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Abstract

In this paper we consider the property of diagnosability for labeled unbounded Petri nets, namely

Petri nets where the number of tokens in one or more places can grow indefinitely. We give necessary

and sufficient conditions for diagnosability and we present a test to study diagnosability based on the

analysis of the coverability graph of a particular net, called verifier net, that is built starting from the

initial system. To the best of our knowledge, this is the first available test for diagnosability analysis

of labeled unbounded Petri nets. We also discuss existing methods to perform diagnosis of unbounded

Petri nets.
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I. INTRODUCTION

Failure detection and diagnosis in industrial systems is a subject that has received a lot of

attention in the past few decades. Within this body of research two different problems are

addressed: diagnosis and diagnosability. Solving a problem of diagnosis means that we associate

to each observed string of events a diagnosis state, such as “normal” or “faulty” or “uncertain”.

Solving a problem of diagnosability is equivalent to determining if the system is diagnosable,

i.e., if once a fault has occurred the system can detect its occurrence in a finite number of steps.

In the framework of finite state systems, such as automata and bounded Petri nets, several

approaches have been proposed for diagnosis and a restricted number for diagnosability. In

particular, in [1], [2] Sampath et al. have presented an approach to perform diagnosis and give

necessary and sufficient conditions for diagnosability based on the analysis of indeterminate

cycles in an automaton called diagnoser. Some of us have presented an approach to perform

diagnosis of Petri nets [3] and a procedure to test diagnosability of bounded Petri nets [4], both

based on the notion of basis markings.

In the case of infinite state systems, very few results have been presented, all in the framework

of Petri nets. In [5] Ushio et al. give sufficient conditions for diagnosability of unbounded Petri

nets extending the approach in [1], [2] for automata. In contrast to [5], Chung in [6] assumes that

part of the transitions of the Petri net are observable and shows that the additional information

from observed transitions in general enhances the diagnosability of the analyzed system. In [7]

Wen and Jeng propose an approach to test diagnosability by checking the structural property of

the T-invariants of the nets. In [8] Wen et al. present an algorithm, based on a linear programming

problem and of polynomial complexity in the number of nodes, for computing a sufficient

condition of diagnosability of discrete event systems modeled by Petri nets.

In this paper, we consider the diagnosability problem of unbounded Petri nets. The model we

consider is a labeled Petri net where some transitions are indistinguishable. Faults are modeled

by unobservable transitions, but not all unobservable transitions represent faults. We present

necessary and sufficient conditions for diagnosability and we give a test based on the analysis of

the coverability graph of a new type of net, called verifier net, built from the Petri net model of

the system to be diagnosed. To the best of our knowledge, this is the first test for diagnosability

analysis of labeled Petri nets with unbounded state space. This contribution is relevant because



it provides a diagnosability test for discrete event systems that are capable of generating some

non-regular languages. In fact, as is well known, finite state automata, as well as bounded Petri

nets, only generate regular languages while unbounded Petri nets can generate both regular and

non-regular languages.

Note that our problem statement is related to prior works on diagnosability analysis of regular

languages represented by finite-state automata and is different from prior work on diagnosability

analysis of Petri nets. Specifically, we consider that only a subset of transitions are unobservable,

while in [5], [7], [8] the authors consider that some places are unobservable as well. Moreover,

we consider labeled Petri nets where two or more transitions can share the same label, rather

than free-labeled Petri nets.

Let us finally observe that in [4] we present an original approach for diagnosability of bounded

Petri nets. This approach is based on the notion of basis markings and allows to reduce the

state space enumeration. Unfortunately, in the case of unbounded Petri nets, the basis marking

approach cannot be used because in such a case we need an exhaustive enumeration of the

nodes of the coverability graph. On the other hand, when applicable, the approach in [4] may be

preferable to the approach in this paper because it also allows to solve the diagnosis problem,

using the same framework we use for the diagnosability analysis.

II. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the paper. For more details on Petri nets we

refer the reader to [9].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P ×T → N and Post : P ×T → N are the pre– and

post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative

integer number of tokens, represented by black dots. We denote M(p) the marking of place p.

A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =

M +C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk
is enabled

at M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′.



