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Abstract

In this paper we generalize our previous results on the diagnosis of discrete event systems
using Petri nets based on the notions of minimal explanations and basis markings. In par-
ticular, in our previous submissions we assumed that fault events only correspond to silent
transitions, and there also exist silent transitions modeling regular behavior. Moreover, la-
beled transitions model regular behavior but they introduce a further form of nondeterminism
because in general the same label can be shared by two or more transitions.

Now, we assume that fault events can also be modeled by labeled transitions that share
the same label with other fault transitions (e.g., belonging to different fault classes) and with
other transitions modeling regular behavior. This requires redefining the main concepts on
which our approach is based on and adapting the algorithms for diagnosis.
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1 Introduction

In this paper we focus on the problem of deriving an efficient approach for the fault diagnosis
of discrete event systems (DES). This problem has been extensively investigated in the last
decades and several original theoretical approaches have been proposed both using automata
[3, 6, 10,12,13] and Petri nets (PNs) [1, 2, 4, 5, 7–9].

The main feature of our procedure [4, 5, 8] is the concept of basis marking that allows one to
represent the reachability space in a more compact manner, only enumerating a subset of its
markings.

In our previous papers [5,8] we presented an approach for on-line diagnosis for PNs where fault
transitions are only modeled by silent transitions, but there are also other silent transitions that
model regular behavior. In [4] we also dealt with labeled PNs and this enabled us to also take
into account a new source of nondeterminism originating from the fact that different transitions
modeling regular behavior may share the same label. Both approaches apply to all net systems
whose unobservable subnet is acyclic.

In this paper we consider a more general setting and assume that fault transitions are not neces-
sarily silent, but they can also be labeled observable transitions that share the same label with
transitions belonging to different fault classes and/or with transitions modeling a regular behav-
ior. As for the previous approaches we require that the unobservable subnet of the considered
net system is acyclic.

This requires to redefine the four diagnosis states previously defined in [4], each one correspond-
ing to a different degree of alarm, and the procedure to compute the actual diagnosis state given
the current observation.

Finally we show that, as in the previous less general case [4, 5, 8], if the net system is bounded,
the most burdensome part of the procedure can be moved off-line defining a particular graph,
that we call Basis Reachability Graph.

2 Notation

In this section we recall the formalism used in the paper. For more details on PNs we refer
to [11].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and
post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T

system or net system 〈N, M0〉 is a net N with an initial marking M0. A transition t is enabled
at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ = M +C(· , t). We write M [σ〉 to
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denote that the sequence of transitions σ = tj1 · · · tjk
is enabled at M , and we write M [σ〉 M ′

to denote that the firing of σ yields M ′. We also write t ∈ σ to denote that a transition t is
contained in σ. The set of all sequences that are enabled at the initial marking M0 is denoted
L(N, M0), i.e., L(N,M0) = {σ ∈ T ∗ | M0[σ〉}.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector y ∈ Nn,
named the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the transition t is
contained k times in σ.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted
R(N,M0).

A PN having no directed circuits is called acyclic. A net system 〈N,M0〉 is bounded if there
exists a positive constant k such that, for M ∈ R(N, M0), M(p) ≤ k.

A labeling function L : T → E ∪ {ε} assigns to each transition t ∈ T either a symbol from a
given alphabet L or the empty string ε.

3 Problem Setting

In this paper we solve the diagnosis problem for labeled Petri nets where faults can be modeled
either by unobservable transitions or by undistinguishable events, i.e., the same label may be
assigned to fault transitions and to transitions modeling regular behavior.

We denote as To the set of transitions labeled with a symbol in L. Transitions in To are called
observable because when they fire their label can be observed. We assume that the same label
l ∈ L can be associated to more than one transition. In particular, two transitions t1, t2 ∈ To are
called undistinguishable if they share the same label, i.e., L(t1) = L(t2). The set of transitions
sharing the same label l are denoted as Tl. The set of observable transitions is partitioned into
two subsets, namely To = To,f ∪ To,reg where To,f includes fault transitions that are observable,
while To,reg includes all transitions relative to observable and regular events.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions
in Tu are called unobservable or silent. The set of unobservable transitions is partitioned into
two subsets, namely Tu = Tu,f ∪Tu,reg where Tu,f includes fault transitions, while Tu,reg includes
all transitions relative to unobservable but regular events.

