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Consensus on the Average
on Arbitrary Strongly Connected Digraphs

Based on Broadcast Gossip Algorithms
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Abstract

In this paper we propose a new decentralized algorithm to solve the consensus on the average
problem on arbitrary strongly connected digraphs through a gossip algorithm based on broadcasts. We
directly extend previous results by not requiring that the digraph is balanced. Our algorithm is an
improvement respect to known gossip algorithms based on broadcasts in that the average of the initial
state is preserved after each broadcast. The nodes are assumed to know their out-degree anytime they
transmit information. The algorithm convergence analysis is preliminary and performance is shown by
simulations.
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I. INTRODUCTION

In recent years great effort has been directed to the study of the consensus problem, i.e.,
[4], [9], [7], [6], [3], [11], and its many applications. One such application, namely wireless
sensor networks and in general peer-to-peer networks, is now the focus of a huge amount of
research in many disciplines of information technology. The reason why the distributed average
problem has received great attention is that it allows to achieve tasks with a minimum overhead
of communication since it requires only local information exchange between nodes directly
connected, i.e., no routing is needed and so no congestion due to network traffic is generated. One
of the networks in which this is desirable is the internet in which the availability of information
on the average of local quantities generated by users behavior is of great relevance for statistical
analysis, marketing, security and so on. If such objectives can be achieved without unnecessarily
overloading network nodes and user bandwidth the relevance of such algorithms becomes clear.
A different kind of networks are wireless embedded sensor networks, intended to be composed
of a huge number of cheap wireless sensors scattered around a target, be it a city, a forest, a
war field or a polluted area. By definition if a wireless sensor is to be cheap it has to consume
very little power for achieving its task and to this end the ability to retrieve the average of the
measurements with only local packet exchange is of great relevance.

Many previous works on the consensus problem and gossip algorithms [11], [9], [6], [3], [10],
[2], [12] are based on bidirectional communications and so represent the network through an
undirected graph, possibly with a switching topology. The requirement of bidirectional commu-
nications requires synchronization between transmitter and receiver and some overhead required
by the communication protocols like acknowledgments. Furthermore even if a set of nodes can
communicate between each other, communications are inherently sequential and pairwise if they
are not done in the form of broadcasts. An attempt to use broadcasts in the distributed average
problem has been made with gossip algorithms, the tradeoff of this approach is that agreement
is only reached in the form of a random variable whose expectation corresponds to the average
of the initial measurements and whose shape is deeply affected by the sequence in which the
nodes perform broadcasts.

A different approach to this issue is the use of distributed Kalman filtering based on consensus
[8], [5]. A couple of years ago this problem was solved by adapting the optimal Kalman gain of
such filter with respect to the outflow of each node [1] to achieve consensus on the average on
arbitrary strongly connected digraphs. The proposed technique was time-variant and proposed
as a decentralized iterative algorithm with synchronized updates. In this paper we propose an
alternative approach based on gossip.

In [9] the study of consensus on digraphs was motivated by reduction in communication costs,
unfortunately the conclusion of the authors was that consensus on the average of achievable only
for balanced digraphs, i.e., graphs in which the in-degree and out-degree of each node are the
same. Starting from this, we develop a new algorithm, with the same feature of Laplacian-based
consensus, that can achieve the same objective for the wider class of arbitrary digraphs. This
generalizes the consensus problem and allows a consistent reduction of complexity since it allows
the use of only broadcasting as communication mean.
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Furthermore wireless sensor networks are usually required to perform tasks more complex
then just computing the average of some quantity. We argue that an algorithm that allows
consensus on directed graphs can actually be implemented as simple and small "overhead" on
normal communication between the sensors. For instance with the ZigBee protocol for wireless
networks we have packets with a maximum payload of around 104 bytes, it is clearly too much
to just send a scalar integer value of 16 bits. We argue that such consensus protocol could
have a more meaningful and real application if thought as network overhead for distributed
estimation purposes that does not actual "increase" the load in the network, i.e., since no specific
acknowledge or response is required no dedicated communication is required but the usual
communication due to data transfer between nodes for other purposes or simply for routing
algorithms which periodically check network health or topology. With the previous assumption
while the nodes use only mono-directional communications, they always know their out-degree.

II. PROBLEM STATEMENT

We model the network of agents as a directed graph G(t) = {V,E(t)}, with V = {1, . . . , n}
the set of vertices that represent the nodes, E(t) ⊆ {V × V } the time varying edge set that
encodes the network topology, (i, j) ∈ E(t) if and only if agent i receives information from
agent j at time t. In the following directed edges from j to i are considered to have their "tail"
in j and the "head" in i.

