set of unobservable, but regular, transitions.
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Fig. 1. The decentralized diagnosis architecture.

The problem of fault diagnosis can be seen as the problem of detecting the firing of any fault

transition in Tf , using the knowledge on the firing of observable transitions, or the knowledge

on their labels in the case of labeled Petri nets.

In this work we explore the possibility of performing diagnosis using a decentralized archi-

tecture as depicted in Fig. 1. The system is monitored by a set J = {1, . . . , ν} of sites. Each

site has a complete knowledge of the net structure and of the initial marking, but observes the

evolution of the system using its own observation mask. Obviously, different sites have different

observation masks. In particular, for any site j ∈ J , the set of locally observable transitions

is the set To,j ⊆ To. Any centrally observable transition is observed by at least one site, i.e.,
⋃

j∈J To,j = To. The set of locally unobservable transitions is defined as

Tu,j = Treg ∪ Tf ∪ (To \ To,j). (1)

We denote as Lj ⊆ L (j ∈ J ) the alphabet of the j-th site, i.e., the set of labels observable

by the j-th site. Moreover, we denote as

L| : T → Lj ∪ {ε} (2)

the labeling function associated to the j-th site and as
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L̄ : T → L ∪ {ε} (3)

the labeling function associated to the centralized system. Finally, wj = Lj(σ) denoted the

word of events in Lj associated to the sequence σ by the j-th site.

As shown in Fig. 1, on the basis of its own observation wj = Lj(σ) (j ∈ J ) each site performs

a local diagnosis. In particular, for each fault class i ∈ F it computes a different diagnosis state

∆j,i and depending on this, it exchanges information with a coordinator C according to a given

protocol1. The coordinator fuses the information coming from the different sites according to

the considered protocol and infers on the occurrence of faults. More precisely, for each fault

class i ∈ F it computes a diagnosis state ∆̄i.

In this paper we explore the decentralized architecture under the following assumptions.

A1 The same label l ∈ L can be associated to more than one transition, but if a site observes

a transition labeled l, then it observes any transition whose label is l, namely, @ t, t′ such

that L(t) = L(t′) and t ∈ To,j , while t′ /∈ To,j .

A2 The Tu,j-induced subnet Nu,j is acyclic for any j ∈ J .

A3 The coordinator C knows which transitions can be observed by each site, i.e., it knows the

sets To,j for any j ∈ J .

A4 There is reliable communication between the local sites and the coordinator, i.e., all mes-

sages sent from a local site are received by the coordinator, and viceversa, correctly and in

order.

A5 The system does not enter a deadlock after the firing of any fault transition.

In this paper we also investigate the issue of diagnosability.

Definition 3.1: Let us consider a Petri net system 〈N, M0〉 having no deadlock after the

occurrence of transition tf ∈ T i
f , for all i ∈ F . Assume that diagnosis is performed according

to a given approach (either centralized or decentralized).

We say that 〈N,M0〉 is diagnosable with respect to (wrt) the fault class T i
f and wrt a given

diagnosis approach iff the occurrence of some fault in T i
f is unambiguously detected using the

specified diagnosis approach after a finite number of transition firings. ¥

1For the sake of simplicity in Fig. 1 we represented the diagnosis states in a vectorial form, thus ∆j,i denotes the ith component

of ∆j . The same notation has been used for the diagnosis state computed by the Coordinator C.
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Definition 3.2: A Petri net system 〈N,M0〉 is diagnosable wrt a given diagnosis approach if

it is diagnosable wrt that approach for all fault classes T i
f , i ∈ F . ¥

Note that in the centralized framework, inspired by the definition of diagnosability for lan-

guages introduced in (15), Definition 3.1 can alternatively be formulated as follows.

Definition 3.3: A Petri net system 〈N,M0〉 having no deadlock after the occurrence of tran-

sition tf ∈ T i
f , for i ∈ F , is diagnosable wrt the fault class T i

f if there do not exist two firing

sequences σ1 and σ2 ∈ T ∗ satisfying the following conditions:

• L̄(σ∞) = L̄(σ∈),

• σ1 ∈ (T \ T i
f )
∗,

• ∃ at least one tf ∈ T i
f such that tf ∈ σ2,

• σ2 is of “arbitrary length” (see (15)) after fault tf ∈ T i
f .

¥

IV. BASIC DEFINITIONS AND RESULTS ON CENTRALIZED DIAGNOSIS

In this section we briefly recall the diagnosis procedure we defined in (5) in the centralized

framework, that is used by the different sites to perform diagnosis locally. As in the previous

section, T = To ∪ Tu where Tu = Treg ∪ Tf , and the observations coincide with the labels

associated to transitions in To. In particular, we first provide some preliminary definitions.

