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Abstract

In this paper the formation stabilization problem for a system of heterogeneous agents is considered.

Agents are characterized by different linear dynamics, and assumed to be able to collaborate by

exchanging information if they are within their range of communication. A sufficient algebraic condition

for the stability of the formation based on a generalization of the Gerschgorin circle theorem for block

matrices is proposed. Furthermore, conditions under which the formation remains stable under switching

topology are investigated. Simulation results are given to corroborate the theoretical results.
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I. INTRODUCTION

In the last decades systems theory has been driven toward the study of the systems of

systems, i.e complex high-order dynamical systems arising from the interconnection of small

order dynamical systems. While in the most general case the system of systems is an arbitrary

interconnection between dynamical systems, in the framework of multi-agent systems the scope

is restricted to the study of a set of homogenous dynamical systems, the agents, arbitrarily

interconnected with some defined interaction rule. In such model the uncertainty lies in the

interconnection topology which is arbitrary and possibly unknown. In this paper we are interested

in investigating the stability properties of linear Multi-Agent systems dropping the assumption

on the homogeneity of the network. Such assumption increases the generality of the results by

allowing the agents to have different dynamics, eventually coming from model uncertainties.

In the Robotics field, multi-agent systems have been widely used by the research community as

an effective (simulation) framework to investigate formation control techniques which could be

applied to (real) robotics devices. In this framework, a multi-agent robotic system is commonly

modeled with a graph, where each vertex describes the kinematics of the related robotic agent

(simply “agent” from now on), while a link models the constrained interaction among agents.

The formation control is a fundamental issue to properly achieve cooperation in a multi-robot

system. Indeed, the capability to acquire a formation and maintain it over time while the multi-

robot system is moving is fundamental in order to execute a variety of tasks, e.g., robotic

soccer, surveillance, object transportation and so on. Moving in formation introduces several

interesting advantages: higher robustness and efficiency while providing redundancy, as well as

higher flexibility and reconfiguration capabilities. Formation control does not restrict itself only

to ground mobile robots [?], [?]. Among the others, it has been successfully applied to aircrafts

[?], [?], in particular unmanned aerial vehicles (UAVs) [?], underwater vehicles [?], [?], as well

as satellites [?], [?]. For a comprehensive overview of the formation control problem the reader

is referred to [?].

In this paper, the problem of formation stabilization for a set of heterogenous agents, i.e., the

stabilization of their relative position [?], [?], is addressed. In particular, agents are assumed

to have different linear dynamics and be able to collaborate by exchanging information if they

are within their range of communication. A sufficient algebraic condition for the stability of the
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formation is proposed. In addition, conditions under which the formation remains stable under

switching topology are investigated. The idea is to use a result on the generalizations of the

Gerschgorin circle theorem for block matrices, which can be found in [?], to define a set of

rules which can be applied locally by each agent to build a control law in a completely distributed

way so that the global stability of the formation is guaranteed. In the past years, this result on the

generalization of the Gerschgorin circle theorem for block matrices has been applied in several

contexts. Among the others, in the analysis of interconnected systems for the elimination of fixed

modes [?], and for the stabilization of large scale systems [?]. Such concept might be useful in

multi-robot coordination applications because it allows each robot to estimate the position of the

system eigenvalues only by looking at its dynamics and its local interconnection. This theory is

developed for linear systems but still it is of great practical relevance for the local stabilization

of equilibrium points corresponding to the desired formation where a linear approximation of

the nonlinear vehicle dynamics is feasible.

A. Paper content:

• In Section II some basic notions of graph theory to model the network topology of a

multi-agent system along with an overview of the Gerschgorin circle theorem are given.

• In Section III a formalization of the stabilization problem for a heterogeneous multi-agent

system is given.

• In Section IV conditions for the stabilization of a multi-agent system with fixed topology

are given.

• In Section V conditions for the stabilization of a multi-agent system under switching

topology are given.

• In Section VI simulations to corroborate the theoretical results are shown.

• Finally, in Section VII conclusions are drawn and future work is discussed.

B. Assumptions:

In the rest of the paper, the following assumptions will be taken into account for the multi-

agent system:
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• Each agent i has its own linear dynamics described by the matrix Ai (the system is

heterogeneous),

• A way to share a common (global) reference frame among agents must be available, for

instance using the algorithms given in [?],

• Collaboration from agents i to j is achieved by exchanging data according to the intercon-

nection matrix Pij ,

• Collaboration does not necessarily need to be symmetric, that is it can be Pij ̸= Pji,

• Communication does not necessarily need to be bidirectional.