The set of fault transitions Tf = Tu,f ∪ To,f is further partitioned into r different subsets T i
f ,

where i = 1, . . . , r, that model the different fault classes.

In the following we denote as Cu (Co, Co,f ) the restriction of the incidence matrix to Tu (To,
To,f ) and denote as nu, no and no,f , respectively, the cardinality of the sets Tu, To and To,f .
Moreover, given a sequence σ ∈ T ∗, Pu(σ), resp., Po(σ), Po,f (σ), denotes the projection of σ

over Tu, resp., To, To,f .
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4 Characterization of the set of consistent markings

Let w = Po(σ) be the observed word of events associated to a sequence σ.

Definition 4.1 [4] Let 〈N, M0〉 be a labeled net system with labeling function L : T → E∪{ε},
where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. We define

S(w) = {σ ∈ L(N,M0) | Po(σ) = w}

the set of firing sequences consistent with w ∈ L∗, and

C(w) = {M ∈ Nm | ∃ σ ∈ S(w) ∧M0[σ〉M}

the set of markings consistent with w ∈ L∗. ¥

To solve a diagnosis problem, it is essential to be able to compute the set of sequences and
markings consistent with a given observation w. In this section we provide a formalism that
allows one to characterize these sets without resorting to explicit enumeration. Our approach
is based on the notions of minimal explanations and basis markings that are introduced in the
following two subsections. In the rest of this section we recall some definitions and results
already presented in [4, 5] adapting them to the new problem setting.

4.1 Minimal explanations and minimal e-vectors

Definition 4.2 [5] Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M , and Y (M, t) = π(Σ(M, t)) the e-vectors (or explanation
vectors), i.e., firing vectors associated to the explanations. ¥

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t. Among the
above sequences we want to select those whose firing vector is minimal. The firing vector of
these sequences are called minimal e-vectors.

Definition 4.3 [5] Given a marking M and a transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | @ σ′ ∈ Σ(M, t) :
π(σ′) � π(σ)}

the set of minimal explanations of t at M , and we define

Ymin(M, t) = π(Σmin(M, t))

the corresponding set of minimal e-vectors. ¥

In the case of labeled PNs what we observe are symbols in L. Thus, it is useful to compute the
following sets.
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Definition 4.4 [4] Given a marking M and an observation l ∈ L, we define the set of minimal
explanations of l at M as

Σ̂min(M, l) = ∪t∈Tl
∪σ∈Σmin(M,t) (t, σ),

i.e., the set of pairs (transition labeled l, corresponding minimal explanation), and we define the
set of minimal e-vectors of l at M as

Ŷmin(M, l) = ∪t∈Tl
∪e∈Ymin(M,t) (t, e),

i.e., the set of pairs (transition labeled l, corresponding minimal e-vector). ¥

4.2 Basis markings and j-vectors

Given a sequence of observed events w ∈ L∗, a basis marking Mb is a marking reached from M0

with the firing of the observed word w and of all unobservable transitions whose firing is strictly
necessary to enable w. Such a sequence of unobservable transitions is called justification.

Definition 4.5 Let 〈N,M0〉 be a net system with labeling function L : T → E ∪ {ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be a given observation. We define

Ĵ (w) = { (σo, σu), σo ∈ T ∗o , L(σo) = w, σu ∈ T ∗u |
[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)]∧
[6 ∃σ′ ∈ S(w) : σo = Po(σ′), σ′u = Pu(σ′)∧

π(σ′u) � π(σu)]}

the set of pairs (sequence σo ∈ T ∗o with L(σo) = w, corresponding justification of w). ¥

In simple words, Ĵ (w) is the set of pairs whose first element is the sequence σo ∈ T ∗o labeled w

and whose second element is the corresponding sequence of unobservable transitions interleaved
with σo whose firing enables σo and whose firing vector is minimal.

Definition 4.6 [4] Let 〈N,M0〉 be a net system with labeling function L : T → E∪{ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Let w be a given observation and (σo, σu) ∈ Ĵ (w) be
a generic pair (sequence of observable transitions labeled w; corresponding justification). The
marking

Mb = M0 + Cu · y + Co · y′, y = π(σu), y′ = π(σo),

i.e., the marking reached firing σo interleaved with the justification σu, is called basis marking
and y is called its j-vector (or justification-vector). ¥

Obviously, because in general more than one justification exists for a word w (the set Ĵ (w) is
generally not a singleton), the basis marking may be not unique as well.