• Given a word w ∈ L∗, let σo ∈ T ∗
o be a sequence of observable transitions such that

L̄(σo) = w. We call justification of w a sequence σu of unobservable transitions interleaved

with σo whose firing enables σo and whose firing vector is minimal.

Since in general σo is not unique and more than one σu may be associated to each σo, then

the set of justifications of w is not a singleton.

• We denote as Ymin(M0, w) the set of firing vectors relative to justifications of w.

The generic element y ∈ Ymin(M0, w) is called j-vector.

• Finally, we denote as

Ĵ (w) = { (σo, σu), σo ∈ T ∗
o , L̄(σo) = w,

σu ∈ T ∗
u |

[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)]∧
[6 ∃σ′ ∈ S(w) : σo = Po(σ

′), σ′u = Pu(σ
′)∧

π(σ′u) � π(σu)]}
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Fig. 2. The Petri net system considered in Examples 4.1 and 4.3.

the set of couples (sequence σo ∈ T ∗
o with L̄(σo) = w - corresponding justification of w).

Example 4.1: Let us consider the PN in Fig. 2, where the set of observable transitions is

To = {t1, t2, t3} and the set of unobservable transitions is Tu = {ε4, ε5, ε6, ε7, ε8}. The labeling

function is L̄(t∞) = a and L̄(t∈) = L̄(t3) = b.
Let w = ab be the observed word. There exist two sequences that are consistent with the actual

observation and whose firing vector is minimal, namely σ′ = ε4t1t2, σ′′ = ε4t1ε6ε7ε8t3. Thus

σ′u = ε4 and σ′′u = ε4ε6ε7ε8 are the two justifications of w. The set of j-vectors is Ymin(M0, w) =

{[1 0 0 0 0]T , [1 0 1 1 1]T}, where y′ = [1 0 0 0 0]T is relative to σ′u, while y′′ = [1 0 1 1 1]T

is relative to σ′′u. Finally, Ĵ (w) = {(t1t2, ε4), (t1t3, ε4ε6ε7ε8)}.

¥
Let us now recall the notions of diagnoser and diagnosis states.

Definition 4.2: A diagnoser is a function ∆ : L∗ × {T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that

associates to each observation w and to each fault class T i
f , i ∈ F , a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences

consistent with the observation contains fault transitions in T i
f .

• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf 6∈ σu.

In such a case a fault transition of the ith class may have occurred but is not contained in

any justification of w.
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• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ

′
o, σ

′
u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that tf ∈ σu;

(ii) for all tf ∈ T i
f , tf 6∈ σ′u.

In such a case a fault transition in the ith class is contained in one (but not in all) justification

of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consistent with

the observation contain at least one fault transition in the ith class. ¥
A systematic procedure has been given in (5) to compute the above diagnosis states that is

not recalled here for the sake of brevity.

Example 4.3: Let us consider again the PN in Fig. 2, where Tf = {ε5, ε7}.

Let w = ab. In such a case it is ∆(w, Tf ) = 2. In fact, the j-vector y′ = [1 0 0 0 0]T does not

contain fault transitions, while y′′ = [1 0 1 1 1]T contains ε7 ∈ Tf . ¥

V. DECENTRALIZED DIAGNOSIS USING PROTOCOL 3

Protocol 3 is based on the idea that a site communicates its diagnosis state if and only if it is

equal either to 3 or to 2, otherwise it remains silent. Each site transmits not only the diagnosis

state but also its set of j-vectors. On the basis of this information, the coordinator polls a certain

number of sites and makes a refinement of the set of j-vectors. Such a refinement is then used

by the local sites to recompute their diagnosis states for all fault classes. This in general leads

to an improvement of the performance of the decentralized diagnoser.

To define in a clear and concise way such a protocol, let us introduce some preliminary

definitions.

• Let Jl = {k ∈ J | l ∈ Lk} be the set of sites that are capable of observing label l.

• Given a site j and a set of j-vectors Yj = Ymin(M0, wj),

I(j, Yj) = {l ∈ L | ∃ y ∈ Yj ∧ ∃ t ∈ T \ To,j :

y(t) > 0 ∧ L(t) = l}
is the set of labels relative to transitions that appear in at least a j-vector of the j − th

module.

• Let |wk|l be the number of occurrences of label l in the observation wk.
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• Given an observation wk from site k, a label l, and a j-vector y,

βk(wk, l, y) = |wk|l −
∑

t:L(t)=l

y(t)

is the difference between the number of times the site k has observed l and the number of

times a transition labeled l appears in y.