The graph can be encoded through its n× n adjacency matrix

A(t) = {ai,j(t)} with ai,j(t) =

{
1, if (i, j) ∈ E(t);

0, otherwise.

The in-degree of a vertex corresponds to the number of "heads" incident in such vertex while
the out-degree is the number of "tails" incident on it.

We define the two n× n matrices

∆in(t) = diag (δin,1(t), . . . , δin,n(t))

and
∆out(t) = diag (δout,1(t), . . . , δout,n(t))

where δin,i and δout,i, for i = 1, . . . , n, are respectively the in-degree and out-degree of agent i.
The Laplacian of a time-varying digraph is defined as

L(t) = ∆in(t)− A(t). (1)

It is a weak diagonal row dominant positive semi-definite matrix. Defining 0 and 1 column
vectors whose n elements are all, respectively, zeros and ones, we have that L(t)1 = 0 by
construction.

To each vertex i for i = 1, . . . , n is associated a scalar xi(t) with an arbitrary initial value
xi(0) = x0.

Furthermore we define the set of neighbors of agent i as Ni(t) = {j : (i, j) ∈ E} and with
|Ni(t)| its cardinality. We point out that since the graph is directed, node i may be neighbor of
node j while node j is not neighbor of node i.
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Our objective is to find a decentralized control law that satisfies the network topology con-
straints given by G(t) and achieves consensus on the average on the initial states.

III. CONSENSUS ON THE AVERAGE ON ARBITRARY DIGRAPHS

In our approach we associate to each vertex i for i = 1, . . . , n, other than xi(t) a companion
variable zi(t) with initial value zi(0) = 0. In the following we study the following gossip
algorithm based on mono-directional communications. Each node at each instant of time is then
either transmitting information, receiving information or in an idle state.

Transmitter state update, node i
{

xi(t + 1) = xi(t),

zi(t + 1) = 0.
(2)

Receiver state update, node j ∈ Ni(t)
{

xj(t + 1) =
xj(t)+xi(t)

2
+ 0.5zj(t) + zi(t)

2δout,i(t)
,

zj(t + 1) =
xj(t)−xi(t)

2
+ 0.5zj(t) + zi(t)

2δout,i(t)
.

(3)

Idle nodes, k 6= i, k 6∈ Ni(t)
{

xk(t + 1) = xk(t),

zk(t + 1) = zk(t).
(4)

This behavior can be explained in simple words.
• The transmitter node i broadcasts its state value xi to all nodes j ∈ Ni. In doing so, it

knows its out-degree and it also broadcasts the value zi(t)/δout,i(t) by dividing the value of
the companion variable by the number of nodes that receive the information. The transmitter
node i does not change its value of xi(t) while it resets to 0 the companion variable.

• The receiver nodes update their xj(t) variable by computing the average between their
and the received state value. Furthermore they correct their update by a fraction of their
companion variable zj(t). The receiver nodes update their companion variable by adding up
several terms, the first term is a compensation to keep constant the average of the network.

Each time node i transmits, we model the interaction topology through a graph Gi(t) at time
t, obtained by graph G(t) removing all arcs whose tail is not node i. We let Ai(t), ∆in,i(t) and
Li(t) denote, respectively, the incidence matrix, the in-degree matrix and the Laplacian of this
graph.

Let us define
Pi(t) = I − 0.5Li(t),

Γ̂i(t) =
Ai(t)

2δout,i(t)
+ 0.5∆in(t)

and
Γi(t) =

Ai(t)

2δout,i(t)
− 0.5∆in(t) + (I − eie

T
i ),

where I si the identity matrix and ei is the i-th canonical basis vector of dimension n.
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If we denote

Ci(t) =

[
Pi(t) Γ̂i(t)

I − Pi(t) Γi(t)

]
(5)

one can readily observe that under the decentralized state update rule (2), (3) and (4), the system
dynamics at time t, is: [

x(t + 1)

z(t + 1)

]
= Ci(t)

[
x(t)

z(t)

]
. (6)

Remark 1: In this paper it is assumed that at each instant of time each node has a strictly
positive probability of broadcasting its state to the neighboring sensors. This assumption is to
model the inherent asynchrony of wireless communications between sensor nodes. The results
on the convergence properties of algorithms developed with this assumption hold for any deter-
ministic scheduling of the communications between the nodes because the order in which the
updates are performed is not relevant to the stability of the equilibrium point of the algorithm.

