
Testing Discrete Event Systems: Synchronizing
Sequences using Petri Nets

Marco Pocci(a), Isabel Demongodin(b), Norbert Giambiasi(c), Alessandro Giua(d)

(a)−(c)Laboratoire des Sciences de l’Information et des Systèmes, Campus de Saint Jérôme,

Marseille, France
(d)Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

{(a)marco.pocci, (b)isabel.demongodin, (c)norbert.giambiasi}@lsis.org, (d)giua@diee.unica.it

Abstract

In the field of Discrete Event Systems, an important class of testing problems consists in deter-

mining a final state after the execution of a test. This problem was completely solved in the

60’s using homing and synchronizing sequences for finite state machines with inputs/outputs.

In a synchronizing problem, we want to drive an implementation of a given model, seen as a

black-box, to a known state regardless of its initial state and the outputs. In this paper, we

propose a first approach to solve the synchronizing problem on systems represented by a class of

synchronised Petri nets. We show that, regardless of the number of tokens that the net contains,

a synchronizing sequence may be computed in terms of the net structure, thus avoiding the state

explosion problem.

Keywords: testing problems, finite state machines, Petri nets, synchronizing sequences

Published as:

M. Pocci, I. Demongodin, N. Giambiasi, A. Giua, "Testing Discrete Event Systems: Synchroniz-

ing Sequences using Petri Nets," EMSS 2010: 22nd European Modeling & Simulation Symposium

(Fes, Morocco), Oct, 2010.

1 Introduction

This paper deals with the problem of determining a final state of an implementation of a Discrete

Event Systems (DES), extending the existing approaches for Finite State Machines (FSM) to a

class of Petri nets (PN).

The fundamental problems in testing FSM and the techniques for solving these problems

have been pioneered in the seminal paper of Moore [10] and have been reviewed extensively by

Lee and Yannakakis [9]. They stated five fundamental problems of testing: i) determining a

final state after a test; ii) state identification; iii) state verification; iv) conformance testing; v)

machine identification. Among these, we consider the problem of determining a final state after

a test. This problem was addressed and essentially completely solved around 1960 using homing

(HS) and synchronizing sequences (SS). An homing sequence is an input sequence that brings

a FSM from an initial state —supposed unknown— to a state that can be determined by the

observed output event sequence. A synchronizing sequence is an input sequence that brings a

FSM from any initial unknown state to a known state regardless of the output sequences.

Several approaches are used to obtain a synchronizing sequence for an FSM. The synchro-

nizing tree method [8, 7]; since memory required to build up the tree is high, this method is

suitable only for small FSM. Simulation-based method, binary decision diagram method (BDD)

[13, 16]; the drawback of this method is that the length of the synchronizing sequence may be

far away from the lower bound. Homing sequence method [15]; the method alleviates the need

for a machine to have synchronizing sequence but its main disadvantage is that the final state

is different for each power-on and we must observe the output responses to determine the final

state. Finally Eppstein [2] gave an algorithm, based on Natarajan’s work [12], for reset sequences.

This algorithm, that in polynomial time either finds such sequences or proves that none exists,

has been described by Lee et al. [9] and adapted for synchronizing sequences.

Little has been done in the area of testing of systems specified as Petri Nets. For example

Jourdan and Bochmann [3] investigated the question of automatically testing Petri Nets, to

ensure the conformance and so that an implementation of a specification provided as a Petri Net

is correct. Zhu and He gave an interesting classification of testing criteria [19] — without testing

algorithm — and presented a theory of testing high-level Petri nets [6] by adapting some of their

general results in testing concurrent software systems. In the Petri net modelling framework,

one of the main supervisory control tasks is to guide the system from a given initial marking to a

desired one similarly to the synchronisation problem. Yamalidou et al. presented a formulation

based on linear optimisation [18, 17]. Giua and Seatzu [5] defined several observability properties

and dealt with the problem of estimating the marking of a place/transition net based on event

observation.

