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Decentralized Fault Diagnosis for Sensor Networks
Mauro Franceschelli, Alessandro Giua, Carla Seatzu

Abstract

In this paper we study the problem of fault diagnosis for sensor networks. We examine faults that
involve an anomalous behavior of the sensor and investigate their diagnosis only through the local
interaction between faulty nodes and healthy ones. We provide heuristics to actively diagnose faults and
recover the nominal behavior.
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I. INTRODUCTION

In the last decade a great deal of attention has been drawn toward distributed sensor networks
from researchers around the world. The technological feasibility of small, cheap and wireless
sensing devices allows to envision applications as large scale sensor networks for weather
measurement and forecasting, a more precise and detailed pollution monitoring in industrial
districts and dumps, distributed measurements for electromagnetic pollution, space applications
that require high robustness to sensor failures and so on. Apart from technological advances that
allow the production of smarter devices that consume little power, there is a fundamental need
for efficient distributed algorithms for sensor fusion and estimation to gain the most from such
devices. One reason why new estimation algorithms are needed is that such networks are intended
to be large-scale, i.e., the number of connected devices is expected to be large so as to cover
large surface areas like a city or a park or a nation. Such networks need scalable algorithms, i.e.,
algorithms whose computational complexity growths at most linearly with respect to the number
of network nodes, and most of all, decentralized algorithms able to solve problems addressing
the topological communication constraints of these networks and able to distribute evenly the
computational workload to exploit parallelism. One significant example of these algorithms is
the consensus algorithm [9]. Such algorithm has as objective to retrieve the average of the
measurements from a sensor network by performing iteratively local averages with neighboring
nodes.

A great effort has been put by researchers in control systems to study and improve the
convergence rate of the consensus algorithm in his many forms [10]. Another line of research
has been to study the effects of noise [15], quantization errors [16], switching topologies and
time delays [13]. Recently many researchers have studied the problem of fault detection on
sensor networks from different points of view. In [18] is studied the problem of fault detection
regarding network congestion, hidden terminals or asymmetric links. In [20] a method for the
fault diagnosis of a pulp mill process is developed. This is one of the largest processes in the fault
diagnosis area and it was proposed as a new benchmark process to evaluate the fault diagnosis
method. In [21] it is developed a framework for distributed model-based fault diagnosis using
sensor networks and consensus-based filter. The originality of this work is to allow the sensors
to perform sensible computations in a distributed fashion implementing a distributed Kalman
Filter and distributed data fusion algorithms.

In this paper we focus on a relevant weakness of the consensus algorithm used to solve the
distributed average problem for data fusion. Namely even if a network is composed by millions
of nodes implementing the consensus algorithm, if just one of them does not implement it
correctly due to hardware or software bugs, it prevents the network from converging properly
to the desired estimation. In this paper, following a previous work by the authors about fault
recovery in sensor networks [14], we add robustness to the consensus algorithm by providing a
method of active fault diagnosis and identification to be paired with an already published fault
recovery algorithm. The main contribution of this work is:

1) A classification of faults in a sensor network that disrupt the consensus dynamics.
2) A heuristic to classify suspected behavior of the nodes when a fault is likely.
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3) The application of a method developed in [14] to actively probe the nodes suspected to
be faulty.

4) An heuristic to identify faulty nodes once they have been probed.
5) The application of a method developed in [14] to recover the network convergence property

after a fault has been detected.

II. PROBLEM STATEMENT

We will consider a sensor network, whose nominal state evolution is governed by a discrete
time consensus equation that can be written quite generally as

x(k + 1) = Px(k) (1)

where P is a stochastic, indecomposable, aperiodic matrix, as discussed in [9]. Moreover, x ∈ Rn

is an aggregated state vector, with each component xi representing a scalar state associated with
agent i = 1, . . . , n.

We model the network as an undirected graph G = V × E, with V being a set of vertices
V = {1, . . . , n} that represent the agents, and where the edge set E ⊆ V × V encodes the
network topology in that (i, j) ∈ E if and only if agents i and j can share information. The
graph can be encoded through its adjacency matrix A, i.e., a n× n matrix such that ai,j = 1 if
and only if (i, j) ∈ E and is 0 elsewhere [3].