Definition 4.7 Let 〈N,M0〉 be a net system with labeling function L : T → E ∪ {ε}, where
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Figure 1: The PN system considered in Sections 4 to 6.

N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. We define

M̄(w) = {(M, y, γ) | (∃σ ∈ S(w) : M0[σ〉M) ∧
(∃(σo, σu) ∈ Ĵ (w) : σo = Po(σ),

σu = Pu(σ), y = π(σu)) ∧
σo,f = Po,f (σ), γ = π(σo,f )}

where γ = π(σo,f ) is called γ-vector of sequence σo,f . ¥

In simple words the set M̄(w) is the set of triples (basis marking, relative j-vector, relative
γ-vector) that are consistent with w ∈ L∗. It keeps track of the basis markings that can be
reached, of the firing vectors relative to sequences of unobservable transitions that have fired to
reach them, and of the sequences of fault observable transitions that may have actually fired,

Example 4.8 Let us consider the PN in Fig. 1 representing the final stage of a production line
that produces shoes. In this stage the nominal behavior of the net system expects that each
shoe is moved by a robot in the input buffer of the polishing machine (event a, transition t1),
each shoe is polished (events ε5, b) and each pair of shoes is put in a box (event c). A fault
occurs when a shoe is not polished. It can occur either that the robot moves the shoe directly
in the output buffer of the polishing machine (event a, transition t2) or that the machine runs
out of shoe polish (event ε6).

Here To = {t1, t2, t3, t4}, To,reg = {t1, t3, t4}, To,f = {t2}, and Tu = {ε5, ε6}, Tu,reg = {ε5}, Tu,f =
{ε6}, where for a better understanding unobservable transitions have been denoted εi rather than
ti. The labeling function is defined as follows: L(t1) = L(t2) = a, L(t3) = b and L(t4) = c.

Let us assume w = a. In this case Ĵ (w) = {(t1, ε), (t2, ε)}, Ŷmin(M0, w) = {(t1,~0), (t2,~0)},
σo,f,1 = Po,f (t1) = ε, σo,f,2 = Po,f (t2) = t2, γ1 = π(σo,f,1) = [0] and γ2 = π(σo,f,2) = [1].
The basis markings are respectively M1

b = [1 1 0 0]T and M2
b = [1 0 0 1]T , thus M̄(w) =

{(M1
b ,~0, 0), (M2

b ,~0, 1)}. ¥

In the rest of the paper we assume that the following assumption holds:

(A) The unobservable subnet is acyclic.
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Under assumption (A) the set M̄(w) can be recursively constructed using a procedure similar
to the one presented in [4].

Definition 4.9 Let 〈N, M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.
Assume that the unobservable subnet is acyclic. Let w ∈ T ∗o be an observed word. We denote

Mbasis(w) = {M ∈ Nm | ∃y ∈ Nnu , ∃γ ∈ Nno,f ,

(M, y, γ) ∈ M̄(w)}

the set of basis markings at w. Moreover, we denote as

Mbasis =
⋃

w∈T ∗o

Mbasis(w)

the set of all basis markings for any observation w. ¥

Note that if the net system is bounded then the setMbasis is finite being the set of basis markings
a subset of the reachability set.

Finally, the set of consistent markings in terms of basis markings can be characterized as follows.

Theorem 4.10 [4] Let us consider a net system 〈N,M0〉 whose unobservable subnet is acyclic.
For any w ∈ L∗ it holds that

C(w) = {M ∈ Nm | M = Mb + Cu · y : y ≥ ~0,

Mb ∈Mbasis(w)}.

5 Diagnosis using Petri nets

In this section we solve the diagnosis problem, i.e., the problem of identifying the occurrence
of a fault given an observation, in the setting introduced in Section 3. The following definition
introduces the notion of diagnoser.

Definition 5.1 A diagnoser is a function ∆ : L∗×{T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that associates

to each observation w ∈ L∗ and to each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the i-th fault cannot have occurred, because none of the firing sequences consistent
with the observation contains fault transitions of class i.

• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf 6∈ σu and tf 6∈ σo.

In such a case a fault transition of class i may have occurred but it is neither contained in any
justification of w, nor it is contained in a sequence of observed transitions labeled w.
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• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ′o, σ′u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that: either tf ∈ σu or tf ∈ σo;

(ii) for all tf ∈ T i
f , tf 6∈ σ′u and tf 6∈ σ′o.