The main idea of this paper is to apply the existing techniques developed for FSM to Petri

nets. We consider synchronised nets, i.e., a net where a label is associated to each transition. The

label represents an external input event whose occurrence causes the transition firing, assuming

the transition is enabled at the current marking. Note that since we are not considering outputs,

we will only be concerned with synchronizing sequences.

It is well known that a bounded PN — that is a PN where the number of tokens in each

place does not exceed a finite number k for any marking reachable from the initial one — can

be represented by a finite reachability graph, i.e., a FSM whose behaviour is equivalent to that

of the PN [11]. Thus the existence of synchronizing sequences for these models can be studied

using the classical approach for FSM with just minor changes to take into account that while a

FSM is assumed to be completely specified — any event can occur from any state — in the case

of the PN’s reachability graph it is not usually true.

Then we consider a special class of Petri nets called state machines [11], characterised by

the fact that each transition has a single input and a single output arc. These nets are similar

to automata, in the sense that the reachability graph of a state machine with a single token is

isomorph — assuming all places can be marked — to the net itself. However, as the number

of tokens k in the net increases the reachability graph grows as km−1 where m is the number

of places in the net. We show that for strongly connected state machines even in the case of

multiple tokens, the existence of synchronizing sequences can be efficiently determined by just

looking at the net structure, thus avoiding the state explosion problem. We also present some

extensions of our results to state machines that are not strongly connected.

This paper is organised as follows: Section 2 presents the FSM and PN model together

with the analyse of synchronizing sequences for FSM. In Section 3 is shown how the FSM

method can be straightforwardly adapted to PN. Afterwards in Section 4 is reviewed the problem

and proposed other techniques for the case of State Machine. Finally conclusion are drawn in

Section 5.

2 Background

2.1 Mealy Machine

Mealy machines are the class of FSM concerned in this work. A Mealy machine M is a structure

M = (I,O, S, δ, λ)

where: I, O and S are finite and nonempty sets of input events, output events and states

respectively; δ : S × I → S is the state transition function and λ : S × I → O is the output

function.

When the machine is in the current state s ∈ S and receives an event i ∈ I, it moves to the

next state specified by δ(s, i) producing an output given by λ(s, i). Note that functions δ and λ

are assumed to be total functions, i.e., functions defined on each element (s, i) of their domain.

Such a machine is called completely specified to denote that for any state and upon any event a

transition occurs producing the corresponding output event.

We denote the number of states, input and output events by n = |S|, p = |I| and q = |O|.

We extend the transitions function δ from input events to strings of input events as follows:

for an initial state s1, an input sequence x = a1, . . . ak takes the machine successively to the

states si+1 = δ(si, ai), i = 1, . . . , k with the final state δ(s1, x) = sk+1. We also extend transition

function δ from being defined for a specified state to a set of state as follows: for a set of states

S′ ⊆ S, an input event i ∈ I takes the machine to the set of states S′′ =
⋃

s∈S′ δ(s, i).

A Mealy machine is said strongly connected if there exists a directed path from any vertex

to any other vertex.

2.2 Synchronizing Sequences on Mealy Machines

A SS takes a machine to the same final state regardless of the initial state and the outputs. That

is, an input sequence x is synchronizing to a state sr iff δ(si, x) = δ(sj , x) = sr for all pairs of

states si, sj ∈ S.

The information about the current state of M after applying an input x is defined by the

set σ(x) = δ(S, x), called the current state uncertainty of x. In other words x is a SS that takes

the machine to the final state sr iff σ(x) = sr.

Given a Mealy machine M with n states, we construct an auxiliary directed graph A(M)

with n(n+1)/2 nodes, one for every unordered pair (si, sj) of nodes of M , including pairs (si, si)

of identical nodes. There is an edge from (si, sj) to (sp, sq) labeled with an input event a ∈ I iff

in M there is a transition from si to sp and a transition from sj to sq, and both are labeled by a.