The set of all sequences that are enabled at the initial marking M0 is denoted L(N, M0),

i.e., L(N, M0) = {σ ∈ T ∗ | M [σ〉}. We use λ to denote an empty sequence of transitions, i.e.,

σλ = σ ∀ σ ∈ T ∗.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector

y ∈ Nn, named the firing vector (or Parick vector) of σ. Specifically, y = π(σ) is such that

y(t) = k if the transition t is contained k times in σ.

A marking M is reachable in 〈N,M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is

denoted R(N,M0). Finally, we denote PR(N,M0) the potentially reachable set, i.e., the set

of all markings M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state equation

M = M0 + C · y, i.e., PR(N,M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0 + C · y}. We have

that R(N, M0) ⊆ PR(N, M0).

A Petri net having no directed circuits is called acyclic. For this subclass, it can be shown

[10] that the state equation gives necessary and sufficient conditions.

A net system 〈N, M0〉 is bounded if there exists a positive constant k such that, for M ∈
R(N, M0), M(p) ≤ k. If such is not the case, namely if the number of tokens in one or more

places can grow indefinitely, then the Petri net system is unbounded.

Definition 2.1: Given a Petri net system 〈N,M0〉, a transition t is:

• dead if there does not exist a reachable marking M ∈ R(N, M0) that enables t;

• semi-live if there exists at least one marking M ∈ R(N,M0) that enables t;

• live if for each reachable marking M ∈ R(N, M0), t is semi-life in 〈N, M〉. ¥

A net system 〈N, M0〉 is live if all transitions t ∈ T are live. A deadlock occurs at marking

M if no transition is enabled at M .

Definition 2.2: A sequence σ ∈ T ∗ is called repetitive if there exists a marking M1 ∈
R(N, M0) such that

M1[σ〉M2[σ〉M3[σ〉 · · · (1)

i.e., if it can fire infinitely often starting from M1. It is possible to distinguish two different types

of repetitive sequences:

• stationary sequence: if in (1) Mi = Mi+1 for all i = 1, 2, . . ..

• increasing sequence: if in (1) Mi � Mi+1 for all i = 1, 2, . . .. ¥



There exists a simple structural condition to characterize repetitive sequences.

Fact 2.3: [9] If sequence σ is enabled at M1, a necessary and sufficient condition for it being

repetitive is that in (1) it holds Mi ≤ Mi+1 for all i = 1, 2, . . . , or equivalently C · y ≥ ~0, where

y = π(σ).

Furthermore if C · y = ~0 the sequence is stationary, else if C · y 
 ~0 it is increasing. ¥
A nonnegative integer vector y ∈ Nn satisfying C · y = 0 is called T-invariant.

A labeling function L : T → L ∪ {ε} assigns to each transition t ∈ T either a symbol from

a given alphabet L or the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}.

Transitions in Tu are called unobservable or silent.

We denote as To the set of transitions labeled with a symbol in L. Transitions in To are

called observable because when they fire their label can be observed. Note that in this paper

we assume that the same label l ∈ L can be associated with more than one transition. In

particular, two transitions t1, t2 ∈ To are called undistinguishable if they share the same label,

i.e., L(t1) = L(t2) = l ∈ L.

We extend the labeling function to define the projection operator L : T ∗ → L∗ recursively as

follows:

(i) L(tj) = lj ∀tj ∈ To : L(tj) = lj;

(ii) L(ti) = ε ∀ti ∈ Tu;

(iii) L(σtj) = L(σ)L(tj) ∀σ ∈ T ∗, ∀tj ∈ T .

Moreover, L(λ) = ε. The inverse projection operator L−1 is defined as L−1(d) = {s ∈
L(N, M0) : L(s) = d}.

We denote as w the word of events associated with the sequence σ, i.e., w = L(σ). Note

that the length of a sequence σ (denoted |σ|) is always greater than or equal to the length of

the corresponding word w (denoted |w|). In fact, if σ contains k′ transitions labeled ε then

|σ| = k′ + |w|.
Given a language K ∈ T ∗, we denote by K/s the post-language of K after s, i.e., K/s =

{g ∈ T ∗ | sg ∈ K}.