Based on the above definitions, the main steps of the decentralized procedure based on

Protocol 3 can be summarized as follows.

1) The diagnosis state ∆̄i of the coordinator relative to each T i
f is initially undefined.

2) If ∆j,i = ∆(wj, T
i
f ) = {2, 3} for some j ∈ J and some i ∈ F , then the j-th site transmits

to the coordinator its diagnosis state together with its set of j-vectors.

3) For any label l ∈ I(j, Yj) the coordinator polls any site k ∈ Jl \ {j} (if Jl \ {j} is not

empty).

4) The k-th site transmits to the coordinator the value of |wk|l.
5) If βk(wk, l, y) < 0 for a vector y ∈ Yj , then the coordinator removes the vector y from the

set of j-vectors Yj relative to the j-th site.

6) As a result of this process of refinement, the coordinator computes a new set Y ′
j that is

communicated to the j-th site.

7) The j-th site recomputes its diagnosis states according to the new set Y ′
j and if some of

them are equal to 3, communicates it to the coordinator, otherwise it keeps silent.

The refinement of Yj is based on the following very simple fact. If Yj contains a j-vector

that assumes a certain number of occurrences of l, but this number is not consistent with the

observation of a site that is capable of observing l, then for sure such a justification is unfeasible.

Therefore, if βk(wk, l, y) < 0 for a certain label l and a certain j-vector y ∈ Yj , then y should

be removed from Yj . In fact, this means that the justification relative to j-vector y assumes a

number of occurrences of l that is greater than the real number, that is perfectly known by the

k-th site. On the contrary, if βk(wk, l, y) ≥ 0 it means that the j-vector y is compatible with

the observation of the k-th site. In particular, if βk(wk, l, y) = 0 it means that the justification

contains all the occurrences of label l. The case of βk(wk, l, y) > 0 is relative to a possible

situation as well. It means that the justification relative to y does not contain all the occurrences

of l; thus the rest of transitions labeled l, up to the value |wk|l, have fired after the justification

and the observation wj .
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Fig. 3. Petri net system considered in Example 5.1.

Example 5.1: Let us consider the Petri net in Fig. 3 where Tu = Tf = {ε7}. The net is

locally diagnosed by two sites whose set of observable transitions is To,1 = {t1, t3, t6} and

To,2 = {t4, t5, t6}, respectively. This implies that L1 = {a, c}, L2 = {b, c}, Ja = {1}, Jb = {2}
and Jc = {1, 2}.

Let us assume that the sequence σ = ε7t1t4 fires, thus w1 = a and w2 = b.

The set of j-vectors for the first site is Ymin(M0, w1) = Y1 = {y′1, y′′1}, where y′1 = ~0 and

y′′1 = π(ε7), while for the second site is Ymin(M0, w2) = Y2 = {y′2, y′′2}, where y′2 = π(ε7t1) and

y′′2 = π(t2t3). Hence both sites have a diagnosis state equal to 2.

Both the sites communicate their diagnosis state and their set of j-vectors to the coordinator.

Now, I(1, Y1) = ∅ but I(2, Y2) = {a} and Ja = {1}. Thus the coordinator polls site 1 to know

the number of label a it has observed. Since |w1|a = 1, then β1(w1, a, y′2) = 1 − 1 = 0 and

β1(w1, a, y′′2) = 1− 2 < 0. This means that the j-vector y′′2 = π(t2t3) can be confuted and then

removed from Y2. The redefined set of j-vectors for site 2 is Y ′
min(M0, w2) = {y′2} and it is

communicated by the coordinator to the site 2. Site 2 recomputes its diagnosis state that is now

equal to 3. Thus ∆2 = 3 is communicated to the coordinator and consequently ∆̄ = 3 and the

fault ε7 is detected.

¥
Let us finally prove the following important property of Protocol 3.

Proposition 5.2: The coordinator under Protocol 3 does not produce any false alarm, namely

if ∆̄i = 3, then ∆∗
i = 3 as well.

Proof: If the coordinator diagnosis state is ∆̄i = 3, it means that there exists at least one site
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j ∈ J such that ∆j,i = 3. It may happen than either ∆j,i = 3 as soon as the diagnosis state is

computed or that ∆j,i becomes equal to 3 after the confutation procedure.

Let us analyze these two situations separately. Now, for the first case, by eq. (1) it is Tu,j ⊇ Tu.

