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Abstract

In this paper we present an approach to solve the problem of diagnosability of bounded Petri net

systems. In particular, we first give necessary and sufficient conditions for diagnosability. Then, we

present a method to test diagnosability that is based on the analysis of two graphs that depend on the

structure of the net, including the faults model, and the initial marking. The first graph is called basis

reachability diagnoser, the second one is called modified basis reachability graph.
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I. INTRODUCTION

The problem of diagnosability consists in determining a priori if a system is diagnosable, i.e.,

if it is possible to reconstruct the occurrence of fault events observing words of finite length.

This problem has been extensively studied within the framework of automata, and diagnosabil-

ity was first formally defined by Sampath et al. in [1], [2]. On the contrary, very few results have

been proposed within the framework of Petri nets (PNs). Ushio et al. [3] presented a sufficient

condition for diagnosability of unbounded PNs based on indeterminate cycles defined as in [1],

[2]. Chung in [4], in contrast with Ushio’s paper, assumes that part of the transitions of the

PN is observable and shows as the additional information from observed transitions in general

adds diagnosability to the analyzed system. In [5] Wen and Jeng propose an approach to test

diagnosability by checking the structure property of T-invariant of the nets. In [6] Wen et al.

present an algorithm, based on a linear programming problem, of polynomial complexity in the

number of nodes for computing a sufficient condition of diagnosability of discrete event systems

modeled by PNs. Finally, in [7] we present an approach for diagnosability of labeled unbounded

PNs. The ideas behind the two approaches are completely different. In particular, in [7] we give

necessary and sufficient conditions for diagnosability and present a test to analyze diagnosability

based on the coverability graph of a particular net, called verifier net, built from the PN model of

the system to be diagnosed. In this paper we solve the problem of diagnosability of bounded PNs

using an approach based on the notion of basis markings. The main advantage of this approach

is that it does not require the exhaustive enumeration of the state space. Moreover the approach

in this paper also allows us to perform diagnosis, namely to evaluate the diagnosis state of the

system after each observation, both in the case of bounded and unbounded PNs (see [8]).

This paper is based on our results in [8]–[10]. In these papers we presented an approach for

diagnosis of PNs where fault transitions are assumed to be unobservable, but there also exist

other transitions that are unobservable as well and that model regular behavior. In particular,

while in [9], [10] we only consider free-labeled PNs, thus all transitions that are observable

are also distinguishable, in [8] we extend such an approach to arbitrary labeled PNs, and the

observable events are the labels associated to transitions. In both cases the proposed diagnosis

approach is based on the notions of minimal explanations and basis markings, and allow us to

represent the reachability space in a compact manner. Moreover, in the case of bounded systems,



we showed how the most burdensome part of the procedure can be moved off-line, constructing

a particular graph called basis reachability graph (BRG).

In this paper we focus on bounded PN systems: we provide a necessary and sufficient condition

for diagnosability and give a systematic method to analyze the diagnosability of a given PN

system. Such a method requires the construction of two labeled and oriented graphs denoted

respectively modified basis reachability graph (MBRG) and basis reachability diagnoser (BRD),

where the MBRG is a slight variation of the BRG. Basically, the analysis consists in determining

if certain cycles exist in the BRD, and in the case of a positive answer, in verifying if certain

other conditions are satisfied in the MBRG, thus establishing if such cycles are indeterminate

or not.

The proposed results are inspired by the diagnosability approach for finite state automata

proposed by Sampath et al. [1], [2]. While in the automata approach it is necessary to exhaustively

enumerate the state space, our approach requires the enumeration of a subset of the reachability

set.

II. BACKGROUND ON LABELED PETRI NETS

In this section we recall the formalism used in the paper. For more details on PNs we refer

to [11].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P ×T → N and Post : P ×T → N are the pre– and

post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative

integer number of tokens, represented by black dots. We denote M(p) the marking of place p.

A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =

M +C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk
is enabled

at M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′.

The set of all sequences that are enabled at the initial marking M0 is denoted L(N,M0), i.e.,

L(N, M0) = {σ ∈ T ∗ | M [σ〉}.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector

y ∈ Nn, named the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the



transition t is contained k times in σ.