Furthermore given that the sensor network is distributed in space, any pair of nodes sufficiently
far apart can perform a broadcast while not interfering with each other. The inherent parallelism
of the network is fully exploited and is expected to greatly improve the convergence time of the
proposed algorithm, nonetheless in this paper we focus our attention in studying the stability of
the equilibrium point of the algorithm leaving the study of its convergence time to future work.

¥
In the following, the dependence of Ci from t will be omitted.

IV. ALGORITHM CONVERGENCE PROPERTIES

In this section we study the converge properties of the algorithm. We first characterize the
eigenstructure of matrices Ci and then we present a conjecture on the convergence to the
consensus.

Proposition 1: Ci is idempotent for any i = 1, . . . , n.
Proof: Using the general identities A2

i = Ai∆in,i = 0 and ∆in,iAi = Ai, one can readily
verify that for all i = 1, . . . , n it holds C2

i = Ci. ¤
Since Ci is idempotent, its eigenvalues are always either 0 or 1. Unfortunately since it is not

symmetric, it represents an oblique projection which does not result in a contractive matrix in
general.

We observe, however, that the system is conservative.
Proposition 2: System (7) evolves on the hyperplane

1T x(t) + 1T z(t) = 1T x(0) + 1T z(0).

Proof: For all i = 1, . . . , n, the row vector [1T 1T ] is a left eigenvector for matrix Ci

associated to eigenvalue 1, because it holds

[1T 1T ]Ci(t) = [1T (Pi + I − Pi) 1T (Γ̂i + Γi)] = [1T 1T ].

¤
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Since the system is autonomous and the companion initial state can be arbitrary chosen, we
select z(0) = 0. With such assumption we obtain that the information about the average of
the initial state is preserved despite communications are mono-directional and asynchronous. In
particular if at any instant of time t we have that z(t) = 0, we have

1T x(t) = 1T x(0).

Remark 2: We point out that Proposition 2 suggests that if noise or some disturbance is added
to the system, it results in a shift of the hyperplane on which the system is evolving. In particular
it can be shown by simple manipulations that if an external input (noise, disturbance, bias or
else) is added to the system model such that:

[
x(t + 1)

z(t + 1)

]
= Ci(t)

[
x(t)

z(t)

]
+ d(t) , (7)

where d(t) is a column vector with 2n time varying elements, then

1T x(t) + 1T z(t) = 1T x(0) + 1T z(0) + 1T
t∑

k=0

d(k).

¥
Let us now consider the equilibrium points.
Proposition 3: The consensus state in which x(t) = α1 for some scalar α and z(t) = 0 is an

equilibrium state for system (7).
Proof: For all i = 1, . . . , n, the column vector [1T 0T ]T is a right eigenvector for matrix Ci

associated to eigenvalue 1, because it holds

Ci(t)

[
1
0

]
=

[
Pi1

(I − Pi)1

]
=

[
1
0

]
,

due to the Laplacian property L1 = 0. ¤
We now consider the null space of the consensus matrices.
Proposition 4: For all i = 1, . . . , n, the kernel of Ci has dimension dim(Ker(Ci)) = |Ni|+1.

Proof: One can readily verify that in matrix Ci the multiplicity of eigenvalue 0 is |Ni|+ 1.
A set of linearly independent eigenvectors that form a basis of the null space are:

• for j ∈ Ni a vector vj = [eT
j − eT

j ]T ;
• a vector v̂i = [x̂T

i ẑT
i ]T with

x̂i(j) =

{
1 if j ∈ Ni,

0 otherwise

and

ẑi(j) =




−2δout,i if j = i,

1 if j ∈ Ni,

0 otherwise
.

¤

DRAFT



7

 

1 

2 

3 

4 

Fig. 1. Network considered in Example 1.
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Fig. 2. Interaction topology when node 2 performs a broadcast in Example 1.