We conclude with the following definition:

Definition 2.4: Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we

define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′



are the restrictions of Pre, Post to T ′. In this case, we write N ′ ≺T ′ N . ¥
The net N ′ can be thought of as obtained from N by removing all transitions in T \ T ′ and all

dangling arcs.

III. COVERABILITY GRAPH

One technique used for the analysis of unbounded Petri nets is based on the construction of

the coverability tree/graph (see also [9]) that provides a description in finite terms of the infinite

reachability set. In particular, each node of the graph is labeled with an m dimensional row

vector whose entries may either be an integer number or may be equal to the special symbol

ω, while arcs are elements in T . The symbol ω denotes that the marking of the corresponding

place may grow indefinitely. Note that for all n ∈ N we have that ω > n and ω ± n = ω.

Algorithm 3.1: Construction of the coverability tree for 〈N, M0〉.
1) Label the root node q0 with the initial marking M0 and tag it ”new”.

2) While a node tagged ”new” exists do

a) Select a node q tagged ”new” and let M be its label.

b) For all t enabled at M , i.e., such that M ≥ Pre(·, t):
i) Let M ′ = M + C(·, t) be the marking reached from M by firing t.

ii) Let q̄ be the first node met on the backward path from q to q0 whose label is

M̄ � M ′. If such a node exists then for all p ∈ P such that M ′(p) > M̄(p) let

M ′(p) = ω.

iii) Add a new node q′ and label it M ′.

iv) Add an arc labeled t from q to q′.

v) If there exists already in the tree a node with label M ′, then tag node q′ ”dupli-

cate”, else tag it ”new”.

c) Untag node q.

¥
From the coverability tree (CT) one can obtain the coverability graph (CG) by fusing duplicate

nodes with the untagged node with the same label: one can always convert a CT in a graph and

viz.

In the construction of the CT the existence of a sequence σ that leads from a marking M̄ to

a greater marking M ′ is identified at step 2.(b).ii. The places that by the repeated firing of such



a sequence σ grow unbounded are denoted with a special symbol ω. Note that if M̄ contains no

ω places then σ is an increasing sequence. However, if M̄ contains ω places we can only say

that σ is increasing for all places p such that M̄(p) < ω: nothing can be said for the remaining

places.

The coverability graph gives us only sufficient conditions for reachability. Let us consider a

property of the CG that will be useful in the following.

Proposition 3.2: [9] Let us consider a Petri net 〈N,M0〉 and its CG. If a transition t is in

the CG then t is semi-live.

This means that if a transition appears in the CG then there will exist for sure a firing sequence

that enables it.

IV. DIAGNOSABILITY OF PETRI NET SYSTEMS

Assume that the set of transitions is partitioned as T = To∪Tu, where To is the set of observable

transitions, and Tu is the set of unobservable transitions. When an observable transition fires we

observe its label, thus our observations consist in sequences of symbols in the alphabet L. The

set of unobservable transitions is partitioned into two subsets, namely Tu = Tf ∪ Treg where

Tf includes all fault transitions (modeling anomalous or fault behavior), while Treg includes all

transitions relative to unobservable but regular events. The set Tf is further partitioned into r

different subsets T i
f , where i = 1, . . . , r, that model the different fault classes. Let us introduce a

definition for diagnosability of Petri nets inspired by the definition of diagnosability for languages

introduced in [11].

Definition 4.1: A Petri net system 〈N,M0〉 having no deadlock after the occurrence of tran-

sition tf ∈ T i
f , for i = 1, . . . , r, is diagnosable wrt the fault class T i

f if there do not exist two

firing sequences σ1 and σ2 ∈ T ∗ satisfying the following conditions:

• L(σ1) = L(σ2),

• ∀tf ∈ T i
f , σ1 ∈ (T \ T i

f )
∗,

• ∃ at least one tf ∈ T i
f such that tf ∈ σ2,

• σ2 is of “arbitrary length” (see [11]) after fault tf ∈ T i
f .

A Petri net system 〈N, M0〉 is said diagnosable if it is diagnosable wrt all fault classes. ¥
The previous definition is the immediate Petri net counterpart of the definition of diagnosability

commonly used in the framework of diagnosis with automata. It is important to point out,



however, that a different notion may be introduced. This is done in the following definition.