II. THEORETICAL BACKGROUND

A. Concepts of Graph Theory

In the paper the notion of graph as a model of the network topology is used. A graph G =

{V,E} is a set of vertices (or agents) V = {1, . . . , n} connected by a set of edges (or links)

E ⊆ {V ×V }. A graph is said to be undirected if (i, j) ∈ E ⇐⇒ (j, i) ∈ E. A couple of nodes

i,j are said to be connected by a path if there exists a sequence of links that can be traveled

uninterruptedly from i to j. An undirected graph is said to be connected if there exists a path

between any couple of node i, j ∈ V . In the following we will refer to Ni as the neighborhood

of agent i, namely the set of indices of the agents directly connected through an edge with

agent i.

In the proposed network model, an interaction between agent i and agent j may occur only if

agent i can directly communicate with agent j and viceversa. Since each agent is modeled with

a limited sensing radius ρi, the generic couple of agents i and j with positions pi and pj may

communicate if and only if ∥pi − pj∥2 ≤ min{ρi, ρj}. As a result, the interaction topology is

modeled by a time-varying proximity graph. Given a set of agents positions P = {p0, p1, . . . , pn}

with pi ∈ Rd we define a time-varying proximity graph G(t) = {V,E(t)}, where V is the set

of vertices V = {1, . . . , n} that represent the agents, and E(t) is the time-varying set of edges

that encodes the interaction topology at time t:

E(t) =
{
(i, j) : ∥pi(t)− pj(t)∥ ≤ min{ρi, ρj},

∀ i, j ∈ V i ̸= j
}
.
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B. Gerschgorin circle theorem

The Gershgorin circle theorem can be used to provide a bound for the spectrum of a square

matrix [?]. Let A be a complex n× n matrix with entries aij , and let Ri be defined as the sum

of the absolute values of the off-diagonal entries in the i-th row, i.e., Ri =
∑

j ̸=i |aij|. Let the

Gershgorin disc Di associated with the i-th row be defines as:

Di = {z ∈ C : |z − aii| ≤ Ri}

and let D =
∪n

i=1Di, be the union of the Gershgorin discs Di, i = 1, . . . , n. The Gershgorin

circle theorem states that every eigenvalue of the complex matrix A lies within the union of the

Gershgorin discs Di, that is:

λi ∈ D, ∀ λi ∈ σ(A), (1)

where σ(·) is the set of eigenvalues of a matrix.

A generalizations of the Gerschgorin circle theorem for block matrices can be found in [?].

In particular, let A be a generic block matrix of the form:

A =



A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

AN1 AN2 . . . ANN


.

In particular, for such a partitioned matrix A, each eigenvalue λ of A satisfies (Th. 2 [?]):

(
∥(Aii − λIi)

−1∥
)−1 ≤

N∑
k=0,k ̸=i

∥Aik∥, (2)

for at least one i, with 1 ≤ i ≤ N , where the norm ∥ · ∥ is defined as:

∥A∥ = sup
x∈Ω,x ̸=0

(
∥Ax∥
∥x∥

)
. (3)

and the quantity appearing on the right of the above inequality is defined as follows:

DRAFT



6

(
∥A−1∥

)−1
= inf

x∈Ω,x̸=0

(
∥Ax∥
∥x∥

)
, (4)

whenever A is not singular. Note that, in case the matrix A is singular the quantity
(
∥A−1∥

)−1

can be defined by continuity to be zero ([?]).

Now by defining the Gerschgorin set Si as the set of all complex numbers z for which the

following holds: (
∥(Aii − zIi)

−1∥
)−1 ≤

N∑
k=0,k ̸=i

∥Aik∥, (5)

it is obvious that each set Si always contains the eigenvalues of Aii independently to the

magnitude of the right side of the equation. Moreover, it can be defined the union of these

sets:

S =
N∪
i=1

Si,

and according to the condition (2) it can be stated that all the eigenvalues of the matrix A lie

on the union S previously defined.

III. PROBLEM DESCRIPTION

The problem we are going to address is inspired by the works [?], [?]. In these works the

authors address the formation stabilization problem for a team of agents with identical dynamics.