As a consequence, all the justifications that are admissible for the centralized diagnoser are also

admissible for the j-th site. However, there may exist other justifications that are admissible

for the j-th site while they are not admissible for the centralized diagnoser. This implies that

if ∆j,i = 3 then all the justifications computed by the j-th site contain fault transitions in T i
f ,

then for sure any subset of such justifications (including the set of justifications computed by

the centralized diagnoser) contains fault transitions in T i
f , thus proving the statement.

For the second case, the reduction of the cardinality of the sets of j-vectors relative to certain

sites cannot produce false alarm as well. In fact, by definition such a reduction consists in only

removing those j-vectors that for sure are not feasible, because they are not consistent with the

observations of other sites. Thus in both situations false alarms cannot be produced. ¤

VI. DIAGNOSABILITY ANALYSIS

The first important step when analyzing the decentralized diagnosability of a PN system is

that of detecting the presence of particular strings, called failure ambiguous strings. This notion

has been firstly introduced in (6) in the framework of automata. In particular, in (6) the authors

assume that the decentralized diagnoser only includes two sites. In (16) we generalized such a

definition to PNs and consider the general case of an arbitrary number ν of sites.

Definition 6.1: Consider a net system 〈N, M0〉 monitored by a set J = {1, . . . , ν} of sites.

Let To,j ⊆ To be the set of locally observable transitions for the generic site j ∈ J . Finally, let

T i
f ⊆ Tf be the generic i-th fault class, with i ∈ F .

A string σ ∈ T ∗ of arbitrary length, such that tf ∈ σ for at least one tf ∈ T i
f , is said to be

failure ambiguous wrt the above set of sites and wrt the fault class T i
f , if the following two

conditions are verified:

(a) L−1
j (Lj(σ)) ∩ (T \ T i

f )
∗ 6= ∅ ∀j ∈ J ;

(b) L̄−∞(L̄(σ)) ∩ (T \ T 〉
{ )∗ = ∅,

where Lj and L̄ are defined as in (2), (3), respectively. ¥
In simple words, a sequence σ of arbitrary length containing some fault transitions in a fault

class i, is failure ambiguous wrt to a set of sites and wrt the i-th fault class, if the word σ is
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Fig. 4. Petri net system for Example 6.2.

ambiguous for each site j ∈ J , i.e., it may also be explained by a non faulty word, and the

word σ is not ambiguous for the centralized system.

Example 6.2: Let us consider the Petri net system in Fig. 4 which is locally diagnosed by two

sites whose alphabets are equal to L1 = {a, c} and L2 = {b, c}, respectively. The sequence σ =

ε8t1t2t
q
3, with q ∈ N, is failure ambiguous wrt the sites 1 and 2 and wrt to the unique fault class

Tf = {ε8}. In fact, L1(σ) = {acq} and L−1
1 (L1(σ)) = {ε8t1t2t

q
3, t6t

q
7}, thus L−1

1 (L1(σ)) ∩ (T \
Tf )

∗ = {t6tq7}; L2(σ) = {bcq} and L−1
2 (L2(σ)) = {ε8t1t2t

q
3, t4t

q
5} thus L−1

2 (L2(σ))∩ (T \Tf )
∗ =

{t4tq5}; and L̄(σ) = {abcq} and L̄−∞(L̄(σ)) = {ε∀t∞t∈tq3} thus L̄−∞(L̄(σ))∩ (T \T 〉
{ )∗ = ∅.

¥
In (16) we proved that, if the decentralized architecture is that presented in Section III,

regardless of the considered protocol, if a system is diagnosable in a centralized framework

with respect to a given fault class, and has no failure ambiguous strings with respect to that

class, it is also diagnosable in a decentralized framework. In particular, in (16) we also proposed

an efficient method to verify the existence of failure ambiguous strings.

The absence of failure ambiguous strings is only a sufficient condition for the diagnosability

in a decentralized framework. Thus, depending on the considered protocol, it may occur that

the system is diagnosable in a decentralized framework even in presence of failure ambiguous

strings. This is the case of Protocol 3, as illustrated by the following example.

Example 6.3: Let us consider the Petri net system in Fig. 5 where Tu = Tf = {ε10}. The net is

monitored by two sites whose set of observable transitions is respectively To,1 = {t1, t3, t5, t6, t7}
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p1 

a 

ε10 t1 p2 

b 

t4 p3 p6 

t6 

c 

a 

t2 t3 p4 

b 

t5 p5 

a 

b 

t7 t8 p7 

a 

t9 p8 

b 

Fig. 5. The Petri net system considered in Example 6.3.

and To,2 = {t2, t3, t4, t5, t7}. This implies that L1 = {a, c}, L2 = {b, c}, Ja = {1},Jb = {2}
and Jc = {1, 2}.