Let T ′ be a subset of T . We define Ψ(T ′) = {st′ ∈ L(N, M0) : t′ ∈ T ′}, i.e, the set of all

firing sequences in L(N,M0) that end in a transition t′ ∈ T ′.

Definition 4.2: [1] A Petri net system 〈N, M0〉 is diagnosable in K steps wrt the fault class

T i
f if ∃K ∈ N such that

∀s ∈ Ψ(T i
f ), ∀g ∈ L(N, M0)/s with |g| ≥ K

⇒ ∀w ∈ L−1(L(sg)), ∃tf ∈ T i
f : tf ∈ w. (2)

A Petri net system 〈N, M0〉 is said diagnosable in K steps if it is diagnosable in K steps wrt

all fault classes. ¥
The above definition means that a Petri net system is diagnosable in K steps wrt the i−th

fault class if for any sequence s that terminates in a transition in T i
f and for any continuation g

of s of length greater than or equal to K, all sequences w having the same observable projection

of sg contain some fault transitions in T i
f . In other words, diagnosability in K steps wrt a given

fault class implies that the occurrence of a fault in that class can be detected after a finite number

K of transition firings.

Proposition 4.3: A Petri net system 〈N, M0〉 that is diagnosable in K steps wrt T i
f is also

diagnosable wrt T i
f .

If the language L(N, M0) is regular the converse also holds.

Proof: One can verify that Definition 4.1 is equivalent to

∀s ∈ Ψ(T i
f ), ∃Ks ∈ N, ∀g ∈ L(N,M0)/s with |g| ≥ Ks

⇒ ∀w ∈ L−1(L(sg)), ∃tf ∈ T i
f : tf ∈ w, (3)

where the bound Ks depends on the particular string s. Definition 4.2 is obviously stronger

because it requires that the bound K should be the same for all strings s ∈ Ψ(T i
f ); hence the

first part of the statement holds.

Assume now that L(N, M0) is a regular language, hence can be generated by a finite-state

automaton with transition function δ : X × L → X and initial state x0. It is not difficult

to understand that if 〈N, M0〉 is diagnosable wrt T i
f , for any two strings s, s′ ∈ Ψ(T i

f ) with

δ(x0, s) = δ(x0, s
′) one may choose the same integer Ks in (3), i.e., Ks actually depends on the
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Fig. 1. The Petri net system of Example 4.4.

state δ(x0, s). Since there are a finite number of states, by taking the largest K over all states

reached by strings in Ψ(T i
f ) we conclude that 〈N,M0〉 is diagnosable in K steps wrt T i

f . ¤
The second part of the previous statement also shows that in the case of regular languages (as

it is the case with the diagnostic approach based on automata) it is not necessary to distinguish

between the two notions of diagnosability. This result was also observed in [12].

The next example shows an unbounded net that is diagnosable but not diagnosable in K steps.

Example 4.4: Let us consider the Petri net system in Fig. 1, where To = {t1, t4, t5, t6, t7},

Tu = {ε2, ε3} and Tf = {ε2}. Let L(t1) = a, L(t4) = L(t6) = b, L(t5) = d and L(t7) = c.

For all strings s(k) ∈ Ψ(Tf ), where s(k) = tk1ε2, in (3) one may choose Ks(k) = k + 2

or greater to prove that the system is diagnosable. Since this value of Ks(k), however, grows

arbitrarily large with k, the system is not diagnosable in K steps for any finite K.

Note that if we modify the label of transition t5 as L(t5) = c then this system is not diagnosable

with respect to either definition of diagnosability. ¥
In the following section we investigate the problem of providing necessary and sufficient

conditions for diagnosability (in the sense of Definition 4.1) of unbounded Petri nets under the

following assumptions.

(A1) The structure of the net and its initial marking M0 is known.

(A2) Two or more observable transitions can share the same label.

(A3) The Tu-induced subnet is acyclic.

(A4) The system does not enter a deadlock after the firing of any fault transition.



Since our diagnosis procedure is based on observing transition labels, assumption A3 is

necessary to avoid cycles of unobservable transitions On the other hand, assumption A4, has

been made for the sake of simplicity and could be removed with slight modifications to the

procedure.