The following algorithm, due to Natarajan [12], has been introduced by Eppstein [2] for

the case of reset sequences and re-interpreted and described by Lee et al. in [9]. We propose a

possible implementation of this work in order to construct a synchronizing sequence x which is

not necessarily the shortest possible.

Algorithm 1 (Computing SS leading to sr) Let M = (I,O, S, δ, λ) be the considered Mealy

machine.

1. Let sr be the desired final state.

2. Let x = ε, the empty initial input string.

3. Let σ(x) = {S}, the initial current state uncertainty.

4. Pick two states si, sj ∈ σ(x) such that si 6= sj.

5. Find a shortest path in A(M) from node (si, sj) to (sr, sr).

5.1. If no such a path exists, stop the computation, there exists no SS for sr.

5.2. Else, let x′ be the input sequence along this path, do

5.2.1. σ(x) = δ(σ(x), x′) and

5.2.2. x = xx′,

6. If σ(x) 6= {sr} go to step 4.

7. x is the desired SS. �

To analyse the Algorithm 1 leads us to the following theorem, which provides a reachability

condition on the auxiliary graph necessary and sufficient for the existence of a synchronizing

sequence for a desired final state.

Theorem 2 A FSM M has a synchronizing sequence for a desired final state sr iff there is a

path in its A(M) from every node (si, sj), 1 ≤ i < j ≤ n, to the node (sr, sr), with equal first

and second components.

Proof: There is an input sequence that takes the machine from state si and sj, i 6= j, to the

same state sr iff there is a path x′ in A(M) from (si, sj) to (sr, sr). If such a path does not

exist, none of the possible sequences will take the two states to sr. In that case, when at step

Figure 1: A synchronised PN (a) and a possible behavior (b).

M0 [2 0 0]T

M1 [0 1 0]T

M2 [1 0 1]T

Table 1: Markings of the PN in Fig. 1.(a).

5.2.1. the Algorithm updates the current state uncertainty it always holds that si, sj ∈ σ(x). In

no more than n iteration, the Algorithm will be forced to pick the couple (si, sj), then stating

that no synchronizing sequence for the state sr exists. �

We can also propose this theorem to prove the existence of any SSs.

Theorem 3 A FSM M has a synchronizing sequence iff there exists a path in its A(M) from

every node (si, sj), 1 ≤ i < j ≤ n, to some node with equal first and second components (sr, sr),

1 ≤ r ≤ n. �

The proof is trivial and not reported.

We will use this condition to prove the existence of a synchronizing sequence.

2.3 Synchronised Petri nets

In this section we recall the PN formalism used in the paper. For more details on PN we refer

to [1].

A Place/Transition net (P/T net) is a structure

N = (P, T, Pre, Post) ,

where P is the set of m places, T is the set of q transitions, Pre : P × T → N and Post :

P × T → N are the pre and post incidence functions that specify the arcs.

A marking is a vector M : P → N that assigns to each place a nonnegative integer number

of tokens; the marking of a place p is denoted with M(p). A net system 〈N,M0〉 is a net N with

initial marking M0.

A transition t is enabled at M iff M ≥ Pre(·, t) and may fire yielding the marking M ′ =

M − Post(·, t) + Pre(·, t). The set of transitions enabled at M is denoted E(M).

The notation M [σ〉 is used to denote that the sequence of transitions σ = t1 . . . tk is enabled

at M ; moreover we write M [σ〉M ′ to denote the fact that the firing of σ from M yields to M ′.

The set of all sequences that are enabled at the initial marking M0 is denoted with L(N,M0).

A marking M is said to be reachable in 〈N,M0〉 iff there exists a firing sequence σ ∈ L(N,M0)

such that M0[σ〉M . The set of all markings reachable from M0 defines the reachability set of

〈N,M0〉 and is denoted with R(N,M0).