Differently in this paper the multi-agent system is supposed to be heterogeneous. In particular,

the problem formulation can be stated as follows.

Let us consider a set of N agents described by the graph G = {V,E} with N = |V |, whose

linear dynamics are denoted as:

ẋi = Ai xi +Bi ui, (6)

where xi ∈ Rni is the state vector of the i-th agent, while Ai ∈ Rni×ni and Bi ∈ Rni×qi

describe respectively the dynamic matrix and the input matrix of the i-th agent. Let us consider

an interconnection for a couple of agents i, j with (i, j) ∈ E of the form:

zij = Pij xj, (7)
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where Pij ∈ Rni×nj is the interconnection matrix. We are willing to find a distributed control

law K of the form:

ui =
∑
j∈Ni

K̂ij xj +Kxi
xi, (8)

where K̂ij = kij Pij with kij ∈ R, so that the whole formation is stabilized. Note that, according

to the definition given in [?], [?], with the term stabilization of a formation, the stabilization of

the relative position for a set of multi-agent system is meant.

For sake of clarity, let us rewrite the whole problem formulation in a matrix form for a system

composed of three agents:


ẋ1

ẋ2

ẋ3

 =


A1 0 0

0 A2 0

0 0 A3



x1

x2

x3

+


B1

B2

B3



u1

u2

u3

 ,


u1

u2

u3

 =


Kx1 K̂12 K̂13

K̂21 Kx2 K̂23

K̂31 K̂32 Kx3



x1

x2

x3

 ,

where a generic K̂ij might be zero if there is no communication from robot i to robot j.

Finally, by substituting the second equation into the first one we obtain the following matrix

form:

 ẋ1

ẋ2

ẋ3

=



A1 +B1Kx1 B1K̂12 B1K̂13

B2K̂21 A2 +B2Kx2 B2K̂23

B3K̂31 B3K̂32 A3 +B3Kx3



x1

x2

x3

 . (9)
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IV. MULTI-AGENT SYSTEM WITH STATIC TOPOLOGY

For such a scenario described in Section III, it might be of interest to investigate conditions

under which the overall formation is stable. To this end, let us assume that the interconnection

matrices Pijs are given and they cannot be modified. This assumption might reflect the fact

that this kind of interaction is generally constrained by the sensing capabilities of the agents.

According to this scenario, let us formulate the problem as follows.

Problem Statement (I): “Given the system described in (9) with the assumptions given in

(I-B), we want to determine a set of rules which can be applied locally by each single agent in

order to guarantee the overall stability of the formation”.

A possible way to solve this problem in a decentralized fashion is to let each agent implement

the following algorithm.

Algorithm 1:

Let us consider a generic agent i, the following steps must be performed:

1) Neighboring discovery in order to identify Ni,

2) Construnction of a control law K so that:

a) The dynamics Ai +BiKxi
is asymptotically stable,

b) minλi∈σ(Ai+BiKxi )
{|λi |} ≥

∑
j∈Ni

∥BiKij∥

3) Notify to the neighborhood Ni the status “ready to go”.

In the following a theorem by which the stability of the formation can be proved when each

single agent implements algorithm 1 is given.

Theorem 1: A sufficient condition for the stabilization of the formation is that each agent i

locally applies a control law K of the form given in (8) such that the dynamics Ai + BiKxi
is

asymptotically stable and:
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min
λi∈σ(Ai+BiKxi )

{|λi |} ≥
∑
j∈Ni

∥BiKij∥. (10)

Proof: In order to prove the theorem, the generalization of the Gerschgorin disk theorem

for block matrices given in Section II-B is exploited. In particular, since for any given block-

matrix A all the eigenvalues lie within the set S, a sufficient condition for the stabilization of

the formation given in (9) is that each Gerschgorin set Si must be located on the left-half of the

Gauss plane ( Si ∈ C−). Indeed, by noticing that the quantity defined on the right hand of the (5)

can be computed (as suggested in by exploiting the Euclidean vector norm
∥∥x∥∥

2
= (

∑
i |xi|2)

1
2

as [?]:

(
∥(Aii − zIi)

−1∥
)−1

= min
λj∈σ(Aii)

{|λj − z|},

it follows that Si ∈ C− is achieved by guaranteeing :

min
λi∈σ(Ai+BiKxi )

{|λi |} ≥
∑
j∈Ni

∥BiKij∥,

with Re{λ} < 0 thus proving the theorem.