A marking M is reachable in 〈N,M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is

denoted R(N,M0). Finally, we denote PR(N,M0) the potentially reachable set, i.e., the set

of all markings M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state equation

M = M0 + C · y, i.e., PR(N,M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0 + C · y}. It holds that

R(N, M0) ⊆ PR(N, M0).

A PN having no directed circuits is called acyclic. For this subclass the following result holds.

Theorem 2.1 ( [12]): Let N be an acyclic PN.

(i) If the vector y ∈ Nn satisfies the equation M0 + C · y ≥ 0 there exists a firing sequence σ

firable from M0 and such that the firing vector associated to σ is equal to y.

(ii) A marking M is reachable from M0 iff there exists a non negative integer solution y

satisfying the state equation M = M0 + C · y, i.e., R(N, M0) = PR(N,M0).

A net system 〈N, M0〉 is bounded if there exists a positive constant k such that, for M ∈
R(N, M0), M(p) ≤ k.

A labeling function L : T → L ∪ {ε} assigns to each transition t ∈ T either a symbol from

a given alphabet L or the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}.

Transitions in Tu are called unobservable or silent.

In this paper we assume that the same label l ∈ L can be associated to more than one

transition. Two transitions t1, t2 ∈ To are called undistinguishable if they share the same label,

i.e., L(t1) = L(t2) = l ∈ L. The set of transitions sharing the same label l are denoted as Tl.

Transitions in To are called observable.

In the following we denote as Cu (Co) the restriction of the incidence matrix to Tu (To) and

denote as nu and no, respectively, the cardinality of the above sets.

Moreover, given a sequence σ ∈ T ∗, Pu(σ) (Po(σ)) denotes the projection of σ over Tu (To).

We denote as w the word of events associated to the sequence σ, i.e., w = L(σ).

Definition 2.2: Let 〈N,M0〉 be a labeled PN system with labeling function L : T → L∪{ε},

where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. We define

S(w) = {σ ∈ L(N,M0) | L(σ) = w}



the set of firing sequences consistent with w ∈ L∗. ¥
In plain words, given an observation w, S(w) is the set of sequences that may have fired.

Definition 2.3: Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we

define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restriction of Pre, Post to T ′. The net N ′ can be thought as obtained from N removing

all transitions in T \ T ′. We also write N ′ ≺T ′ N . ¥

III. PROBLEM STATEMENT

Assume that the set of transitions is partitioned as T = To∪Tu, where To is the set of observable

transitions, and Tu is the set of unobservable transitions. When an observable transition fires we

observe its label, thus our observations consist in sequences of symbols in the alphabet L.

The set of unobservable transitions is partitioned into two subsets, namely Tu = Tf∪Treg where

Tf includes all fault transitions (modeling anomalous or fault behavior), while Treg includes all

transitions relative to unobservable but regular events. The set Tf is further partitioned into r

different subsets T i
f , where i = 1, . . . , r, that model the different fault classes.

Definition 3.1: A live PN system 〈N,M0〉 is said diagnosable with respect to (wrt) a fault

class T i
f if there do not exist two sequences σ1 and σ2 in T ∗ satisfying the following conditions:

• L(σ1) = L(σ2),

• ∀tf ∈ T i
f , tf /∈ σ1,

• ∃ at least one tf ∈ T i
f such that tf ∈ σ2,

• σ2 can be made arbitrarily long after a fault tf ∈ T i
f .

¥
Definition 3.2: A PN system 〈N, M0〉 is said diagnosable if it is diagnosable wrt all fault

classes. ¥
Note that the diagnosability of a system does not imply that we are able to distinguish among

transitions in the same class. It simply implies that if one or more transitions in a given fault

class have fired, then after a finite number of observations we are able to establish that at least

one transition of that class has fired.

In this paper we investigate the problem of providing necessary and sufficient conditions for

diagnosability. In particular, we consider labeled PN systems under the following assumptions.



A1) The net system 〈N,M0〉 is bounded and does not deadlock after the firing of any fault

transition.

A2) The Tu-induced subnet is acyclic.

A3) The labeling function L : To → L may associate the same label to different transitions.

A4) The structure of N is known as well as the initial marking M0.