A Petri net is said strongly connected if there exists a directed path from any vertex (place

or transition) to any other vertex (place or transition). The strongly connected components of a

directed graph G are its maximal strongly connected subgraphs.

Let us recall two structural notions. A strongly connected component is said transient if its

set of input transitions is included in its set of the output transitions. It is said ergodic if its set

of output transitions is included in the set of its input transitions. We denote Tr and Er as the

subset of places and transitions determining respectively a transient and an ergodic component.

A synchronised PN [1] is a structure 〈N,M0, E, f〉 such that: i) 〈N,M0〉 is a net system; ii)

E is an alphabet of external events; iii) f : T → E is a labeling function that associates to each

transition t an input event f(t). This type of labelling function is called λ-free in the literature

[4].

The set Te of transitions associated to the input event e is defined as follows: Te = {t | t ∈

T, f(t) = e}.

The previous syntactic definition is also common to the so-called labeled PN [4]. However,

while in the case of labelled PN the evolution is autonomous and the events are usually interpreted

as outputs, in the case of synchronised nets the events are inputs that drive the net evolution

as explained in the following. Furthermore as showed later, in a synchronised nets two or more

transitions can simultaneously fire, while this is not possible for labelled nets.

Let M be the current marking and τ be the current time. A transition t ∈ T fires at τ only

if:

1. it is enabled, i.e., t ∈ E(M);

2. the event e = f(t) occurs at time τ .

On the contrary, the occurrence of an event associated to a transition t 6∈ E(M) does not produce

any firing.

In Fig. 1 is shown an example of synchronised PN. The label next to each transition denotes

the transition name and the corresponding input event at once.

It can be possible to have two enabled transitions receptive to the same event. When this

event occurs, both transitions are fireable and either both fire simultaneously, if there is no

conflict between them, or have a non-determinism otherwise.

Example 4 Consider the PN of Fig. 1(a) and let M = [1 0 1]T be the current marking. It is

trivial to see that t1 and t3 are enabled and the occurrence of the event E1 will make them fire

leading to the marking M ′ = [1 1 0]T . �

As a consequence, the reachability set of a synchronised PN could be either a subset or equal

to the reachable marking set of the underlying net, depending on the labelling function.

Definition 1 A synchronised PN system 〈N,M0〉 is said to be deterministic if the following

relation holds:

∀M ∈ R(N,M0),∀e ∈ E : M ≥
∑

t∈Te

T

E(M)

Pre(·, t). �

Figure 2: The completely specified reachability graph of the PN in Fig. 1(a)

Figure 3: The auxiliary graph of the PN in Fig. 1.(a).

In others words, a synchronised PN is said to be deterministic if for all reachable markings

there is no conflict between two or more enabled transitions that share the same label.

A net system 〈N,M0〉 is said to be bounded if there exists a positive constant k such that

for all M ∈ R(N,M0), M(p) ≤ k ∀p ∈ P . A bounded net has a finite reachability set. In such

a case, the behavior of the net can be represented by the reachability graph, a directed graph

whose vertices correspond to reachable marking and whose edges correspond to the transitions

that cause a change of marking. In the case of synchronised PN it is common to show the event

next to the arc.

In Fig. 2, paying no attention to the dashed edges, it is shown the reachability graph of to

the PN in Fig. 1(a).

In the rest of the paper, we only deal with the class of bounded PN.

3 Synchronizing Sequences for Bounded PN

The use of Petri nets offers significant advantages because of their intrinsically distributed nature

where the notions of state (i.e., marking) and action (i.e., transition) are local. In this section,

we will be concerned with synchronised and deterministic PN. Given a PN system 〈N,M0〉, a

straightforward approach to determine a SS consists in adapting the existing FSM approach to

the reachability graph. This could be summarised it in the following steps:

• computation of the reachability graph G;

• computation of the auxiliary graph A(G);

• verification of the reachability condition.