Remark 1: Theorem 1 provides a policy by which each agent i can locally tune the effect

of the interaction with the neighboring agents with respect to its own dynamics Ai so that

at least from its point of view the formation is stable. Indeed, each agent i with its action

can only influence the i-th Gerschgorin Set Si, and therefore it has only a local view of the

possible location of the eigenvalues related to the formation dynamics. Note that, this approach

if fully decentralized as only local information, i.e., interconnection matrices Pijs, is required

to satisfy the condition (10). Moreover, it turns out to be a robust approach as the lost of an

interconnection does not bring instability, i.e., the quantity on the right side of the inequality

(10) does not increase.

Remark 2: Theorem 1 can be equivalently stated by taking into account the concept of

diagonal dominance of a block-matrix as in [?]. In particular, the formation is stable if each agent
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i locally applies a control law K of the form given in (8) such that the dynamics Ai + BiKxi

is asymptotically stable and the overall matrix A is block diagonally dominant, that is:

(
∥A−1

ii ∥
)−1 ≥

N∑
k=0,k ̸=i

∥Aik∥.

This allows to point out the analogy with the case of a scalar matrix, i.e., agents with a scalar

dynamics, for which by exploiting the Gerschgorin circle theorem, the stability is guaranteed by

the diagonal dominance and negative definiteness.

V. MULTI-AGENT SYSTEM WITH SWITCHING TOPOLOGY

In Section IV a sufficient condition for the stabilization of the formation under the assumption

of having interconnection matrices Pijs that do not vary over time has been given. In the

following, an enhanced scenario in which the interconnection among two agents might be

temporarily available or not over time is investigated.

In particular, let us assume that the topology is switching but any time an interconnection

from agent i to agent j is available it is always described by the same interconnection matrix

Pij . Indeed, this seems a reasonable assumptions, as these matrices usually describe sensing

capability of the agents which normally do not vary over time, apart from malfunctioning or re-

calibration issues which are not considered in this scenario. This leads to the following definition

for the interconnection matrices for this enhanced scenario:

Pij(t) =

Pij for some t

0 otherwise
, (11)

where 0 is obviously a matrix of appropriate dimensions. This leads to a new slightly different

formulation for this enhanced scenario as follows.

Problem Statement (II): “Given the system described in (9) with the assumptions given in

(I-B) under switching topology where an interconnection matrix is defined as given in (11), we

want to determine a set of rules which can be applied locally by each single agent in order to

guarantee the overall stability of the formation under switching topology”.
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Theorem 2: A sufficient condition for the stabilization of the formation under switching

topology is that each agent i locally applies a switching control law K of the form given in

(8) such that for a given topology G(t) the dynamics AG(t),i = Ai +BiK
G(t)
xi is negative definite

and:

min
λi∈σ

(
A+

G(t),i

) {|λi |} >
1

2

∑
j∈Ni

(
∥BiK

G(t)
ij ∥+ ∥BjK

G(t)
ji ∥

)
, (12)

where A+
G(t),i is the symmetric part of the dynamics AG(t),i.

Proof: In order to prove the theorem, it is sufficient to show that for any topology G(t)

by applying a control law of the form given in (12), the matrix AG(t) describing the formation

dynamics under topology G(t) is negative definite. Therefore, by exploiting a well-known result

coming from the switching control theory we can use the identity matrix to build a common

quadratic Lyapunov function (CQLF) to prove the stability of the formation under switching

topology [?].

In order to prove the negative definiteness, we use a similar argument as in Theorem (1).

In particular, for any non-hermitian matrix A with real coefficients we have that A is negative

definite if and only if its symmetric part A+ =
(
A+AT

2

)
is negative definite. Moreover, according

to the generalization of the Gerschgorin circle theorem for block matrices given before, this can

be obtained by forcing any Gerschgorin set Si to be located on the left-half of the Gauss plane

( Si ∈ C−). Indeed, this can be achieved by guaranteeing that:

min
λi∈σ

(
A+

G(t),i

) {|λi |} >
1

2

∑
j∈Ni

(
∥BiK

G(t)
ij ∥+ ∥BjK

G(t)
ji ∥

)
, (13)

with Re{λ} < 0 thus proving the theorem.

