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Abstract

In this paper we show how the decentralized estimation of the spectrum of a network can be

used to infer its controllability and observability properties. The proposed approach is applied to

networked multi-agent systems whose local interaction rule is based on Laplacian feedback. We provide

a decentralized necessary and sufficient condition for observability and controllability based on the

estimated eigenvalues. Furthermore we show an example of application of the proposed method and show

that the estimated spectrum can also be envisioned as a tool for decentralized formation identification.
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I. INTRODUCTION

Multi-agent systems composed by networks of unmanned mobile vehicles are envisioned to

perform the most various tasks in the near future. The design of control algorithms for such

systems poses several challenges to achieve robustness and scalability. So far such properties are

expected to be achieved by decentralized control algorithms that make locally use of available

information [1], [2], [3], [4].

A significant example of a multi-agent system is one involving agents with simple integrator

dynamics under Laplacian feedback [2]. While the model of the agents’ dynamics is clearly

oversimplified, the network model has just the right complexity to capture several relevant

features of a networked system linked to the topology of the network. Furthermore such model

is widely accepted to be a good starting point in modeling leader-follower networks of mobile

vehicles [5] with the aim of allowing a single pilot to control a multitude of mobile vehicles

with limited available information.

Recently, an algorithm for the decentralized estimation of the eigenvalues of the Laplacian

matrix associated to a network was proposed in [6]. Such algorithm consists in the agents

applying a local state update rule that allows to infer the eigenvalues of the network through the

application of a simple Discrete Fourier Transform to their state trajectory.

In this paper we build on the idea to use the information about the spectrum of the network

to infer in a decentralized fashion properties such as controllability, observability and, more in

general, its topology.

The link between the network topology of a multi-agent system and its properties of control-

lability and observability have been deeply studied over the past few years (see for example [7],

[8], [9], [10]). In [10] a graph theoretic sufficient and necessary condition for controllability has

been developed. It turned out that controllability and, by duality, observability depend on the

existence of external equitable partitions on the graph representing the network. The novelty in

our contribution is that our condition is locally checkable online.

Another application of the information about the spectrum of a network is the identification of

its topology. In general, the spectrum is not necessarily a unique identifier for a given topology.

Moreover, in multi-agent systems we may be interested in the subproblem of estimating when a

particular topology known a priori has been achieved. The target topology in which the agents
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are supposed to be in their nominal state of operations can be built so that it is identifiable by

its spectrum. A strong application of this information is the enabling of a simple Luenberger

observer to estimate correctly the relative position of each agent in the network with respect to

the leader in absence of communication, GPS or common reference frames. In this paper we

show how line and lattice formations composed by a convoy of n agents can be identified by

their corresponding spectrum.

We point out that the theory presented in this paper can be easily extended to heterogeneous

networks where a different weight is associated to each link.

This paper is structured as follows:

• In Section II we provide some background on the work in [6] regarding the decentralized

estimation of the eigenvalues of a network topology.

• In Section III we present the main result of this paper, i.e. a decentralized method to check

for observability and controllability.

• In Section IV we propose as research direction the use of the spectrum of a graph as a tool

for formation identification.

• In Section V we present an application of the results presented in this paper.

II. BACKGROUND

In multi-agents systems, it is common to let the nodes of a graph represent the agents, and to

let the arcs in the graph represent the inter-agent communication links. In fact, this interaction

graph plays a central role in representing the information flow among the agents, and in defining

the properties of the system.

Let the undirected graph G be given by the pair (V, E), where V = {1, . . . , n} is a set of n

vertices, and E is a set of edges. Two nodes j and k are neighbors if (j, k) ∈ E , and the set of

the neighbors of the node j is defined as Nj = {k : (j, k) ∈ E}. The degree of a node i, ∆i is

given by the number of its neighbors, we denote ∆max = maxi∆i. A graph G is connected if

there is a path between any pair of distinct nodes, where a path i0i1 . . . iS is a finite sequence

of nodes such that ik−1 ∈ Nk with k = 1, 3 . . . S.