In such a case a fault transition of class i is either contained in one justification of w or in a
sequence of observable transitions labeled w, but there also exist at least one other sequence of
transitions that is consistent with the observation w that do not contain fault transitions and
whose justifications do not contain fault transitions as well.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the i-th fault must have occurred, because all firable sequences consistent with
the observation contain at least one fault in T i

f . ¥

Example 5.2 Let us consider the PN in Fig. 1 previously introduced in Example 4.8. Let us
consider only one fault class Tf , where To,f = {t2} and Tu,f = {ε6}.

Let us first assume that no event is observed, i.e., w = ε. Then ∆(w, Tf ) = 0, being obviously
Ĵ (w) = {(ε, ε)} and S(w) = {ε}. This means that no fault may have occurred.

Let us now observe w = a. Then ∆(w, Tf ) = 2, being Ĵ (w) = {(t1, ε), (t2, ε)}. This means that
a fault may have occurred.

Finally, let us observe w = ab. Then ∆(w, Tf ) = 0, being Ĵ (w) = {(t1t3, ε5)} and S(w) =
{t1ε5t3}. This means that no fault may have occurred. ¥

Proposition 5.3 Consider an observed word w ∈ L∗.

• ∆(w, T i
f ) ∈ {0, 1} iff for all (M, y, γ) ∈ M̄(w) it holds that: for all tf ∈ T i

f ∩ Tu,f , y(tf ) = 0,
and for all tf ∈ T i

f ∩ To,f , γ(tf ) = 0.

• ∆(w, T i
f ) = 2 iff there exist (M, y, γ) ∈ M̄(w) and (M ′, y′, γ′) ∈ M̄(w) such that:

(i) either there exists tf ∈ T i
f ∩ Tu,f such that y(tf ) > 0 or there exists tf ∈ T i

f ∩ To,f such that
γ(tf ) > 0 (or both),
(ii) for all tf ∈ T i

f ∩ Tu,f it is y′(tf ) = 0, and for all tf ∈ T i
f ∩ To,f it is γ′(tf ) = 0.

• ∆(w, T i
f ) = 3 iff for all (M, y, γ) ∈ M̄(w) either there exists tf ∈ T i

f ∩Tu,f such that y(tf ) > 0
or there exists tf ∈ T i

f ∩ To,f such that γ(tf ) > 0 (or both).

Proof. By Definition 5.1, ∆(w, T i
f ) = 0 iff no fault transition tf ∈ T i

f is contained in any firing
sequence that is consistent with w, while ∆(w, T i

f ) = 1 iff no fault tf ∈ T i
f is contained in any

justification of w and no observed label in w may correspond to a transition in T i
f ∩ To,f , but

there exists at least one sequence that is consistent with w that contains a transition tf ∈ T i
f .

Therefore, a necessary and sufficient condition to have ∆(w, T i
f ) ∈ {0, 1} is that for all j-vectors

y at w and all tf ∈ T i
f it is y(tf ) = 0 and γ(tf ) = 0, thus proving the first item.

Analogously, ∆(w, T i
f ) = 2 either if a transition tf ∈ T i

f is contained in at least one (but not
in all) justification of w, or at least one (but not all) sequence of observable transitions that
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may have actually fired contains a transition in T i
f ∩ To,f , or both cases occur. Thus, to have

∆(w, T i
f ) = 2 it is necessary and sufficient that either there exists at least one j-vector y or at

least one γ-vector γ that contains at least one transition tf ∈ T i
f , and one j-vector y′ and the

corresponding γ-vector γ′ that do not contain transitions tf ∈ T i
f , thus proving the second item.

Finally, given an observed word w and a fault class T i
f we have ∆(w, T i

f ) = 3 if all firable
sequences consistent with w contain at least one fault transition tf ∈ T i

f . Thus, to have
∆(w, T i

f ) = 3 it is necessary and sufficient that either all the justifications contain at least
one transition tf ∈ T i

f , or all the γ-vectors relative to justifications containing no transition in
T i

f , contain themselves a transition in T i
f (or both conditions hold). This proves the third item.

¤

The following proposition shows how to distinguish between diagnosis states 0 and 1.