IV. BASIC DEFINITIONS AND RESULTS

In this section we recall some basic definitions and results we first introduced in [8], [9].

Definition 4.1 ( [9]): Given a marking M and a transition t ∈ To, we define

Σmin(M, t) = {σ ∈ T ∗
u | M [σ〉M ′, M ′ ≥ Pre(·, t),
@ σ′ | M [σ′〉M ′′, M ′′ ≥ Pre(·, t) :

π(σ′) � π(σ)}
the set of minimal explanations of t at M , and we define

Ymin(M, t) = π(Σmin(M, t))

the corresponding set of minimal e-vectors. ¥
In the case of labeled PNs what we observe is a label l. Thus, it is useful to define the

following sets.

Definition 4.2 ( [8]): Given a marking M and an observation l ∈ L, we define the set of

minimal explanations of l at M as

Σ̂min(M, l) = ∪t∈Tl
∪σ∈Σmin(M,t) {(t, σ)},

i.e., the set of pairs (transition labeled l – corresponding minimal explanation), and we define

the set of minimal e-vectors of l at M as

Ŷmin(M, l) = ∪t∈Tl
∪e∈Ymin(M,t) {(t, e)},

i.e., the set of pairs (transition labeled l – corresponding minimal e-vector). ¥
Obviously, in the above sets Σ̂min(M, l) and Ŷmin(M, l) different sequences σ and different

e-vectors e, respectively, are associated in general to the same transition t ∈ Tl.

Given a word w ∈ L∗ we call justification of w the corresponding sequence of unobservable

transitions interleaved with σo whose firing enables σo and whose firing vector is minimal.



Definition 4.3 ( [8]): Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε},

where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be a given observation. We define

Ĵ (w) = { (σo, σu), σo ∈ T ∗
o , L(σo) = w, σu ∈ T ∗

u |
[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)]∧
[ 6 ∃σ′ ∈ S(w) : σo = Po(σ

′), σ′u = Pu(σ
′)∧

π(σ′u) � π(σu)]}
the set of couples (sequence σo ∈ T ∗

o with L(σo) = w - corresponding justification of w).

Moreover, we define

Ŷmin(M0, w) = {(σo, y), σo ∈ T ∗
o , L(σo) = w,

y ∈ Nn
u |

∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}
the set of couples (sequence σo ∈ T ∗

o with L(σo) = w – corresponding j-vector). ¥
In simple words, Ĵ (w) is the set of couples sequence σo ∈ T ∗

o labeled w – justification and

the firing vectors of these sequences are called j-vectors.

Definition 4.4 ( [8]): Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε},

where N = (P, T, Pre, Post) and T = To∪Tu. Let w be a given observation and (σo, σu) ∈ Ĵ (w)

be a generic couple (sequence of observable transitions labeled w – corresponding minimal

justification). The marking

Mb = M0 + Cu · y + Co · y′, y = π(σu), y′ = π(σo),

i.e., the marking reached firing σo interleaved with the minimal justification σu, is called basis

marking and y is called its j-vector (or justification-vector). ¥
Obviously, because in general more than one justification exists for a word w (the set Ĵ (w)

is generally not a singleton), the basis marking may be not unique as well.

Definition 4.5 ( [8]): Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε},

where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. We define

M(w) = {(M, y) | (∃σ ∈ S(w) : M0[σ〉M) ∧
(∃(σo, σu) ∈ Ĵ (w) : σo = Po(σ),

σu = Pu(σ), y = π(σu))}
the set of couples (basis marking – relative j-vector) that are consistent with w ∈ L∗. ¥
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Fig. 1. A PN (a), its MBRG (b) and its BRD (c).

Note that the set M(w) does not keep into account the sequences of observable transitions

that may have actually fired. It only keeps track of the basis markings that can be reached and

of the sequences of unobservable transitions that have fired to reach them. Indeed, this is the

information really significant when performing diagnosis. The notion of M(w) is fundamental

to provide a recursive way to compute the set of minimal explanation.

Proposition 4.6 ( [8]): Given a net system 〈N, M0〉 with labeling function L : T → L∪{ε},

where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w = w′l be a given observation.