It’s easy to verify that this straightforward approach presents one shortcoming that makes

it not always applicable: FSM approach requires the graph to be completely specified, while in

a PN this condition is not usually true. In fact, the reachability graph of the PN is partially

specified because from many marking not all the transitions are enabled. In order to use the

mentioned approach it is consequently necessary to make its reachability graph G completely

specified, obtaining G̃.

We obtain the graph G̃ by adding a self loop labelled e = f(t), for every marking M ∈ G

and for every transition not enabled t 6∈ E(M).

We can summarise in the following algorithm the modified approach for PN:

Algorithm 5 (Computing a SS leading to Mr) Let 〈N, M0〉 be a deterministic bounded

synchronised PN system and let Mr ∈ R(N,M0) be a desired final marking.

1. Let G be the reachability graph of 〈N,M0〉

2. Let G̃ be the modified reachability graph obtained by completing G.

3. Construct the corresponding auxiliary graph A(G̃).

4. A SS for the marking Mr, if such a sequence exists, is given by the direct application of

Algorithm 1 to A(G̃). �

Example 6 Consider the PN in Fig. 1.(a). The initial marking M0 = [2 0 0]T enables only

the transition t1. Then for that marking we add a self loop labelled e2 and so on. We obtain

the completely specified reachability graph — taking into account also dashed edges — in Fig. 2,

whose auxiliary graph is shown in Fig. 3. �

In Fig. 2 and Fig. 3 are shown the reachability graph and the corresponding auxiliary

graph of the PN in Fig. 1.(a). Note that dashed edges are added in order to make it completely

specified.

We can now state the following theorem.

Theorem 7 A deterministic bounded synchronised PN 〈N,M0〉 has a synchronizing sequence

leading to a marking Mr ∈ R(N,M0) iff the reachability condition on its auxiliary graph A(G)

is verified, i.e., there is a path from every node (Mi,Mj), with Mi,Mj ∈ R(N,M0), to node

(Mr,Mr).

Proof: (only if) If no path exists in the auxiliary graph from (Mi,Mj) to node (Mr,Mr), then

by Theorem 2 no input sequences w exists such that ∃σi, σj ∈ f−1(w)| Mi[σi > Mr, Mj[σj > Mr.

(if) If in the auxiliary graph for each couple (Mi,Mj) there exists a path with input sequence

w to some node (Mr,Mr), then by Theorem 2 in the completely specified reachability graph G̃

there exist a path labeled w from any mode M to Mr and this path is unique being the graph

deterministic. Thus if the net is in any marking M , the input sequence w drives it to Mr. �

4 Synchronizing Sequences for State Machines

We now discuss the synchronizing sequences problem with reference to a class of PN, called state

machines (SMs). The approach we propose does not require an exhaustive enumeration of the

states in which the system may be. We will initially consider strongly connected PN; later we

will relax this constraint to address the general case.

Definition 2 A state machine is a PN where each transition has exactly one input and one

output place. �

Figure 4: A synchronised strongly connected PN.

k |G| |A(G̃)| tG [s] t
A(G̃) [s]

1 4 10 0.001 0.002

2 10 55 0.002 0.059

3 20 210 0.006 0.285

4 35 630 0.021 1.087

5 56 1596 0.047 3.730

6 84 3570 0.108 11.41

7 120 7260 0.215 32.24

8 165 13695 0.418 79.96

9 220 24310 0.724 186.7

10 286 41041 1.233 411.1

Table 2: Cardinality and computational time of G and A(G̃) of the PN in Fig. 4.

In Fig.4 is shown an example of a synchronised SM. Note also that such a net is strongly

connected.

When the initial marking assigns to this net a single token, it will move from place to

place and the corresponding reachability graph will have as many marking as there are places.