In this paper we let the state of each node, xi, be a scalar. (This does not affect the generality

of the derived results.) The standard, consensus algorithm consists in each agent performing the
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following state update law

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), (1)

or equivalently ẋ(t) = −Lx(t), where x(t) is the vector with the states of all nodes at time t,

and L is the graph Laplacian. L can be obtained as IIT , where I ∈ Rn×p, (p being the number

of edges), is the incidence matrix of the graph, defined as

[I]kl =


1 if node k is the head of the edge l

−1 if node k is the tail of the edge l

0 otherwise,

given an arbitrary orientation of the edges.

Under some connectivity conditions, the consensus algorithm (1) is guaranteed to converge,

i.e. limt→+∞ xi(t) = g, i ∈ {1, . . . , n}, where g is a constant depending on L, and on the initial

conditions x0 = x(0). (See for example [11], [12], [13].)

As in [14], [15], [16], we imagine that a subset of the agents have superior sensing, com-

putation, or communication abilities. We thus partition the node set V into a leader set L of

cardinality nl, and a follower set F of cardinality nf , so that L ∩ F = ∅ and L ∪ F = V .

Leaders differ in their state update law in that they can arbitrarily update their positions, while

the followers execute the agreement procedure (1), and are therefore controlled by the leaders.

Under the assumption (without loss of generality) that the first nf agents are followers, and

the last nl = n − nf are leaders, the introduction of leaders in the network induces a partition

of the incidence matrix I as

I =

 If

Il

 ,

where If ∈ Rnf×p, Il ∈ Rnl×p, and the subscripts f and l denote respectively the affiliation with

the leaders and followers set. As a result, the graph Laplacian L becomes

L =

 Lf Lfl

LT
fl Ll

 , (2)

with Lf = IfIT
f ∈ Rnf×nf , Ll = IlIT

l ∈ Rnl×nl and Lfl = IfIT
l ∈ Rnf×nl .
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The system we now consider is the controlled agreement dynamics, in which agents evolve

through the Laplacian-based dynamics
ẋ = −Lfx− Lflxl

ẋl = u

y = −LT
flx− Llxl

(3)

where x is the state vectors of the followers, and u(t) denotes the exogenous control signal

dictated by the leaders.

In the proposed approach all the agents (both followers and the leader) execute the algorithm

for estimating the eigenvalues of L. We now recall that the leader-followers network evolves

according to

 ẋ = −Lfx− Lflxl

ẋl = u(t)
(4)

The leader has full access to the state of its neighbors and as such it is able to estimate

y = −LT
flx− Llxl (5)

It follows that if the leader applies the following feedback control law,

u(t) = −LT
flx− Llxl + û(t) (6)

including the state of the leader with the others, the networked system can be described by

 ẋ

ẋl

 = −L

 x

xl

+Bu

y = C

 x

xl

 (7)

where C = BT = [0, . . . , 0, 1].
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A. Decentralized Laplacian Eigenvalues Estimation

In this section we review an algorithm recently proposed in [6] for the decentralized estimation

of the Laplacian eigenvalues of a network.

The algorithm consists on having the network of agents simulate numerically the following

dynamical system:  ż1i(t) =
∑

j∈Ni(t)
(z2i(t)− z2j(t)) ,

ż2i(t) = −
∑

j∈Ni(t)
(z1i(t)− z1j(t)) .

(8)

The above local interaction rule is meant to be simulated through the use of local communi-

cations between the agents, and thus no sensing of relative positions is involved in this step.

The behavior of the network state when each agent performs the above updating rule can be

described by the following time varying autonomous linear system ż1(t)

ż2(t)

 = A(t)

 z1(t)

z2(t)

 (9)

where

A(t) =

 0n×n L(t)

−L(t) 0n×n

 (10)

and 0n×n is the null n× n matrix.

This is a linear switching system, where the linear dynamics switch to a different one when

an edge is added or removed from the network.

The resulting state trajectory is composed by a linear combination of sinusoids with frequencies

corresponding to the Laplacian eigenvalues of the network. The following theorem characterizes

the spectrum of the agents’ trajectories which can be computed locally and independently by

each single agent by applying the Discrete Fourier Transform (DFT) to a sufficiently long time

window as showed in [6].

Theorem 1:

Let us consider a system described by eq. (9) relative to a network whose graph G is connected.