Example 1: Let us consider the network in Figure 1. When node 2 performs a broadcast,
the interaction topology is represented by a directed graph, shown in Figure 2. The adjacency
matrix for the resulting graph is:

A2 =




0 1 0 0

0 0 0 0

0 1 0 0

0 0 0 0




Following our previous definitions, δout,2 = 2, and we have:

P2 =




1/2 1/2 0 0

0 1 0 0

0 1/2 1/2 0

0 0 0 1


 ,

Γ2 =




1/2 1/4 0 0

0 0 0 0

0 1/4 1/2 0

0 0 0 1


 ,

Γ̂2 =




1/2 1/4 0 0

0 0 0 0

0 1/4 1/2 0

0 0 0 0


 ;

finally
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C2 =




1/2 1/2 0 0 1/2 1/4 0 0

0 1 0 0 0 0 0 0

0 1/2 1/2 0 0 1/4 1/2 0

0 0 0 1 0 0 0 0

1/2 −1/2 0 0 1/2 1/4 0 0

0 0 0 0 0 0 0 0

0 −1/2 1/2 0 0 1/4 1/2 0

0 0 0 0 0 0 0 1




.

By Proposition 4 the following is a basis of linearly independent eigenvectors for the null
space:

[
v1 v3 v̂2

]
=




1 0 1

0 0 0

0 1 1

0 0 0

−1 0 1

0 0 −4

0 −1 1

0 0 0




.

¥
Now we consider a property that holds for strongly connected graphs.
Proposition 5: If

Ĝ(t, T ) =
T⋃

k=1

G(t + k)

is strongly connected, then

dim

(
n∨

i=1

ker(Ci(t))

)
= 2n− 1,

where ∨ denotes the linear combination of vector spaces.
Proof: To show this, let us take the union of all basis vectors for the null spaces of all

matrices Ci(t), as defined in the proof of Proposition 4. Since the graph is strongly connected
(sufficient condition), each node is at least once a transmitter and at least once a receiver. Thus
combining all vectors we obtain the following matrix

V = [v1 · · · vn v̂1 · · · v̂n] =

[
I A(t)

−I A(t)− 2∆out(t)

]
.

By elementary row operations we show this matrix to be equivalent to
[

I A(t)

0 2A(t)− 2∆out(t)

]
=

[
I A(t)

0 −2Lout(t)

]

where Lout = ∆out − A denotes the out-degree Laplacian, whose rank is n − 1 if the graph is
strongly connected.

DRAFT



9

Thus matrix V has rank 2n− 1 and this proves the result.
¤

Thanks to the above propositions the following important result can be proved.
Proposition 6: For a connected graph G(t) column vector [1T 0T ]T is the single equilibrium

state for system (7).
Proof: The fact that vector [1T 0T ]T is an equilibrium state was shown Proposition 3. Its

uniqueness follows from Proposition 5. ¤
Now we state the main result of this paper for which a formal proof is missing but whose

relevance is shown by simulations.
Conjecture 1: If there exists a periodic interval of time T in which the union of the time-

varying digraphs

Ĝ(t, T ) =
T⋃

k=1

G(t + k)

is strongly connected, if the network evolves according to the state update rule described by (7)
with z(0) = 0, then:

lim
t→∞

x(t) =
11T

n
x(0).

¥
The above conjecture is validated by the experiments in the simulations section.
Remark 3: The proposed conjecture, while intuitive and validated by simulation results poses

great difficulties in its proof. First, the description of the stability of a switching linear system
as system (7) has been treated only for simple cases in which at each instant of time t the
system matrix is contractive. Others have used Markov chain theory and applied it to the
study of consensus theory. Some other result instead use the Common Lyapunov function
approach to study the convergence properties of such system. In our case the system matrix C

is not symmetric, it is not weakly diagonal dominant (as the Laplacian matrix, which simplifies
considerably the study of its spectrum), nor is with non-negative elements thus invalidating
almost all the results about Markov Chain theory. Unfortunately, the problem of deciding wether
the random product of a finite set of matrices converges is still an open problem in matrix theory
and all the results are either not applicable or relate to classes of matrices not suitable for our
purposes. ¥

V. SIMULATIONS

In this section we provide some simulations in order to corroborate the algorithm analysis.
We consider a network consisting in 20 nodes scattered at random on a terrain of 10 km2. Each
node is assumed to be able to communicate through a wireless link with any other node within
a range of 40 m, the resulting network topology is shown in Figure 3. Each node performs a
measurement, for instance the sensed quantity of a polluting chemical in the air. Then each node
using only broadcast communications wants to estimate the average quantity of the polluted
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Fig. 3. Topology of the network used for the simulations consisting of 20 nodes with random positions and connected through
a proximity graph.

chemical in the region. In the simulation each node has the following initial conditions that for
sake of simplicity were chosen randomly between 0 and 1:

x(0) =




0.4552
0.5036
0.5704
0.6412
0.7854
0.8220
0.4822
0.5844
0.0130
0.4338
0.2396
0.5397
0.7003
0.6065
0.3457
0.2594
0.3905
0.4151
0.0542
0.9566




, z(0) =




0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




.