However, if the number of tokens in the initial marking is greater that one, the cardinality of

the reachability graph may significantly increase. It can be shown in fact that for a strongly

connected SM with m places and k tokens the cardinality of the reachability set is given by:

|R(N,M0)| =

(

m + k − 1

m − 1

)

≤ 1
(m−1)!k

m−1

In Table 2 — consider only the first three columns — it is shown the number of states of

the reachability graph |G| and of the modified auxiliary graph |A(G̃)| of the net in Fig. 4 with

m = 4 places, for different values of the total number of tokens k.

The forth and fifth columns show the computational times necessary to construct the reach-

ability graph |G| and the modified auxiliary graph |A(G̃)| of the same net. The used functions,

together with other MATLAB ones for observability and determination of synchronizing se-

quences on PN, can be downloaded at the web address in reference [14].

We now define the concept of a path leading from a set of places P̂ to a place pr.

Definition 3 Given a SM N = (P, T, Pre, Post), let γ = pi1ti1pi2ti2 · · · piktikpi1 with P̂ =

{pi1 , pi2 , . . . , pik} ⊆ P be a directed cycle that touches all places in P̂ . Assume pik = pr and

let σ = ti1 · · · tik−1
be the firing sequence obtained by opening this cycle in pr and removing its

output transition tik . We define σ a synchronizing path leading from P̂ to pr if the following two

conditions are verified:

C1) there do not exist two transitions t, t′ ∈ T such that t ∈ σ, t′ 6∈ σ, and f(t) = f(t′);

C2) for all indices j, h ∈ {1, . . . , k − 1}, if pij = pih then f(tij) 6= f(tih). �

Condition C1 implies that there do not exist any pair of transitions sharing the same event

such that the first one belongs to the synchronizing path but not the second one.

Condition C2 states that if the synchronizing path is touching more than once the same

place, then the output transitions will not have associated the same event.

Proposition 8 Let us consider a strongly connected synchronised SM N = (P, T, Pre, Post)

containing a single token. Let σ be a synchronizing path leading from P to a place pr. It holds

that w = f(σ) is a SS for the PN that brings the token to place pr.

Proof: Let σ = ti1 · · · tik−1
be the corresponding synchronizing path and γ = pi1ti1pi2ti2 · · · piktikpi1

the corresponding cycle, that does not need to be elementary. It is assumed that pik = pr. Let w

be the corresponding input event sequence such that w = f(σ) = ei1 · · · eik−1
. At the beginning,

the event ei1 drives the token to either pi2 — if pi1 was marked — or from pij to pij+1
— if pij

was marked and f(tij) = ei1 . At any rate, the token could only be in a place pik such that k > 1.

Afterwards, if pi2 is marked, ei2 drives the token to pi3 . That is because, if pi2 is not repeated in

γ — it belongs to more than one elementary cycle —, C1) assures only transition belonging to

the cycle to be receptive to eij ; thus the token can only be driven to pi3 . Otherwise, C1) assures

as previously the token to remain in γ whereas C2) assures the token not to come back in the

previously marked places. If the tokens is in some of the other places pij — j > 2 — , for the

same reasoning it can only be driven to pij+1
. Thus, after the application of the event eij , the

token could only be in a place pik such that k > j. �

Note that Condition C1) is sufficient to assure the sequence to be a synchronizing one if γ

is an elementary cycle.

Example 9 Let consider the PN in Fig. 4. We want to find a SS that leads the system to the

marking [0 0 1 0]T . Let γ = p2t4p4t3p1t1p2t2p3t5p2 be the direct cycle that touches all the places

and σ = t4t3t1t2 the synchronizing path for p3, having •t5 = p3. It holds that w = f(σ) = e4e3e1e2

is the searched SS. �

We now give a method to obtain a SS in the case of multiple tokens.

Proposition 10 Let us consider a synchronised strongly connected SM 〈N,M0〉 with k tokens.