Let Ni ⊂ V be the set of vertices adjacent to vertex i, and let |Ni| denote its cardinality.
We can then define the degree matrix ∆ as the diagonal matrix whose diagonal entries are
∆i,i = |Ni|. Using these matrices, a standard, discrete time model of consensus networks is the
one defined by x(k +1) = (I−εL)x(k), where I is the identity matrix, L = ∆−A is the graph
Laplacian of the graph G, and ε > 0 the sampling time. Under this dynamics, the matrix P in
Equation (1) becomes

P = I − εL. (2)

We consider two different kinds of faults.
1) Stuck at : This fault is usually due to faults in the electronics of the sensor: it consists in

a sensor that is "stuck" at an arbitrary value. This makes the nodes that correctly follow
the prescribed communication protocol drift away toward the faulty node value.

2) Divergence fault : This fault is due to software or hardware failure: it consists in a
sensor constantly increasing (or decreasing) its state value indefinitely (or until a saturation
occurs). This makes the nodes that correctly follow the communication protocol drift away
in the direction of the faulty node value.

III. THE MOTION PROBE

In this section we briefly recall the "Motion Probe", namely a way to perturb a network
performing consensus while not disrupting its averaging properties. Such result was firstly
introduced in [14].
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In order to allow for the sensors to exert a control action different from the consensus-based,
we assume that the network behavior can be described by:

x(k + 1) = Px(k) + u(k), x(0) = x0. (3)

Here u ∈ Rn is a vector of inputs whose ith component ui is the scalar input exerted by node i.
Theorem 1: [14] Given the network dynamics in Equation (3). If

t−1∑

k=0

u(k) = 0,

then 1T x(t) = 1T x(0) ∀t > 0.
The above result implies that each node may locally apply any input during the transient

response of the system to actively identify faulty behavior without disrupting the convergence
properties if the integral of such input is null. We call any perturbation of the network state
satisfying Theorem 1 "Motion Probe".

We point out that since different nodes may apply the motion probe at the same time, to avoid
rare situations in which motion probes from different nodes nullify their contribution on a given
node they can be performed with a random amplitude.

IV. ACTIVE DIAGNOSIS AND RECOVERY OF DECENTRALIZED SENSOR NETWORKS

Our approach for diagnosis and recovery can be summarized into three steps that the single
nodes can apply independently and asynchronously:

1) Detection of suspicious behavior : This step is performed by each node toward each of its
neighbors. The detection of suspicious behavior is carried out by observing the neighbors’
states and checking through a set of rules the presence of anomalous behavior.

2) Fault identification : This step is performed by the nodes who identified a suspicious
behavior in one of their neighbors. It consists in applying an appropriate input to the
network and check the reaction of the suspected node to identify an eventual fault.

3) Fault recovery : This step is performed by each neighbor of a faulty node once its faulty
behavior has been detected. It allows the sensor network to disconnect the faulty node
and recover the average of the initial states as if the faulty node had never influenced the
network dynamics.

A. Detection of suspicious behavior

In our approach each node constantly observes the neighbors states checking for suspicious
behavior. In the following we identify some behaviors associated with their respective fault and
we will refer to them as "suspicious" throughout the rest of the paper.

1) Stuck at : This fault is characterized by a node that doesn’t update anymore its state but
remains visible to its neighbors. To identify such behavior is sufficient to check whether
the state of a particular node is not equal to the neighbors’ state and it is not changing. In
the general case the state of a healthy node may not change only if it already corresponds
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to the average of the initial states and the rest of the network is in a very unlikely trajectory
that keeps the input of such node always equal to zero. A rule of the thumb to detect such
behavior is simply to check whether the neighbor state is not changing for a sufficiently
long time despite the difference between the node state and the suspected node state is
different from zero and greater than an appropriate ε small enough such that this kind of
behavior can be detected before all the nodes converge to the same value.

2) Multiple stuck at faults : In this case as discussed in [5], the states of the nodes converge
toward a value in the convex hull spanned by the nodes stuck at a certain value. This
kind of fault is easily detected by observing that the nodes do not reach the same state
after a sufficiently long time (where for sufficiently long we mean 4− 5 times the slowest
time constant given by the second largest eigenvalue that corresponds to the algebraic
connectivity of the graph representing the network).

3) Divergence fault : This fault is characterized by an indefinite constant increment (or
decrement) of the node’s state. This kind of fault can be due for instance to software
or hardware bugs. This fault prevents the network to converge toward a common value.
As such it can be identified by detecting the sustained increments (or decrements) of the
node through model based identification techniques.