Remark 3: Theorem 2 represents a natural extension to the switching scenario of the result

given by Theorem 1. However, the requirement of negative definiteness of the formation dynamics

AG(t) for any given topology G(t) demands for a bigger effort compared to the static scenario,

that is the negative definiteness of each single agent dynamic AG(t),i and a stronger interaction

among the agents to fulfill the constraint (12). Note that, from a computational perspective a
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distributed collaborative technique must be developed to fulfill the constraint (12). Indeed, such

a negotiation process might be significantly limited by the scale of the system.

A simple condition to guarantee the overall stability of the switching formation in a distributed

fashion is provided by the following corollary.

Corollary 1: The condition (12) is fulfilled if the following holds:

kij ≤ k̄ <
min

λi∈σ
(
A+

G(t),i

) {|λi |}

n maxi,j ∥Bi Pij∥
, ∀i, j ∈ V (14)

Note that, corollary 1 provides a conservative but decentralized solution to satisfy the sufficient

condition given in Theorem 2. It requires each agent to reach consensus on a lower bound of

their smallest eigenvalue along with a consensus on an upper bound on their interconnection

matrices norms. Then if all the agents know the total number of interconnected agents n, the

condition on Theorem 2 is satisfied.

VI. SIMULATION RESULTS

In the following, simulations concerning the formation acquisition for a multi-agent system

are presented. Each agent has a dynamics characterized by the following differential equation.

ẋi = Ai xi +Bi ui,

and the following inter-agent sensing model:

zij = Pij(xi − xj),

where zij is the distance among agents i and j respectively. For sake of simplicity the identity

matrix will be chosen as interconnection matrix Pij . The local controller for each agent is defined

as follows:

ui =
∑
j∈Ni

Kijzij,

=
∑
j∈Ni

KijPij(xi − xj + δij).

Two different scenarios are considered; in the first one the goal of the multi-agent system is to

acquire a formation with the shape of a hexagon, while in the second one the goal is to acquire
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Fig. 1. Formation acquisition: agents’ trajectories.

a formation with the shape of a regular lattice. Note that, a control law built according to the

condition (10) given in Theorem 1 simply drives the state of the agents to a common value.

According to [?], [?], in order to reach a formation with a desired shape, a proper offset must be

added to the inter-agent distance zij for each pair of agents i, j, namely the term δij . A simple

way to achieve it is to define a proper vector of offsets δ =
[
δ10, · · · , δi0, · · · , δN0

]
that will act

as an input for the dynamical system.

Regarding the first scenario, Fig. 1 shows the trajectories for the six agents team: agents start

from random positions and move till the hexagon shaped formation is reached, while Fig. 2

shows the state evolution of the six agents dynamics.

In the same way, regarding the second scenario, Fig. 3 shows the trajectories for the nine agents

team: agents start from random positions and move till the regular lattice shaped formation is

reached, while Fig. 2 shows the state evolution of the nine agents dynamics.

Note that, in order to reach such a formation behavior, in both cases an inner control loop to

provide an integral action has been designed for each agent. This can be explained by the fact,

that the problem of formation acquisition can be thought as a regulation problem for which the

presence of an integrator is required in order to drive the dynamics of the error with respect to

a constant reference to zero.
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Fig. 2. Formation acquisition: agents’ state evolution.
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Fig. 3. Formation acquisition: agents’ trajectories.

VII. CONCLUSION

In this paper the formation stabilization problem for a system of heterogeneous agents has been

addressed. In the proposed scenario, agents are characterized by different dynamics and assumed

to be able to collaborate by exchanging information according to their range of communication. A

sufficient algebraic condition for the stabilization of the formation in the case of static topology

has been provided. Furthermore, conditions under which the formation remains stable under

switching topology have been investigated. The key idea is to use a well-known result on the

generalization of the Gerschgorin circle theorem for block matrices to define a set of rules which

can be applied locally by each agent to build a control law in a complete distributed fashion so

DRAFT



15

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
1

x
2

Fig. 4. Formation acquisition: agents’ state evolution.

that the global stability of the formation is guaranteed. Simulation results have been proposed

to corroborate the theoretical results. Future work, will be mainly focused on the investigation

of additional, hopefully simpler condition for the stability of the formation under switching

topology.
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