A SS for the PN, such that brings all the tokens to the place pr, can be determined as follows. Let

w be the SS leading to the place pr determined for the case with only one token as in Proposition

8. It holds that wk is a SS.

Proof: Let w be a SS leading to the place pr. By applying this sequence for the same reasoning

of Proposition 8 at least one of the tokens will be driven to pr. Any further application of w

does not move the token from pr as C1) assures every output transition for this place to be not

receptive to any of the event ei ∈ w. Thus wk takes the k tokens at least one at time to the

place pr. �

Figure 5: An example of synchronised PN not strongly connected.

Example 11 Let consider the PN in Fig. 4. Let the PN have 2 tokens. We want to find a SS

that leads the system to the marking [0 0 2 0]T . Let w = e4e3e1e2 be the SS founded in Example

9 with one token. It holds that w2 = e4e3e1e2e4e3e1e2 is a SS for the desired final marking. �

In the following, we extend our analyse by relaxing the assumption that a SM has to be

strongly connected and we show how the computation of SS is possible by considering the same

net with only one token using Proposition 10.

Proposition 12 Let us consider a synchronised SM 〈N,M0〉 with two or more ergodic com-

ponents. This net has a SS iff there is no marked transient component from where two paths

leading to two different ergodic components can be determined.

Proof: By definition of transient component, is known that if for a marking M none of the

output transitions are fireable, then none of these transitions will ever be fireable form any

marking obtained from M . Thus it is proved that the existence of such two paths implies that

none of the possible sequences can synchronise tokens from one ergodic components to another

one. Consecutively there does not exist any sequence able to synchronise the net to a final

marking regardless of the initial one. �

It is possible to find a SS for a synchronised PN not strongly connected, depending on the

initial marking.

Proposition 13 Let us consider a totally synchronised SM 〈N,M0〉 with two or more ergodic

components. It holds that if the only one initially marked component is an ergodic one then it

exists a SS for all the markings M such that M(p) = 0 ∀p is not belonging to such a component.

Proof: It is easy to verify that for M0(p) = 0 ∀p not belonging to one ergodic component the set

R(N,M0) determines a unique strongly connected component for whose markings a SS can be

trivially determined by applying Proposition 8 to the subnet induced by that component. �

We now give a method to obtain a SS in a synchronised PN not strongly connected for the

case of one token.

Proposition 14 Let us consider a totally synchronised SM 〈N,M0〉 with a unique ergodic com-

ponent Er and a set of transient components Tr1, T r2, . . . , T rS . A SS for the PN, such that

brings the unique token to the place pi ∈ Er, can be determined concatenating w1 and w2.

These two sequences are constructed as follows. Let σ1 = σ1
1t1 . . . σS

1 tS , where the couple (σi
1, ti)

is determined as follows: let ti be the transition from some p′ ∈ Tri to some p′′ ∈ Er such that

there do not exist any t′ ∈ p′• leading to Tri such that f(t′) = f(ti); let σi
1 be the synchronizing

path from the set of all places belonging to Tr leading to that place p′. Let σ2 be the synchro-

nizing path from the set of all places belonging to Er leading to the place pi. Let w1 = f(σ1)

and w2 = f(σ2).

Proof: By definition of synchronizing path the input sequences corresponding to each couple

(σi
1, ti) make the token entering the unique ergodic component. The application of the input

sequence w2 matches with the problem already solved in proposition 8 wrt to the subnet induced

by the ergodic component. �

Example 15 Let us consider again the net in Example 5. Let the initial marking be M0 =

[0 1 0 0 0]T . We want to find a SS that leads the system to the marking M = [0 0 0 1 0]T . Let

it be (σ1
1 , t1) = (t1, t4) and (σ2

1 , t2) = (ε, t3), it holds that σ1 = t1t4t3. Let σ2 = t5 be the

synchronizing path from the ergodic component to the place p4, having •t6 = p4. It holds that

w = f(σ1σ2) = e1e4e3e5 is the searched SS. �

5 Conclusion

In this paper, we have shown how Mealy machines techniques can be applied easily to the class of

bounded synchronised PN, by using some arrangement. We also proposed a method that allows

to determine a SS for a bounded synchronised PN by only looking at its static structure. Even in

the case of multiple tokens, the existence of SS can be efficiently determined avoiding the state

explosion problem.