The set Ŷmin(M0, w
′l) is defined as:

Ŷmin(M0, w
′l) = {(σo, y) | σo = σ′0t ∧ y = y′ + e :

(σ′o, y
′) ∈ Ŷmin(M0, w

′),

(t, e) ∈ Ŷmin(M
′
b, l) and L(t) = l},

where M ′
b = M0 + Cu · y′ + Co · π(σ′o).

Example 4.7: Let us consider the PN in Fig. 1.(a), where the set of observable transitions is

To = {t1, t2, t3} and the set of unobservable transitions is Tu = {ε4, ε5, ε6, ε7, ε8}. The labeling

function is L(t1) = a and L(t2) = L(t3) = b.

Let us assume w = ab. The set of justifications is Ĵ (w) = {(t1t2, ε4), (t1t3, ε4ε6ε7ε8)} and

the set of j-vectors is Ŷmin(M0, w) = {(t1t2, [1 0 0 0 0]T ), (t1t3, [1 0 1 1 1]T )}. The above j-vectors

lead to the same basis marking M0 = [2 0 0 0 0 0]T . ThusM(w) = {(M0, [1 0 0 0 0]T ), (M0, [1 0 1 1 1]T )}.

¥



V. DIAGNOSIS USING PETRI NETS

Definition 5.1 ( [8]): A diagnoser is a function ∆ : L∗×{T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that

associates to each observation w and to each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences

consistent with the observation contains fault transitions in T i
f .

• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf 6∈ σu.

In such a case a fault transition of the ith class may have occurred but is not contained in

any justification of w.

• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ

′
o, σ

′
u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that tf ∈ σu;

(ii) for all tf ∈ T i
f , tf 6∈ σ′u.

In such a case a fault transition in the ith class is contained in one (but not in all) justification

of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consistent with

the observation contain at least one fault transition in the ith class. ¥
Proposition 5.2 ( [9]): Consider an observed word w ∈ L∗.

• ∆(w, T i
f ) ∈ {0, 1} iff for all (M, y) ∈M(w) and for all tf ∈ T i

f it holds y(tf ) = 0.

• ∆(w, T i
f ) = 2 iff there exist (M, y) ∈M(w) and (M ′, y′) ∈M(w) such that:

(i) there exists tf ∈ T i
f such that y(tf ) > 0,

(ii) for all tf ∈ T i
f , y′(tf ) = 0.

• ∆(w, T i
f ) = 3 iff for all (M, y) ∈M(w) there exists tf ∈ T i

f such that y(tf ) > 0.

Proposition 5.3 ( [9]): For a PN whose unobservable subnet is acyclic, let w ∈ L∗ be an

observed word such that for all (M, y) ∈M(w) it holds y(tf ) = 0 ∀ tf ∈ T i
f .



Let us consider the constraint set

T (M) =





M + Cu · z ≥ ~0,∑

tf∈T i
f

z(tf ) > 0,

z ∈ Nnu .

(1)

• ∆(w, T i
f ) = 0 if ∀ (M, y) ∈M(w) the constraint set (1) is not feasible.

• ∆(w, T i
f ) = 1 if ∃ (M, y) ∈M(w) such that the constraint set (1) is feasible.

On the basis of the above two results, if the Tu-induced net is acyclic, diagnosis may be carried

out by simply looking at the set M(w) for any observed word w and, should the diagnosis state

be either 0 or 1, by additionally evaluating if the corresponding integer constraint set (1) admits

a solution.

Example 5.4: Let us consider again the PN in Fig. 1.(a), where Tf = {ε5, ε7}.

Let w = ab. It is M(w) = {(M0, [1 0 0 0 0]T ), (M0, [1 0 1 1 1]T )}, where M0 = [2 0 0 0 0 0]T

is the initial marking and has been computed in Example 4.7. In such a case it is ∆(w, Tf ) = 2.

In fact, y1 = [1 0 0 0 0]T does not contain a fault transition tf ∈ Tf , while y2 = [1 0 1 1 1]T

contains ε7. ¥
In [9] we have shown that in the case of bounded PNs a useful tool to perform diagnosis

is the Basis Reachability Graph (BRG). In particular, it enables us to move off-line the most

burdensome part of the procedure. In [8] we showed how the BRG can still be defined in the

case of arbitrary labeled PNs.