The module of the Fourier transform of the i-th state components z1i(t) and z2i(t), i = {1, . . . , n},
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can be written as

|F [z1i(t)]| = |Z1i(f)| = a1,i δ(0) +
m∑
j=2

aj,i
2

δ(f ± λj/2π),

|F [z2i(t)]| = |Z2i(f)| = b1,i δ(0) +
m∑
j=2

bj,i
2

δ(f ± λj/2π),

where aj,i and bj,i are appropriate real constants. �

It is relevant to point out that the multiplicity of the eigenvalues can not be retrieved from

the spectrum Z1i(f) or Z2i(f).

Clearly the amplitude of the frequency peaks in the resulting spectrum are function of the

network eigenvectors and initial conditions [6]. Furthermore, in the case the network is not

observable, some coefficients might be zero.

It is relevant to point out that such algorithm produces sustained oscillations at frequencies cor-

responding to the eigenvalues only if the initial conditions are not orthogonal to any eigenvector

of the graph Laplacian.

Let C be any m × n matrix. The following result is stated for a general case and holds for

any C, however in our application we consider the output matrix C as a 1 × n matrix where

all elements are zeros but for the i-th element that is equal to 1 where i is the ID of the agent

observing the network. Let O(A, Ĉ) and O(L, C) be the observability matrices of system (9)

and system (7) .

The following result, which has been proved in [6], states that the observability properties of

system (9) are strictly related to the observability properties of the multi-agent network under

Laplacian feedback described by system (7).

Theorem 2:

Let A be the matrix describing the group dynamics as in (10). Let C be any m× n matrix.

The following properties hold:

• rank(O(A, Ĉ)) = 2rank(O(L, C)).

• (A, Ĉ) is observable if and only if (L, C) is observable.

Proof: See [6]

�
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We now state the procedure implemented by each agent to estimate the eigenvalues of the

network topology.

Algorithm 1: Eigenvalue Estimation Algorithm
Data: Each agent stores in its memory two variables z1, z2 to numerically simulate the

proposed interaction rule (9). A sampling time τ is chosen by the numerical method

chosen to simulate the interaction rule.

Result: λ(L) = {λ1, λ2, . . . , λm}.

Estimation steps:

1) Each agent i = 1, . . . , n numerically simulates ẋ =
∑

j∈Ni
(xj − xi) with random initial

conditions.

2) At any instant of time, agent i computes the Discrete Time Fourier Transform of xi(t)

for the time window [t, t− t0].

3) Agent i computes the location of the peaks (spectral lines) in the computed DFT.

4) The location of the peaks corresponds to the m ≤ n eigenvalues corresponding to the

observable modes and are given as output.

Remark 1 (Implementation Remarks): Algorithm 1 is based on the numerical simulation of

system (9). For this reason the eigenvalues estimation procedure requires to compute the discrete

time Fourier Transform over some sufficiently long time window to minimize approximation

errors.

Furthermore to correctly observe the network eigenvalues we need to choose the number

of samples m of the time window and the sampling frequency ωs. Regarding the sampling

frequency it has to be at least twice as the maximum frequency contained in the signal, which

if no topology switching occurs during such time window corresponds exactly to λmax. Since it

holds λmax ≤ ∆max ≤ n− 1 it is sufficient to impose ωs ≥ 2∆max or ωs ≥ 2(n− 1). ωs ≥ 2λmax

λmax ≤ ∆max ≤ n− 1

�
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III. DECENTRALIZED CHECK FOR OBSERVABILITY AND CONTROLLABILITY

In this section we present a method for the decentralized online verification of observability

and controllability in a multi-agent system. In the following it is assumed that the agents execute

Algorithm 1 and thus each agent estimates the eigenvalues (without multiplicity) observable from

its position by taking only its own state trajectory as output. The basic idea is to exploit the

properties of algorithm (9) to locally estimate the spectrum of the network and then link this

information to check for observability and controllability. Such link is made possible by the

fact that the modes of system (9) are observable if and only if the modes of system (7) are

observable.

We now provide some basic helpful facts of linear system theory.

Lemma 3: System (4) is controllable if and only if system (7) is controllable.

Proof:

System (4) differs from system (7) in that the leader applies the following feedback control

law

u(t) = −LT
flx− Llxl + û(t),

where û(t) is an input with the same dimensions as u(t). If the system is controllable with

such feedback it is controllable also with u(t) = û(t) since the input enters only in the row

corresponding to xl. Necessity comes from the fact that if system (7) is not controllable from

û(t) then it is not controllable from any input entering in the row of xl and thus also

ū(t) = û(t) + LT
flx+ Llxl = u(t),

proving the statement.