It is easy to verify that all sequences of the form σ = ε10t1t4t
q
6 are failure ambiguous for any

q ∈ N. In fact, L1(σ) = {acq} and L−1
1 (L1(σ)) = {ε10t1t4t

q
6, t7t8t9t

q
6}, thus L−1

1 (L1(σ)) ∩ (T \
Tf )

∗ = {t7t8t9tq6}; L2(σ) = {bcq} and L−1
2 (L2(σ)) = {ε10t1t4t

q
6, t2t3t5t

q
6} thus L−1

2 (L2(σ))∩(T \
Tf )

∗ = {t2t3t5tq6}; and L̄(σ) = {abcq} and L̄−∞(L̄(σ)) = {ε∞′t∞t4tq6 } thus L̄−∞(L̄(σ)) ∩
(T \ T 〉

{ )∗ = ∅.

Now, if the two local sites communicate with the coordinator according to Protocol 3, then

both of them initially compute a diagnosis state that is equal to 2 after the firing of σ. However,

when the confutation procedure is applied, both of them reconstruct the firing of ε10. In particular,

the first site observes w1 = acq, thus Ymin(M0, w1) = {π(ε10t4), π(t7t8)} and ∆1 = 2. Similarly,

the second site observes w2 = bcq thus Ymin(M0, w2) = {π(ε10t1), π(t2t3)} and ∆2 = 2 as

well. However, both π(t7t8) and π(t2t3) are confuted, thus the two diagnosis states become

∆1 = ∆2 = 3 and the fault is diagnosed.

Let us finally observe that, since by inspection it can be verified that the considered family

of sequences σ are the only failure ambiguous strings, we can conclude that the system is

diagnosable using Protocol 3 even in the presence of failure ambiguous strings. ¥
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VII. A COMPARISON WITH OUR PREVIOUSLY DEFINED PROTOCOLS

As already mentioned in the Introduction, we presented in (14) two other decentralized

protocols, named Protocol 1 and Protocol 2.

Protocol 1 is based on the idea that each local site communicates its diagnosis state to the

coordinator if and only if it is equal to 3. No other information is changed, and the coordinator

sets its diagnosis state equal to 3 only if it receives a diagnosis state equal to 3 by at least one

local site.

Protocol 2 is still based on a confutation procedure, as well as Protocol 3. However, it basically

differs from Protocol 3 for the fact that local sites send information to the coordinator if and

only if their diagnosis states are equal to 3, while they remain silent if their diagnosis states are

2.

In this section we want to discuss the advantages of using Protocol 3, rather than 1 or 2.

Note that obviously Protocol 3 has the disadvantage of requiring a larger amount of information

exchanged.

Concerning Protocol 1, the first main issue is that it can be easily proved that using Protocol 1

it can never occur that a system is diagnosable in a decentralized way in the presence of failure

ambiguous strings.

On the contrary, it may be the case that a system is diagnosable in a decentralized framework

using Protocol 2 even in the presence of failure ambiguous strings if and only if the set of fault

transitions is partitioned in at least two fault classes, while it cannot occur in the presence of

only one fault class. In fact, if there is a single fault class and there exists at least one failure

ambiguous string, for that string the diagnosis states of all sites will be equal to 2, thus under

Protocol 2 all sites remain silent and the fault cannot be diagnosed. Note that Protocol 3 does

not have this problem as shown in Example 6.3.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of decentralized diagnosis for labeled PNs. We assume

that the system is monitored by ν local sites who know the structure of the net and the initial

marking, but observe its evolution with ν different masks. Each site performs diagnosis locally

with a method that we previously introduced in the centralized case. We present a protocol that

defines the communication rules between the coordinator and the local sites and specifies how
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the diagnosis is performed by the coordinator. We proved that the proposed protocol does not

produce false alarms. Moreover, we show that the absence of failure ambiguous strings is only

a sufficient condition for decentralized diagnosability in the case of the considered protocol.

Finally, we compare such a protocol with two other protocols we presented in (14).

One of the main goals of our future research in this topic will be that of characterizing the

classes of net systems that are diagnosable in a decentralized framework using the proposed

protocols even in the presence of failure ambiguous strings.

Finally, while in this paper we assumed that the sites and their observation masks are given,

we will also consider the case in which their definition can be seen as the result of an opti-

mization problem, whose main goal is that of obtaining performances in terms of diagnosis (and

diagnosability) that are as close as possible to those of the centralized diagnoser.
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