VI. MODIFIED BASIS REACHABILITY GRAPH

The BRG needs to be modified if we want to use it as an auxiliary tool to establish if

the system is diagnosable. To this aim we define a new graph, that we call Modified Basis

Reachability Graph (MBRG).

The MBRG is a deterministic graph whose nodes contain two elements (M , x): M ∈ Nm is

a marking defined as below, and x is a row vector in {0, 1}r, where x(i) = 1 if T (M) in (1) is

feasible wrt the ith class, x(i) = 0 otherwise.

Markings M in the nodes are defined as basis markings computed assuming that all fault

transitions are observable. This means that minimal explanations are restricted to transitions in

Treg.



In the following we denote as Y mod
min (M, t) the set of minimal e-vectors restricted to Treg, and

Creg the restriction of the incidence matrix to Treg.

Arcs may be labeled in two different ways depending on the associated event. In the case

of events corresponding to the firing of transitions in To, the label contains three informations

summarized as (l(t), e), where l ∈ L is the observed label, t is the transition labeled l whose

firing at the input node is enabled by a sequence of regular transitions with firing vector e ∈
Y mod

min (M, t), and that leads to the marking in the output node.

In the case of events corresponding to the firing of fault transitions the label only contains

two informations summarized as (tf , e), where tf ∈ Tf is the fault transition whose firing at the

input node is enabled by a sequence with firing vector e ∈ Y mod
min (M, t), and that leads to the

marking in the output node.

Algorithm 6.1: [Computation of the MBRG]

1. Label the initial node (M0, x0) where ∀i = 1, . . . , r,

x0(T
i
f ) =





1 if T (M0) is feasible,

0 otherwise.

Assign no tag to it.

2. While nodes with no tag exist

2.1. select a node with no tag,

2.2. let (M,x) be the selected node,

2.3. for all l ∈ L

2.3.1. for all t : L(t) = l ∧ Y mod
min (M, t) 6= ∅, do

• for all e ∈ Y mod
min (M, t), do

• let M ′ = M + Creg · e + C(·, t),
• if @ already a node with M ′, do

• add a new node to the graph

containing the couple (M ′, x′)

where ∀i = 1, . . . , r,

x′(T i
f ) =





1 if T (M ′) is feasible,

0 otherwise.

• add arc (l(t), e) from



node (M,x) to node (M ′, x′)

2.4. for all i = 1, . . . , r : x(T i
f ) = 1

2.4.1. for all tf ∈ T i
f : Y mod

min (M, tf ) 6= ∅, do

• for all e ∈ Y mod
min (M, tf ), do

• let M ′ = M + Creg · e + C(·, tf ),
• if @ already a node with M ′, do

• add a new node to the graph

containing the couple (M ′, x′)

where ∀i = 1, . . . , r,

x′(T i
f ) =





1 if T (M ′) is feasible,

0 otherwise.

• add arc (tf , e) from

node (M,x) to node (M ′, x′)

2.5. tag the node (M,x) ”old”.

3. Remove all tags. ¥
The algorithm constructs the MBRG starting from the initial node to which it corresponds the

initial marking and a binary vector defining which classes of faults may occur at M0. Now, we

consider all labels l ∈ L (step 2.3) and all fault classes i = 1, . . . , r (step 2.4) such that there

exists a transition t with L(t) = l or a fault transition tf ∈ T i
f for which a minimal explanation

at M0 exists. For any of such transitions, that can be either t ∈ To or tf ∈ T i
f , we compute

the marking M ′ resulting from its firing at M0 + Cu · e (e ∈ Y mod
min (M0, t) or e ∈ Y mod

min (M0, tf ),

respectively). If a new couple (marking, binary vector) is obtained, a new node is added to the

graph, containing the resulting marking M ′ and the corresponding vector x′. The arc going from

the initial node to the new node is either labeled (l(t), e) or (tf , e), depending on the considered

event. The procedure is iterated until all nodes have been examined.

Note that if the net is bounded the procedure terminates in a finite number of steps because

the number of nodes is upper limited by the cardinality of the set R(N, M0).