Lemma 4: If the Laplacian matrix L of graph G has eigenvalues with multiplicity greater

than one, then system (7) is not observable/controllable.

Proof:
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See [17] chapter 9.5.

Now we state one of the main results of the paper. In the following theorem a sufficient and

necessary condition for observability and controllability verification is given. Such condition

involves only the local information available to agent i if the total number of agents n is known.

Theorem 5: Let the network of agents be represented by a connected graph G. Assume

each agent estimates the eigenvalues of system (9), by applying the DFT algorithm to its state

trajectory. Let agent i know the total number of agents n connected to the network. Then the

network described by  ẋ = −Lfx+ Lflu

y = LT
flx

(11)

is observable and controllable from agent i if and only if agent i observes n distinct eigenvalues.

Proof:

- Sufficiency:

Assume agent i observes n modes of system (9) and they are distinct, then by taking as

output the matrix C = [0, . . . , 1, 0, . . .] with 1 in the i-th element, we have that observability

matrix (C,L) is full rank due to theorem 2. Due to lemma 3 if system (7) is controllable so is

system (11). Furthermore since system (11) is symmetric and C = BT , by duality the system is

also controllable.

- Necessity:

Assume agent i estimates n distinct eigenvalues, assume system (9) is initialized with an

initial condition not orthogonal to any of its eigenvector. If system (11) is not observable, then

the observability matrix (C,L) must be rank deficient and so has to be the observability matrix

for system (9). It follows that if system (9) is not observable, then by definition the number

of observable modes must be less than n which is a contradiction. Furthermore observability

of system (7) is a necessary condition for the observability of system (11), the same goes for

controllability.

The above theorem allows the agents to estimate in a decentralized fashion some relevant

properties of the network if the number of agents is known. Note that the necessary condition

DRAFT



11

holds only if system (9) is initialized with a proper initial condition so that all the system

modes are excited. Now suppose that the total number of agents is not known and that the

actual network is eventually not controllable nor observable. We are interested in finding the

dimension of the controllable/observable subspace from any given agent. The following theorem

characterizes the dimension of the controllable/observable subspace as function of the number

of observable eigenvalues of system 9 which is simulated for the execution of Algorithm 1.

Theorem 6: Assume each agent estimates the eigenvalues of system (9), by applying the DFT

to its state trajectory. Assume agent i estimates a number of distinct eigenvalues mi.

The dimension of the controllability/observability subspace from agent i is equal to mi.

Proof:

Assume agent i observes mi eigenvalues executing Algorithm 1. Thanks to theorem 2 we

have that

rank(O(A, Ĉ)) = 2rank(O(L, C)).

Since the eigenvalues of system A are purely imaginary, pairwise conjugate and equal to the

eigenvalues of L in modulus, we have

rank(O(L, C)) = mi.

Remark 2: Theorem 6 holds if system (9) is initialized with a proper initial condition so

that each system mode is excited. In the case such condition cannot be guaranteed, then the

dimension of the controllability/observability subspace from agent i is clearly greater than or

equal to mi. �

IV. SPECTRUM BASED FORMATION IDENTIFICATION

The idea of estimating topological features of a graph from its spectrum has been around for

quite some time in algebraic graph theory. Unfortunately it has been shown that the spectrum
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of a graph is not a unique identifier for its topology. As an example, if two graphs are identical

except for a relabeling of their nodes then necessarily the two spectra are identical. On the other

hand there exists several graphs which are co-spectral with many others [18], [19], [20]. In this

section we focus on the practical uses of this notion for the identification of regular structures

such as formations of multi-agent systems.

A vast literature that deals with achieving some desired formation, e.g. [3], [21], [22], [23],

[24], in a multi-agent system possibly in a decentralized fashion exists. A relevant issue in such

decentralized approaches is to understand when such formation has been actually achieved so

that the agents can switch mode of operation to something else.

It is clear that if the achievement of a formation could be linked directly to the spectrum of

its topology then the numerical simulation of system 9 by the network and the execution of

Algorithm 1 could provide an instance of solution to such problem.