B. Fault detection

After a node has been tagged "suspected" its neighbors may perform a test to verify its
behavior. Such test consists in applying an input satisfying the condition of Theorem 1 and
observing its reaction. A suitable input is a single square wave perturbation. If the suspect fault
is the "stuck at" or the "divergence fault" then any reaction to this input means that the node is
healthy, while no reaction means a node failure.

C. Fault recovery

If we assume that we have been able to locate a faulty node (e.g. using the motion probe
discussed in the previous section), what we would like to do is to isolate that node from the
network. Moreover, we would like to not only cancel out that node’s effect on the system after
recovery, but also to nullify the nodes total effect, from time t = 0 onwards. The reason why
this might be useful can for instance be seen in a networked robot system where we do not
want to let the faulty node drag the team away from the desired rendezvous point. Similarly, in
a sensor network, we typically need to eliminate the contribution from a faulty sensor.

We assume that the nodes are ordered in such a way that the first n−m nodes are non-faulty,
and the remaining m nodes are faulty. In fact, we let the system dynamics be given by

x(k + 1) = P̂ x(k) + u(k), x(0) = x0, (4)

where P̂ can be expressed as follows. Let Wf be the n × n matrix whose entries are zeros
except the bottom right n×m block which is the identity matrix:

Wf =

[
0(n−m)×(n−m) 0(n−m)×m

0m×(n−m) Im×m

]
.
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Using this notation P̂ becomes P̂ = I − ε(L −WfL), where L is the graph Laplacian.
It is straightforward to show that P̂ in Equation (4) can be written as the following, partitioned

block matrix:

P̂ =

[
Pg Df

0m×(n−m) Im×m

]
. (5)

Here Df is a (n−m)×m matrix whose elements in the ith row are non-zero only corresponding
to faulty nodes neighbors of node i.

In the following we denote ug the inputs to the good nodes and uf the inputs of the faulty
ones. Since P̂ is upper block triangular, we can now write the dynamics of the non-faulty nodes
(denoted by xg) and view the position of the faulty nodes (xf ) as inputs. Moreover, we recall
that uf will not affect xg directly, and we get the following partitioned system:

xg(k + 1) = Pgxg(k) + Dfxf (k) + Bgug(k) (6)

xf (k + 1) = xf (k) + Bfuf (k).

Letting F = {i | node i is faulty} allows us to separate the contributions to the non-faulty
node’s evolution. The local interaction rule implemented by the good agents can then be written
as:

xg,i(k + 1) = xg,i(k)− ε
(∑

j∈Ni/F (xg,i − xg,j)

+
∑

j∈Ni∩F (xg,i − xf,j)
)

+ ui(k).

From the previous description we can extract the component due to the faulty agents.
The following theorem provides a tool for network recovery after some nodes have been

disconnected from the network for some reason and it is of interest to nullify their contribution
to the final state of the network.

Note that in the following we denote H as a (n−m)× (n−m) diagonal matrix whose ith

element corresponds to the number of faulty nodes in the neighborhood of node i multiplied by
ε:

H = ε diag
( |N1 ∩ F | · · · |Nn−m ∩ F | )

.

Theorem 2: [14] Let the network of nodes be described by Equation (6). If the following
conditions hold:

1) At time t0 all m faulty nodes have been detected.
2) The neighbors of faulty nodes apply a control input urec(·) such that at time t

t∑

k=t0

urec(k) = −
t0−1∑

k=0

(Dfxf (k)−Hxg(k)).

Then, at time t a complete recovery of the weighted average of the initial states of the non-
faulty nodes has been performed, i.e.,

1T xg(0) = 1T xg(t).
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If, furthermore, the induced subgraph of G containing all the non-faulty nodes is connected
after time t, then

lim
k→∞

xg(t + k) =
1T xg(0)

n−m
· 1.

We point out the following main features of the proposed recovery procedure:
1) Only the nodes that are neighbors to a faulty node need to apply the recovery input.
2) The information needed by the generic node to recover after detection is

Nij(k) = eT
i (Dfeje

T
j xf (k)−Hxg(k))

that essentially consists of the summation of the difference between its state and the faulty
neighbor’s (i.e., their distance) starting from the initial instant of time, i.e., a single variable
for each neighboring node.
We point out that since the agents do not know that a neighbor is faulty until it is identified,
they are required to keep track of one single variable for each of their neighbors from the
beginning of the consensus algorithm to be able to eventually disconnect the faulty link.