Example 6.2: In Fig. 1.(b) is shown the MBRG corresponding to the PN in Fig. 1.(a) (in-

troduced in Examples 4.7 and 5.4). Here M1 = [1 0 1 0 0 0]T , M2 = [0 0 2 0 0 0]T ,

M3 = [1 0 0 0 1 0]T , M4 = [0 0 1 0 1 0]T , M5 = [0 0 0 0 2 0]T , e1 = [1 0 0]T , e2 = [0 1 0]T and



e3 = [0 0 1]T .

Each node contains a different marking and a scalar (because there is only one fault class).

As an example, the scalar 1 is associated to M0 because T (M0) is feasible.

Arcs are labeled either by (label (relative transition), corresponding modified minimal e-vector)

(see e.g. (a(t1), e1) from the initial node), or by (unobservable transition, corresponding modified

minimal e-vector) (see e.g. (ε7, e2) from M1).

Finally, let us observe that not all the markings in the nodes are basis markings. Precisely,

M0,M1, and M2 are basis markings, while M3,M4,M5 are markings reached from basis mark-

ings firing the fault transitions ε5 and ε7. This shows that memory requirements necessary to

solve the problem of diagnosability are greater than those required to perform diagnosis. Note

however, that the number of markings in the MBRG is equal to the number of consistent markings

only in the worst case, but in general is smaller, as in this example. ¥

VII. BASIS REACHABILITY DIAGNOSER

In this section we define a diagnoser called Basis Reachability Diagnoser (BRD). It is a

deterministic graph that, used in addition with the MBRG, allows us to state necessary and

sufficient conditions for diagnosability.

Definition 7.1: The BRD is a deterministic graph where each node contains the following

items:

• one or more triples (M, x, h), where:

– M is a basis marking;

– x ∈ {0, 1}|Tf | is a row vector whose ith entry is equal to 1 if T (M) is feasible wrt the

ith class, and is equal to 0 otherwise;

– h ∈ {N, F}|Tf | is a row vector whose ith entry is equal to N if reaching M from M0

no fault in T i
f has occurred, and is equal to F otherwise;

• r tags ∆i, i = 1, . . . , r, that represent the diagnosis state of the node wrt the r fault classes.

Finally, arcs are labeled with a symbol in L. ¥
The BRD can be easily computed starting from the MBRG. In particular, the values of M

and x are readable from the MBRG by only looking at the nodes containing basis markings.

The values of h can be deduced by looking at the path(s) from M0 to the corresponding value

of M (denoted as M0 Ã M ). If there exists a path M0 Ã M containing fault transitions in the



ith class, then to the couple M , x it is associated a value of h(i) = F . If there exists a path

M0 Ã M containing no fault transition in the ith class, then to the couple M , x it is associated

a value of h(i) = N . Note that, since in general there may exist more than one path going from

M0 to M , one containing a fault in T i
f and another not, then the couple M , x may appear twice

in the same node, both with h(i) = F and with h(i) = N .

The diagnosis state for each fault class is trivially obtained by definition just looking at the

last two entries of all triples in the node.

The following algorithm summarizes the main steps for the construction of the BRD. Note

that to simplify the notation, we assume that each class only includes one fault transition, thus

|Tf | = r.

Algorithm 7.2: [Computation of the BRD]

1. Label the initial node d0 = (M0, x0, h0), h0 = N r.

For i = 1, . . . , r, if x0(i) = 0 then ∆i = 0, else ∆i = 1.

Assign no tag to it.