A relevant class of graph topologies that serve our cause are those structured graphs whose

eigenvalues are known analytically as function of the number of nodes.

The first of such graphs is the line graph, or path Pn of n agents whose eigenvalues are

λ(Pn) = 4 sin(
πi

2n
)2, ∀i = 0, . . . , n− 1. (12)

This fact is relevant to practical applications in that the line graph is both controllable and

observable for leader-follower networks. Furthermore it has obvious applications in the control

of convoys of ground vehicles.

Since the cartesian product of graphs has eigenvalues equal to any combination of summation

of the eigenvalues of the original graphs [25], we have that the n×m grid has eigenvalues given

by

λ(Gn×m) = 4 sin(
πi

2n
)2 + 4 sin(

πj

2n
)2, ∀i, j = 0, . . . , n− 1.

The grid graph has significant applications in the coverage problem for both multi-agents

systems and sensor networks.

V. APPLICATION TO LEADER-FOLLOWER NETWORKS
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Fig. 1. The initial structure of the convoy (a) and its modifications (b) toward the desired topology (c).

In this section we apply the proposed method for decentralized observability verification to a

leader-follower network and present an example of spectrum-based formation identification.

Let us consider a group vehicles with the task to form a convoy and move toward a target.

Suppose that the leader knows the number of agents of the network and the desired topology

which is determined by the eigenvalues of the Laplacian Matrix. Furthermore, suppose that each

agent is provided with a decentralized controller which is able to chose its neighbors in order

to reach the desired topology.

Starting from the initial point and structure of Figure 1(a), the communication links among

nodes are changing (Figure 1(b)) to the final structure of Figure 1(c).

Figure 2 shows the evolution of the eigenvalues of the Laplacian matrix associated with

networks of Figure 1(a), 1(b), 1(c). For every t it reports the Discrete Fourier Transform (DFT)

to a sufficiently long time window (of size Tw) of the trajectory of the state of the system (9) in

the interval [t−Tw, t] which is composed by a linear combination of sinusoids with frequencies

corresponding to the Laplacian eigenvalues of the network. It is clear that, since the window is

sliding, we are able to capture the eigenvalues of the Laplacian matrix associated to the network
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Fig. 2. Spectrogram of the switching topology in figure 1(a),1(b),1(c) obtained by algorithm 9.

Figure 1(c) ∀t ∈ [0, Tf ] with all their modification to the final set-up. In particular, at time t = 0

we can see from Figure 2 that the topology in Figure 1(a) is not controllable and observable

from the leader since it has eigenvalues located in λ(G1) = [0, 1.4, 3, 3, 3, 5.5], only 4 distinct

eigenvalues with 6 agents. At time t = 150 the topology in Figure 1(b) is completely controllable

and observable from the leader since we observe 6 eigenvalues on 6 agents. Since the desired

formation is a line and its eigenvalues are known, we can infer that at time t = 150 the agents

are not in a line-graph since its spectrum is λ(G2) = [0, 0.7, 2.1, 3.4, 4.5, 5.1]. At last, at time

t = 250 Figure 2 shows that the network in Figure 1(c) is still controllable and observable and

the observed spectrum matches the one of a line graph λ(G3) = [0, 0.2, 1, 2, 3, 3.7] according to

(12).

It is clear that this context emphasize the importance of the proposed method: by executing

the decentralized check all agents are able to investigate about the eigenvalues of the network 2

and to settle whether the network is changed and whether the actual configuration is the desired

one, for example observable. Only in the latter case, the leader, from which the network is

completely observable, is interested in reconstruct the connection scheme through which it is

able to know all information regarding the other node in the network.
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VI. CONCLUSION

In this paper we proposed a decentralized method for online checking of controllability and

observability of a network of single integrators with Laplacian feedback. The method exploits

the knowledge of the eigenvalues of the linear dynamics made available by a recently proposed

algorithm in [6]. We proposed the use of the spectrum of the network of a multi-agent system

to identify when a desired formation has been achieved. Finally we presented an application in

which the proposed method is used to check for controllability and observability of a convoy

of vehicles and shown that the convoy, whose topology corresponds to a line-graph, can be

identified in a decentralized way from the Laplacian spectrum of the network.
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