Proposition 5.4 For a PN whose unobservable subnet is acyclic, let w ∈ L∗ be an observed
word such that for all (M, y, γ) ∈ M̄(w) it holds y(tf ) = 0 ∀ tf ∈ T i

f ∩ Tu,f and γ(tf ) = 0
∀ tf ∈ T i

f ∩ To,f . Let us consider the constraint set

Ti(M) =





M + Cu · z ≥ ~0,∑

tf∈T i
f

z(tf ) > 0,

z ∈ Nnu .

(1)

• ∆(w, T i
f ) = 0 if ∀ (M,y, γ) ∈ M̄(w) the constraint set (1) is not feasible.

• ∆(w, T i
f ) = 1 if ∃ (M,y, γ) ∈ M̄(w) such that the constraint set (1) is feasible.

Proof. Let w ∈ L∗ be an observed word such that ∀(M, y) ∈M(w) it is y(tf ) = 0 ∀ tf ∈ T i
f∩Tu,f

and γ(tf ) = 0 ∀ tf ∈ T i
f ∩ Tu,f . By Definition 5.1 it immediately follows that:

• ∆(w, T i
f ) = 0 if ∀(M, y, γ) ∈ M̄(w) and ∀tf ∈ T i

f there does not exist a sequence σ ∈ T ∗u
such that M [σ〉 and tf ∈ σ;

• ∆(w, T i
f ) = 1 if ∃ at least one (M, y, γ) ∈ M̄(w) and a sequence σ ∈ T ∗u such that for at

least one tf ∈ T i
f , M [σ〉 and tf ∈ σ.

Now, if a Petri net is acyclic the state equation gives necessary and sufficient conditions for
marking reachability [11]. Therefore, being the unobservable subnet acyclic, the set Ti(M)
characterizes the reachability set of the unobservable net at marking M . Thus, due to this fact
and the above two items, we can conclude that there exists a sequence containing a transition
tf ∈ T i

f firable at M on the unobservable subnet if and only if Ti(M) is feasible. ¤

On the basis of the above two results, if the unobservable subnet is acyclic, diagnosis may be
carried out by simply looking at the set M̄(w) for any observed word w and, should the diagnosis
state be either 0 or 1, by additionally evaluating whether the corresponding integer constraint
set (1) admits a solution.
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Example 5.5 Let us consider again the PN in Fig. 1 where Tf = To,f ∪ Tu,f = {t2} ∪ {ε6}.

Let w = a. In this case M̄(w) = {(M1
b ,~0, 0), (M2

b ,~0, 1)}, where M1
b and M2

b are reported in
Example 4.8. It is ∆(w, Tf ) = 2.

Let w = ab. It is ∆(w, Tf ) = 0 being M̄(w) = {(M2
b , [1 0]T , 0)} and T1(M2

b ) not feasible.

Let w = abac. In this case M̄(w) = {(M0, [1 1]T , 0), (M0, [1 0]T , 1)}. It is ∆(w, Tf ) = 3. ¥

6 Basis Reachability Graph

The diagnosis approach described in the previous section can be applied both to bounded and
unbounded PNs: it is an on-line approach that for each new observed event updates the diagnosis
state for each fault class computing the set of basis markings and j-vectors. Moreover if for a
given fault class is necessary to distinguish between diagnosis states 0 and 1, it is also necessary
to solve for each basis marking Mb and for each fault class T i

f the constraint set Ti(Mb).

In this section we show that, as in the case where fault events may only correspond to silent
events [4,5], if the considered net system is bounded, the most burdensome part of the procedure
can be moved off-line defining a graph called Basis Reachability Graph (BRG).

Definition 6.1 The BRG is a deterministic graph that has as many nodes as the number of
possible basis markings.

To each node is associated a different basis marking M and a row vector with as many entries
as the number of fault classes. The i-th entry of this vector may only take binary values: 1 if
Ti(M) is feasible, 0 otherwise.

Arcs are labeled with observable events in L, e-vectors and vectors z ∈ {0, 1}no,f where z are
binary vectors with as many entries as the number no,f of transitions in To,f : if the current label
l is relative to a transition t ∈ To,f , then the only non zero entry of z is z(t), if t ∈ To,reg otherwise
z is a zeros’ vector. More precisely, an arc exists from a node containing the basis marking M

to a node containing the basis marking M ′ if and only if there exists a transition t for which an
explanation exists at M and the firing of t and one of its minimal explanations leads to M ′. The
arc going from M to M ′ is labeled (L(t), e, z), where e ∈ Ymin(M, t), M ′ = M + Cu · e + C(·, t).
¥

The main steps for the computation of the BRG in the case of labeled PNs are summarized in
the following algorithm.