2. While nodes with no tag exist

2.1. select a node d with no tag and do

2.2. for all l ∈ L

2.2.1. for all M ∈ d : Ymin(M, t) 6= ∅ for some

transition t : L(t) = l

• for all triples with marking M in d

• let d̃ = ∅
• for all output arcs of (M, x) in

the MBRG labeled l, do

• let (M ′, x′) be the output node

in the MBRG,

• let



h′(i) = N if h(i) = N

h′(i) = F if h(i) = F

• let d̃ = d̃ ∪ {(M ′, x′, h′)}
• for all output paths of (M, x) in



the MBRG labeled σf l such that

π(σf ) ∈ Ymin(M, t) and L(t) = l,

• let (M ′, x′) be the final node

in the MBRG,

• let



h′(i) = N if h(i) = N ∧ tfi
/∈ M Ã M ′

h′(i) = F if h(i) = F

h′(i) = F if h(i) = N ∧ tfi
∈ M Ã M ′

• let d̃ = d̃ ∪ {(M ′, x′, h′)}
• if ∀ M ′ ∈ d̃ it is

h′(i) = N and x′(i) = 0, then

• let ∆i = 0

• else if ∀M ′ ∈ d̃ it is

h′(i) = N and x′(i) = 1, then

• let ∆i = 1

• else if ∃(M ′, x′, h′) ∈ d̃ : h′(i) = N

and ∃(M ′′, x′′, h′′) ∈ d̃ : h′′(i) = F ,

then

• let ∆i = 2

• else if ∀ M ′ ∈ d̃ it is h′(i) = F , then

• let ∆i = 3

2.2.2 if @ a node d̄ = d̃ in the graph then

• add a new node d̃ to the graph

2.2.3 add arc l from d to d̃

2.3. tag d old.

2.4 Goto step 2.1.

3. Remove all tags. ¥
The algorithm constructs the BRD starting from the initial node to which it corresponds a

triple (M0, x0, h0), where M0 and x0 are the components of the initial node of the MBRG and

h0 = N r. Its diagnosis state ∆i is set to zero if no fault transition in T i
f may have occurred



from the initial marking, namely if the entry of x0 associated to the only (for assumption) fault

transition tfi
∈ T i

f is null, otherwise ∆i is set to one.

Starting from the initial node and looking at the MBRG we focus on the set of basis markings

that are reachable firing transitions with label l at M0, either immediately or after the firing of

one or more fault transitions.

The new node will be composed by all triples (M ′, x′, h′) such that the couple (M ′, x′) is

reached in the MBRG either firing a transition labeled l at M0, or firing a minimal explana-

tion containing one or more fault transitions and then the considered label l; h′ is computed

considering h0 and all paths M0 Ã M ′ in the MBRG.

Finally, for each node the diagnosis state ∆i depends on the ith entry of the two vectors x

and h of all the markings appearing in the node. The procedure is iterated until all nodes have

been explored.

Example 7.3: In Fig. 1.(c) is reported the BRD of the PN in Fig. 1.(a), where Tf = {ε5, ε7}.

The initial node contains the triple (M0, 1, N) and its diagnosis state is ∆ = 1 being x0 = 1.

From this node a and b are both enabled and they lead respectively to node (M1, 1, N) and to

node (M0, 1, F ). The diagnosis state of these two nodes is ∆ = 1 and ∆ = 3, respectively. In

fact (M1, 1, N) is reached firing no fault transition (h = N ) but it is x = 1, while the second

node has only one triple having h = F .

Finally, the node reached from (M1, 1, N) firing b has diagnosis state ∆ = 2. In fact, it is

composed by two triples, one with h = N and the other one with h = F . ¥

VIII. NECESSARY AND SUFFICIENT CONDITIONS FOR DIAGNOSABILITY

In this section we provide necessary and sufficient conditions for diagnosability based on the

notions of uncertain and indeterminate cycles. These conditions can be verified using the BRD

in conjunction with the MBRG. In particular, first we have to check if the BRD contains an

uncertain cycle, namely a potential indeterminate cycle, and then using the MBRG to verify if

that cycle is indeterminate or not.

Definition 8.1: Let γ be a cycle in the BRD with observable projection ρ ∈ L∗ and let p ∈ L∗

be a path from the initial node to any node of the cycle. The cycle γ is uncertain wrt a fault

class T i
f if it only includes states with ∆i = 2, or ∆i = 1, or ∆i = 1 and ∆i = 2. ¥



Definition 8.2: Let γ be an uncertain cycle in the BRD with observable projection ρ ∈ L∗ and

let p ∈ L∗ be a path from the initial node to any node of the cycle. The cycle γ is indeterminate

wrt a fault class T i
f if in the MBRG there exist two cycles γ1 and γ2 satisfying the following

three conditions:

(i) their observable projection is equal to ρ;

(ii) there exist two paths p1 and p2 with observable projection p, that from the initial node in

the MBRG enable γ1 and γ2;

(iii) both γ2 and p2 do not contain a fault in T i
f , while either γ1 or p1 or both contain a fault in

T i
f . ¥

Example 8.3: Let us consider the BRD in Fig. 1.(c) corresponding to the PN in Fig. 1.(a).