The problem of deriving analysis criteria for diagnosability in K steps is not addressed in this

paper.

V. ANALYSIS OF DIAGNOSABILITY

In this section we show how the diagnosability of an unbounded Petri net system can be

checked by looking at the CG of a special Petri net called Verifier Net (VN).

A. Verifier Net

For the sake of simplicity, we consider in the following the case of a single fault class; hence,

the superscript i is omitted in T i
f hereafter.

Let us consider the labeled Petri net system 〈N,M0〉, where N = (P, T, Pre, Post), T =

To ∪ Tu, and Tu = Treg ∪ Tf . Let L : T → L ∪ {ε} be its labeling function.

Let N ′ = (P ′, T ′, P re′, Post′) be its T ′-induced subnet, where T ′ = T \ Tf = To ∪ Treg.

Since we need to distinguish among places of N and N ′ we denote them as P and P ′, re-

spectively, and assume that they are disjoint even if they represent the same places. Analogously,

since we need to distinguish among regular transitions of N and N ′ we denote them as Treg and

T ′
reg, respectively, and assume that they are disjoint even if they represent the same transitions.

We assume that the Petri net system associated with N ′ is 〈N ′,M ′
0〉 where M ′

0 = M0. Finally,

we assume that the labeling function of N ′ is equal to L restricted to T ′.

The Verifier Net (VN) system is the Petri net system obtained by a composition (related to

parallel composition) of 〈N, M0〉 and 〈N ′,M ′
0〉 assuming that the synchronization is performed

on the observable transitions labels. We denote it as 〈Ñ , M̃0〉, where Ñ = (P̃ , T̃ , P̃ re, P̃ ost),

P̃ = P ′ ∪ P and T̃ = (T ′
o × To) ∪ (T ′

reg × {λ}) ∪ ({λ} × Treg) ∪ ({λ} × Tf ).

The algorithm below shows how to construct the two matrices P̃ re and P̃ ost.

Algorithm 5.1: Construction of the Verifier Net.

Input: a labeled Petri net system 〈N, M0〉 where N = (P, T, Pre, Post), T = To ∪ Treg ∪ Tf

and L : T → L ∪ {ε}.



Output: the VN system 〈Ñ , M̃0〉, where Ñ = (P̃ , T̃ , P̃ re, P̃ ost).

1) Let 〈N ′,M ′
0〉 be a labeled Petri net system defined as discussed above.

2) Let P̃ = P ′ ∪ P .

3) Let M̃0 =


 M ′

0

M0


 .

4) For all transitions tf ∈ Tf ,

• add a transition t ∈ T̃ denoted as (λ, tf );

• for all p ∈ P ′, let P̃ re(p, t) = P̃ ost(p, t) = 0;

• for all p ∈ P , let P̃ re(p, t) = Pre(p, tf ) and P̃ ost(p, t) = Post(p, tf ).

5) For all transitions treg ∈ Treg,

• add a transition t ∈ T̃ denoted as (λ, treg);

• for all p ∈ P ′, let P̃ re(p, t) = P̃ ost(p, t) = 0;

• for all p ∈ P , let P̃ re(p, t) = Pre(p, treg) and P̃ ost(p, t) = Post(p, treg).

6) For all transitions t′reg ∈ T ′
reg,

• add a transition t ∈ T̃ denoted as (t′reg, λ);

• for all p ∈ P ′, let P̃ re(p, t) = Pre′(p, t′reg) and P̃ ost(p, t) = Post′(p, t′reg);

• for all p ∈ P , let P̃ re(p, t) = P̃ ost(p, t) = 0.

7) For all labels l ∈ L,

• for any couple t′o, to with t′o ∈ To, to ∈ To, L(t′o) = L(to) = l,

– add a transition t ∈ T̃ denoted as (t′o, to);

– for all p ∈ P ′, let P̃ re(p, t) = Pre′(p, t′o) and P̃ ost(p, t) = Post′(p, t′o);

– for all p ∈ P , let P̃ re(p, t) = Pre(p, to) and P̃ ost(p, t) = Post(p, to);

– label transition t with (l, l).