Algorithm 6.2 [Computation of the BRG]

1. Label the initial node (M0, x0) where ∀i = 1, . . . , r,

x0(T i
f ) =

{
1 if Ti(M0) is feasible,
0 otherwise.

Assign no tag to it.
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2. While nodes with no tag exist
select a node with no tag and do
2.1. let M be the marking in the node (M, x),
2.2. for all l ∈ E

2.2.1. for all t : L(t) = l ∧ Ymin(M, t) 6= ∅, do
• for all e ∈ Ymin(M, t), do
• let M ′ = M + Cu · e + C(·, t),
• if @ a node (M, x) with M = M ′, do
• add a new node to the graph containing
(M ′, x′) where ∀i = 1, . . . , r,

x′(T i
f ) =

{
1 if Ti(M ′) is feasible,
0 otherwise.

and arc (l, e, z) from (M,x) to (M ′, x′)

where ∀i = 1, . . . , r, zi =

{
1 if t ∈ To,f

0 otherwise
• else
• add arc (l, e, z) from (M, x) to (M ′, x′)
if it does not exist yet

where ∀i = 1, . . . , r, zi =

{
1 if t ∈ To,f

0 otherwise
2.3. tag the node ”old”.

3. Remove all tags. ¥

The algorithm constructs the BRG starting from the initial node to which it corresponds the
initial marking and a binary vector defining which classes of fault may occur at M0. Now,
we consider all the labels l ∈ E such that there exists a transition t with L(t) = l for which
a minimal explanation at M0 exists. For any of these transitions we compute the marking
resulting from firing t at M0 + Cu · e, for any e ∈ Ymin(M0, t). If a pair (marking, binary vector)
not contained in the previous nodes is obtained, a new node is added to the graph. The arc
going from the initial node to the new node is labeled (l, e, z) where z keeps track of the label l

may be associated to a fault transition. The procedure is iterated until all basis markings have
been considered. Note that, our approach always requires to enumerate a state space that is a
subset (usually a strict subset) of the reachability space. However, as in general for diagnosis
approaches, the combinatory explosion cannot be avoided.

Example 6.3 Let us consider again the PN in Fig. 1, where To = {t1, t2, t3, t4}, To,reg =
{t1, t3, t4}, To,f = {t2}, Tu = {ε5, ε6}, Tu,reg = {ε5}, Tu,f = {ε6}. The labeling function is
defined as follows: L(t1) = L(t2) = a, L(t3) = b and L(t4) = c.

The BRG is shown in Fig. 2. Each node contains a different basis marking and a scalar, because
there is only one fault class. As an example, 0 is associated with M0 because T1(M0) is not
feasible, while 1 is associated with M1

b because T1(M1
b ) is feasible. From node M0 two different

arcs labeled a exit. The arc (a, [0 0]T , 0) goes from M0 to M1
b and the arc (a, [0 0]T , 1) goes from

M0 to M2
b . This means that both basis markings M1

b and M2
b are reached firing a transition
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[2 0 0 0], 0 a,[0 0],1 [1 0 0 1], 0 [0 0 0 2], 0 a,[0 0],1 

[1 1 0 0], 1 [0 1 0 1], 1 [0 2 0 0], 1 

c,[0 0],0 

c,[0 1],0 c,[0 2],0 

a,[0 0],1 

a,[0 0],0 a,[0 0],0 b,[1 0],0 b,[1 0],0 

b,[1 0],0 

a,[0 0],0 

Figure 2: The BRG of the PN in Fig. 1.

labeled a: M1
b is reached firing t1 ∈ To,reg while M2

b is reached firing t2 ∈ To,f , thus z1 = 0 and
z2 = 1. ¥

The following algorithm summarizes the main steps of the on-line diagnosis carried out by
looking at the BRG.