In Figure 4 is shown the evolution of the state trajectory xi(t) for each node in the network: it
can be seen that the algorithm converges toward the average of the initial measurements which
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Fig. 4. Trajectory of x(t) for each network node.

is 0.4899.
In Figure 5 is shown the evolution of the companion variables zi(t) for each node in the

network, it can been seen that the initial and final state of such variables is 0. This puts in
evidence the fact that such companion variables are used only to make the network converge
exactly toward the average of the initial measurement through a gossip algorithm despite the
communication graph is directed and the update matrix is not symmetric. The final state of the
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network after 3000 broadcasts (an average of 150 broadcasts for each node) is:

x(3000) =




0.4959
0.4959
0.4962
0.4868
0.4867
0.4955
0.4869
0.4968
0.4939
0.4864
0.4868
0.4877
0.4873
0.4962
0.4865
0.4870
0.4867
0.4870
0.4870
0.4869




, z(3000) =




0.0000
0

−0.0000
0

−0.0001
−0.0007
−0.0001
0.0005
−0.0020
−0.0003
0.0000
0.0010
0.0003

0
−0.0002
0.0000
−0.0001
0.0002
0.0002
0.0001




.

In particular taking x̄ as the average of the initial state, we have that

‖x(3000)− x̄‖
‖x(0)− x̄‖ = 1.8%.

The algorithm convergence time clearly depends on how well the graph is connected.
The improvement of the proposed algorithm respect to other gossip algorithms is that by using

broadcasts the inherent parallelism in a distributed network is fully exploited between all the
nodes and not only between nodes not directly connected. This feature is especially relevant in
small world networks where few nodes have a very high out-degree.

Remark 4: Further simulations to corroborate our conjecture on the stability of the algorithm
have been repeated 1000 times for random initial values at the sensors with a uniform distribution
between 0 and 10. Each simulation was initialized with 10 nodes forming a randomly connected
network. For each simulation the convergence time was considered to be the number of random
broadcasts needed such that the state of the network had reduced its distance from the equilibrium
point starting from a random initial condition by a factor of 100, namely:

τ : ∀t ≥ τ
‖x(t)− 11T

n
x(0))‖

‖x(0)− 11T

n
x(0))‖

< 0.01.

All our simulations achieved convergence with τ < 190 and on average τ̄ ' 93. Such converge
time obviously depend on the properties of the random network topologies with 10 nodes taken
in consideration.

¥
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Fig. 5. Trajectory of z(t) for each network node.

We now discuss a comparison between the proposed gossip scheme with a simpler but effective
gossip scheme illustrated in [13], [14]. In this works is studied a simple gossip algorithm which
can be summarized as follows:

Algorithm 1: Standard gossip with broadcast
• At each instant of time a node broadcasts its value to its neighbors.
• If at any time a node listens to a broadcast, it computes the average between its state and

the broadcaster state. It then takes this new value as its state.
• Repeat until all the nodes have the same value.
In Figure 6 is shown the evolution of a network executing the standard gossip with broadcast

algorithm on the network in Figure 3 with the same initial state as the previous simulations.
It can be seen that despite the algorithm converges more quickly respect to our algorithm, the
average of the initial state is not preserved as time goes by and so the precision of the final state,
where all the nodes estimate 0.5919 instead of 0.4899, greatly depends on the sequence of the
broadcasts and on the initial state. It has been shown that in this case the final network state is
a random variable whose expectation is the true average of the measurements while its variance
decreases as the number of nodes increases. This is a great drawback of the standard gossip with
broadcast algorithm since it trades off speed for precision. Unfortunately increasing the number
of nodes decreases speed and for a sufficient precision an unfeasible number of nodes might be
required.
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Fig. 6. Trajectory of x(t) for each network node using standard gossip with broadcast.

VI. CONCLUSION

In this paper we have proposed a novel gossip algorithm based on broadcasts that achieves
consensus on the average on arbitrary strongly connected digraphs. The study of the convergence
properties is preliminary and convergence is shown by simulations. The proposed algorithm is
the first gossip algorithm which preserves the information about the average of the initial state
during its execution. A comparison between other gossip algorithms with broadcast has been
made and simulations show that despite the convergence time seems greater than other known
gossip algorithms, its average preserving properties and precision are undoubtedly superior.
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