¥
Example 5.2: Fig. 2 shows the VN of the Petri net system in Fig. 1, already introduced in

Example 4.4.

The set of places of the VN is composed by the union of the set of places P of the Petri net

system 〈N, M0〉 in Fig. 1 and the set of places P ′ of the T ′-induced subnet. The T ′-induced

subnet is obtained from 〈N, M0〉 by removing fault transition ε2; it is not drawn here.

Observable transitions, denoted in Fig. 2 as black bars, are indicated by two pairs (l, l) and
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Fig. 2. Verifier net 〈Ñ , M̃0〉 where 〈N, M0〉 is the Petri net in Fig. 1.

(t′o, to) (e.g. (a, a, ) (t′1, t1)), while unobservable transitions are indicated by only one pair (e.g.

(λ, ε3)), since no label is associated with them.

Let us observe that since label b is associated with two transitions (t4 and t6) the VN contains

four transitions labeled (b, b).

Note that, to improve readability, if a place p has both a pre and a post arc with a transition

t we use a double arrow (e.g. line between p1 and (t′1, t1)). ¥
Proposition 5.3: Given a Petri net system 〈N,M0〉 and its VN, if a sequence σ̃ = (t′i1 , ti1)(t

′
i2
, ti2) . . . (t′ik , tik)

is repetitive in the VN, then there exists a repetitive sequence σ = ti1ti2 . . . tik in 〈N, M0〉 and

a repetitive sequence σ′ = t′i1t
′
i2

. . . t′ik in 〈N ′,M ′
0〉.

Proof: It follows from the definition of VN. In fact, the existence of a sequence σ̃ ∈
L(Ñ , M̃0) implies that L(σ̃) ∈ L(N, M0) and L′(σ̃) ∈ L(N ′,M ′

0), where L((t′i1 , ti1)(t
′
i2
, ti2) . . . (t′ik , tik)) =

ti1ti2 . . . tik = σ and L′((t′i1 , ti1)(t′i2 , ti2) . . . (t′ik , tik)) = t′i1t
′
i2

. . . t′ik = σ′. The firing sequences σ

and σ′ are repetitive respectively in 〈N, M0〉 and in 〈N ′,M ′
0〉, given that σ̃ is repetitive in the

VN. ¤



B. Necessary and sufficient conditions for diagnosability

The following theorem shows how to determine the diagnosability of a Petri net system,

starting from the CG of its VN.

Theorem 5.4: A Petri net system 〈N,M0〉 satisfying assumptions A1 to A4 is diagnosable

iff starting from any node of the CG of its VN reached by firing the fault there does not exist

any cycle associated with a repetitive sequence in the VN.

Proof: We prove the if and only if statements separately.

(Necessity) By contradiction, assume that in the CG of the VN there exists a cycle associated

with a repetitive sequence for the VN and enabled after the fault occurrence. From Propo-

sitions 3.2 and 5.3, this means that in the Petri net system 〈N, M0〉 there exist two firing

sequences s = σp(r)
q and s′ = σ′p(r

′)q with q ∈ N, such that: σp contains the fault and σ′p

does not, L(σp) = L(σ′p), r and r′ are two repetitive sequences and L(r) = L(r′). Thus there

exist in L(N,M0) two sequences s and s′, one containing the fault and the other one not, having

the same observable projection, that can be made arbitrarily long using Definition 2.2. This

violates the definition of diagnosability of L(N, M0) given in Definition 4.1, hence the Petri net

is not diagnosable.

(Sufficiency) We show that if the CG of the VN does not contain a cycle associated with a

repetitive sequence in the VN after the fault event has occurred, then the system is diagnosable.