Algorithm 6.4 [Diagnosis using the BRG]

1. Let w = ε.
2. Let M̄(w) = {(M0,~0,~0)}.
3. Wait until a new observable transition fires.

Let l be the observed event.
4. Let w′ = w and w = w′l.
5. Let M̄(w) = ∅, [Computation of M(w)]
6. For all nodes containing M ′ : (M ′, y′, γ′) ∈ M̄(w′), do

6.1. for all arcs exiting from the node with M ′, do
6.1.1. let M be the marking of the output node,

e be the minimal e-vector on the edge, and
z be the third vector on the edge (see Def. 6.1)
from M ′ to M ,

6.1.2. for all y′ such that (M ′, y′, γ′) ∈ M̄(w′), do
6.1.2.1. let y = y′ + e,
6.1.2.2. let γ = γ′ + z,
6.1.2.3. let M̄(w) = M̄(w) ∪ {(M,y, γ)},

7. for all i = 1, . . . , r, do
[Computation of the diagnosis state]

7.1. if ∀ (M, y, γ) ∈ M̄(w) and
∀tf ∈ T i

f it is y(tf ) = 0 and γ(tf ) = 0, do
7.1.1. if ∀ (M,y, γ) ∈ M̄(w) it holds x(i) = 0,

where x is the binary vector in node M , do
7.1.1.1. let ∆(w, T i

f ) = 0,
7.1.2. else
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7.1.2.1. let ∆(w, T i
f ) = 1,

7.2. if ∃ (M, y, γ) ∈ M̄(w) and (M ′, y′, γ′) ∈ M̄(w)
s.t.:
(i) ∃tf ∈ T i

f such that y(tf ) > 0 or γ(tf ) > 0,
(ii) ∀tf ∈ T i

f , y′(tf ) = 0 and γ′(tf ) = 0,
or both, do

7.2.1. let ∆(w, T i
f ) = 2,

7.3. if ∀ (M, y, γ) ∈ M̄(w) ∃tf ∈ T i
f : y(tf ) > 0

or γ(tf ) > 0, do
7.3.1. let ∆(w, T i

f ) = 3.
8. Goto Step 3. ¥

Steps 1 to 6 of Algorithm 6.4 enable us to compute the set M̄(w).

Step 7 of Algorithm 6.4 computes the diagnosis state. Let us consider the generic ith fault
class. If ∀(M, y, γ) ∈ M̄(w) and ∀tf ∈ T i

f it holds y(tf ) = 0 and γ(tf ) = 0, we have to
check the ith entry of all the binary row vectors associated to the basis markings M , such
that (M, y, γ) ∈ M̄(w). If the ith entry is equal to 0, we set ∆(w, T i

f ) = 0, otherwise we set
∆(w, T i

f ) = 1. On the other hand, if there exists at least one triple (M,y, γ) ∈ M̄(w) with
either y(tf ) > 0 or γ(tf ) > 0 (or both) for any tf ∈ T i

f , and there exists at least one triple
(M ′, y′, γ′) ∈ M̄(w) with y(tf ) = 0 and γ(tf ) = 0 for all tf ∈ T i

f , then ∆(w, T i
f ) = 2. Finally, if

for all triples (M, y, γ) ∈ M̄(w), either y(tf ) > 0 or γ(tf ) > 0 (for both) for any tf ∈ T i
f , then

∆(w, T i
f ) = 3.

The following example shows how to perform diagnosis on-line simply looking at the BRG.

Example 6.5 Let us consider the PN in Fig. 1 and its BRG in Fig. 2. Let w = ε. By looking
at the BRG we establish that ∆(ε, Tf ) = 0 being the scalar associated with M0 equal to 0.

Now, let us consider w = aa. In such a case

M̄(w) = {([0 1 0 1]T , [0 0]T , 1), ([0 2 0 0]T , [0 0]T , 0), ([0 0 0 2]T , [0 0]T , 2)}.

Thus ∆(aa, Tf ) = 2 .

Finally, for w = aabc it holds ∆(aa, Tf ) = 3. In fact M̄(w) = {(M0, [1 1]T , 0), (M0, [1 0]T , 1)}.
¥

7 Conclusions and future work

This paper presents a diagnosis approach for labeled PNs using basis markings, that enable us
to avoid an exhaustive enumeration of the reachability set.

The main difference with respect to our previous works in this framework is that now fault
transitions do not necessarily correspond to silent events, but may also be observable undis-
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tinguishable events, i.e., they share the same label with transitions belonging to different fault
classes and/or with transitions modeling regular behavior.

Our future work will be that of studying the diagnosis problem for distributed systems investi-
gating the possibility of extending the approach here presented to this case.
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