The dotted ellipses represent the uncertain cycles for the unique fault class.

Let us consider in the BRD the uncertain cycle γ = [(M0, 1, N), (M0, 1, F )] a−→[(M1, 1, N), (M1, 1, F )]

b−→[(M0, 1, N), (M0, 1, F )] for which ρ = ab and p = [(M0, 1, N)] a−→[(M1, 1, N)] b−→. Looking at

the MBRG in Fig. 1.(b) we can see that this cycle is indeterminate since conditions of Defini-

tion 8.2 are satisfied. In fact, in the MBRG there exist two cycles γ1 = (M0, 1)a(t1)−−→(M1, 1)ε7−→(M3, 1)b(t3)−−→(M0, 1)

and γ2 = (M0, 1)a(t1)−−→ (M1, 1)b(t2)−−→(M0, 1) having the same observable projection ρ and there

exist two paths p1 = p2 = (M0, 1)a(t1)−−→ (M1, 1)b(t2)−−→(M0, 1) having the same observable projec-

tion of p and that from the initial node enable γ1 and γ2. Finally both p2 and γ2 do not contain

fault transitions, while γ1 contains ε4. ¥
Theorem 8.4: A net system 〈N,M0〉 satisfying assumptions (A1) to (A4) is diagnosable wrt

the fault class T i
f iff its BRD has no cycle that is indeterminate wrt T i

f .

Proof: We prove the if and only if statements separately.

(If) Assume by contradiction that an indeterminate cycle labeled ρ exists in the BRD. Moreover,

we assume that in the MBRG there exist two cycles γ1 and γ2 satisfying conditions (i) to (iii)

in Definition 8.2. This obviously implies that there exist two sequences relative to p1γ1 and

p2γ2 having the same observable projection, one containing a fault in the ith class and the other

one not, that can be made arbitrary long, because γ1 and γ2 can be repeated an arbitrary large

number of times. Thus, by Definition 3.1 the system is not diagnosable wrt to the ith class.

(Only if) Assume that the BRD has no cycle that is indeterminate wrt T i
f . By Definition 3.1 the

other sequences that may potentially lead to a violation of the diagnosability property because

they have the same observable projection and can be made arbitrary long, are those corresponding



to cycles with one of the following features: (1) they include at least one node with ∆i = 0; (2)

they only include nodes with ∆i = 3; (3) they include nodes with ∆i = 1 and/or ∆i = 2 but

they are not indeterminate.

Case (1) means that after a finite number of observed events (at most equal to the number

of events of the cycle in the BRD) it is possible to be sure that no fault has occurred, thus the

third item of Definition 3.1 may never happen.

Case (2) means that a fault has occurred for sure, thus the second item of Definition 3.1 may

never hold.

Case (3) means that there do not exist two sequences σ1 and σ2 having the same observable

projection where σ2 can be made arbitrary long, namely there do not exist two sequences

satisfying the conditions in Definition 3.1. ¤
Corollary 8.5: A net system 〈N,M0〉 satisfying assumptions (A1) to (A4) is diagnosable iff

its BRD has no cycle that is indeterminate wrt all fault classes. ¥
Example 8.6: Let us consider the PN system in Figure 1.(a) whose BRD is given in Fig-

ure 1.(c). From the analysis of the indeterminate cycles reported in Example 8.3 we can conclude

that the system is not diagnosable. ¥

IX. CONCLUSIONS

In this paper we presented an approach to solve the problem of diagnosability of bounded

PNs based on the concept of basis marking, that allows us to represent the reachability space in

a compact manner. We first give a necessary and sufficient condition for diagnosability. Then,

we provide a method to test the diagnosability that is based on the analysis of a diagnoser that

we call basis reachability diagnoser, in conjunction with another graph (that is used for the

construction of the diagnoser) called modified basis reachability graph.
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