Let us consider what happens after an occurrence of the fault event in the system. Since

assumptions A3 and A4 hold, this occurrence will be captured in the CG and consequently

in the VN. In this case, if we consider two strings of events s = σp and s′ = σ′p such that s

contains the fault and s′ does not, L(s) = L(s′), and attempt to extend these two strings in a

manner that keeps their projections identical, the absence of a repetitive sequence in the VN

after the said occurrence of the fault event will prevent this extension from growing arbitrarily

long. Namely, we are unable to construct σ1 and σ2, as characterized in Definition 4.1. This

means that there is no violation of diagnosability. ¤
Note that our procedure, not only gives necessary and sufficient conditions for the diagnos-

ability of unbounded Petri nets, but also offers a test for diagnosability. After the verification of

the existence of a cycle that is enabled after a fault in the CG, it is necessary to verify if that

cycle is associated with a repetitive sequence in the VN. By Fact 2.3 it is possible to verify if



 

 [1 0 0 0 0 1 0 0 ] 

 

(� �3, λ) (λ, �2) (� �3, λ) 
(���)  (� �1,�1) 
 

 [1 0 0 0 1 0 0 0 ] 

 

 [0 0 0 1 0 1 0 0 ] 

 

 [0 0 0 1 1 0 0 0 ] 

 

(λ, �2) 
 [1 0 0 0 0 0 0 1 ] 

 

 [0 0 0 1 0 0 0 1 ] 

 

(λ, �3) 
(λ, �3) 

(� �3, λ) (���)
(� �7,�7) 
 

(���)
(� �6,�6) 
 

[1 0 ω 0 1 0 ω 0 ] 

 (���)  
 (� �1,�1) 
 

(λ, �3) (� �3, λ) 
[1 0 ω 0 0 0 ω 1 ] 

 
[0 0 ω 1 1 0 ω 0 ] 

 

[0 0 ω 1 0 0 ω 1 ] 

 

(� �3, λ) 
(λ, �3) 

(���)
(� �7,�7) 
 

(���)
(� �6,�4) 
 

[1 0 ω 0 0 1 ω 0 ] 

 

[0 0 ω 1 0 1 ω 0 ] 

 

(� �3, λ) (λ, �2) 
Fig. 3. Coverability graph of the Verifier Net in Fig. 2.

these sequences are repetitive by solving a simple integer programming problem.

Example 5.5: In Fig. 3 is shown the CG of the VN in Fig. 2.

The Petri net system 〈N,M0〉 in Fig. 1 is diagnosable. In fact, looking at the CG of the VN

there is only one cycle ([0 0 ω 1 0 1 ω 0]T (b, b), (t′6, t4)−−−−−−−−→[0 0 ω 1 0 1 ω 0]T ) enabled by a path

starting from a node reached firing the fault transition ε2. However, this cycle is not associated

with any repetitive sequence, since (t′6, t4) is not a repetitive sequence for the VN. ¥
Note that the VN technique can only handle one fault class at a time. In the case of more

than one fault classes, we need to built a VN for each fault class i for which all faults belonging

to a fault class j 6= i will be considered as regular transitions.

VI. DIAGNOSIS

In the previous section we considered the problem of diagnosability of unbounded Petri nets.

Unfortunately, this approach does not allow us to solve the problem of diagnosis because the CG

gives only sufficient conditions for reachability. We already proposed solutions to this problem

in [13], [14] that are briefly recalled in the following. Note that we presented these methods for

bounded Petri nets but they still hold for unbounded Petri nets.

The approach in [13] requires an exhaustive enumeration of the reachable markings each time

an event is observed. To each reachable marking M is associated a vector with cardinality r,



where r is the number of fault classes. The i-th entry of this vector is equal to 1 if reaching M

one or more fault transitions belonging to the i-th fault class have occurred, 0 otherwise.

In [14] we give a method to perform diagnosis using the notion of basis marking and

justification. Given an observed word w, a basis marking Mb is a marking that is reached

firing w and all those unobservable transitions strictly necessary to enable w. A justification

is the minimal firing sequence of unobservable transitions that interleaved with w enables its

firing. The notion of basis marking allows us to reduce the reachability space; in fact each time

an observable transition fires we do not have to enumerate all the markings consistent with the

observation but only a subset of them. Each time an observable transition fires, a diagnosis state

is computed based on the set of pairs reached basis marking, corresponding justification.

VII. CONCLUSION

The main result of this paper is to present a necessary and sufficient condition for diagnosability

of languages modeled by unbounded Petri nets. While the state space of such Petri nets is infinite,

the property of diagnosability (as defined in Definition 4.1) can be completely characterized on

a finite structure, called the Verifier Net. The notion of repetitive sequences is key in that regard.
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