Our approach uses synchronised PN that can have two o more transitions sharing the same

event. This case introduces a nondeterminism, having a PN that in response to the same input

events sequence can produce different firing sequences, reaching different markings.

A future work will be to extend our approach to synchronised PN considering the presence of

always occurring event, the neutral event of E∗. In this case we lead with the problem of unstable

markings, those markings whose outgoing transitions are receptive to the always occurring event

that immediately fires.

References

[1] R. David and H. Alla. Discrete, Continuous and Hybrid Petri Nets. Springer-Verlag, 2004.

[2] David Eppstein. Reset sequences for monotonic automata. SIAM J. Computing, 19:500–510,

1990.

[3] G.-V. Jourdan and G.v. Bochmann. On testing 1-safe Petri nets. In Theoretical Aspects of

Software Engineering, 2009. TASE 2009. Third IEEE International Symposium on, pages

275 –281, 29-31 2009.

[4] S. Gaubert and A. Giua. Petri net languages and infinite subsets of Nm. J. of Computer

and System Sciences, 59(3):373–391, april 1999.

[5] A. Giua and C. Seatzu. Observability of place/transition nets. Automatic Control, IEEE

Transactions on, 47(9):1424 – 1437, sep 2002.

[6] H. Zhu and X. He. A theory of testing high level Petri nets. In In Proceedings of the

International Conference on Software: Theory and Practice, 16th IFIP World Computer

Congress, pages 443–450, 2000.

[7] F. Hennie. Finite-State Models for Logical Machines. New York: John Wiley, 2 edition,

1968.

[8] Zvi Kohavi. Switching and Finite Automata Theory. The McGraw-Hill College, 2 edition,

1978.

[9] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machine

– a survey. Proceedings of the IEEE, 84(8):1090–1123, August 1996.

[10] E .F. Moore. Gedanken-experiments on sequential machines. Automata Studies, Annals of

Mathematical Studies, (34):129 – 153, 1956.

[11] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541 –580, apr 1989.

[12] B. K. Natarajan. An algorithmic approach to the automated design of parts orienters. In

SFCS ’86: Proc. of the 27th Annual Symposium on Foundations of Computer Science, pages

132–142, Washington, DC, USA, 1986. IEEE Computer Society.

[13] C. Pixley, S.-W. Jeong, and G.D. Hachtel. Exact calculation of synchronizing sequences

based on binary decision diagrams. Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, 13(8):1024 –1034, aug 1994.

[14] Marco Pocci. Finite state machines and Petri nets synchronisation toolbox.

http://www.lsis.org/poccim/SYNCH_TOOL.zip, April 2010.

[15] I. Pomeranz and S.M. Reddy. Application of homing sequences to synchronous sequential

circuit testing. Computers, IEEE Transactions on, 43(5):569 –580, may 1994.

[16] June-Kyung Rho, F. Somenzi, and C. Pixley. Minimum length synchronizing sequences of

finite state machine. In Design Automation, 1993. 30th Conference on, pages 463 – 468,

14-18 1993.

[17] E.C. Yamalidou, E.D. Adamides, and D. Bovin. Optimal failure recovery in batch processing

using Petri net models. Proceedings of the 1992 American Control Conference, 3:1906–1910,

1992.

[18] E.C. Yamalidou and J.C. Kantor. Modeling and optimal control of discrete-event chemical

processes using Petri nets. Computers & Chemical Engineering, 15(7):503 – 519, 1991.

[19] Hong Zhu and Xudong He. A methodology of testing high-level Petri nets. Information and

Software Technology, 44(8):473 – 489, 2002.