3) Any node that has detected a faulty node in its neighborhood may apply the recovery at
any time. There is no need that all the faulty nodes are detected at the same time. The
recovery procedure may then be applied in an asynchronous way.

V. ALGORITHM DESCRIPTION

We now present the actual algorithm run by each node to perform identification and fault
recovery. The generic node i runs the following algorithm with parameters.

• ∆: a sliding window horizon. This value should be comprised between the slowest and
fastest time constant in the system.

• ε: a threshold to determine if a node value has remained constant; it will be used to identify
a "stuck at" node.

• γ: a threshold to determine if agent j is suspected to be affected by a "divergence fault".
• Tmax: roughly an estimation of the consensus convergence time; a good choice is 4 − 5

times the slowest time constant given by the graph algebraic connectivity.
Algorithm 1 (Diagnostic Algorithm):
1) Let t = 0;
2) While t ≤ Tmax, do
3) For each neighbor j ∈ Ni:

If |xj(t + k)− xj(t)| < ε, ∀k = 0, . . . , ∆, or
if |xj(t + 1 + k)− xj(t + k)| > γ > 0,∀k = 0, . . . , ∆,
label that node as suspected.

4) If at least one neighbor j is labeled as suspected, execute a motion probe and observe its
reaction.

5) If during the execution of the motion probe, node j does not change behavior, namely if
it remains stuck at its value within a threshold ε or it continues to diverge within a certain
threshold γ, label it as faulty.
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6) For each neighbor j labeled as faulty, disconnect it and execute the recovery for node j.
7) end while.
8) Stop.

VI. NUMERICAL SIMULATIONS

In this section simulations are provided to show the effectiveness of the heuristics. We take
the sensor network in Figure 1 as case study for the following examples. The network consists
in 9 sensors labeled Si : i = 1, . . . , 9, that at time t0 = 0 perform a measurement and then
fuse such information by performing iterative averaging based on the Laplacian of the network
graph. In the following the convergence time will be shown as number of iterations. The initial
state of the network has been taken randomly with a uniform distribution between 0 and 10:

x(t0) =
[0.7818; 4.4268; 1.0665; 9.6190; 0.0463

0.0463; 7.7491; 8.1730; 8.6869; 0.8444]

A. Stuck at fault

In Figure 2 is shown the evolution of the state of the sensor network. At time T1 = 50 the
sensor node S1 experience a fault and remains stuck at a value around 2.4. As a consequence if
the fault recovery algorithm proposed in this paper is not applied we may see that all the nodes
wrongly converge toward the state of the faulty node disrupting the information retrieved from
the measurements.

In Figure 3 is shown the evolution of the same network when the proposed algorithm is
implemented. At time T1 = 50 the sensor node S1 breaks again. The neighbors of sensor S1,
namely sensor S2 and S3, after some time (the amount of such time is a design parameter that has
to be estimated as function of the worst case convergence time) detect the suspicious behavior
of node S1 and perform a Motion Probe. The Motion Probe performed has been chosen to be
a single period lasting 20 iterations of a square wave with amplitude equal to 0.1. Both sensors
after performing the Motion Probe detect the faulty behavior of node S1 that is not reacting.
Consequently they disconnect it from the network and apply the recovery algorithm nullifying
its entire contribution to the network. From this point on the network evolves as a standard
consensus network and converges to the average of the initial state of the healthy nodes.

B. Multiple Stuck at faults

We now study the case of multiple stuck at faults and show how the recovery algorithm can
be applied asynchronously with respect to each of its phases.

In Figure 4 is shown the evolution of the sensor network in Figure 1 for the same initial
conditions as for previous simulations. At time T1 = 50 sensor S1 stops updating its states. At
time T2 = 150 also sensor S7 stops updating. At this point the sensor network does not converge
anymore to a common value but each sensor state converges toward a point in the convex hull
spanned by the faulty nodes values. In this condition any attempt to retrieve information about
the original average of the measurements would fail since each node presents a different estimate.
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Fig. 1. The sensor network topology used for the simulations.
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Fig. 2. Evolution of a sensor network with a single "stuck at" fault.

In Figure 5 is shown the evolution of the same network with two faulty nodes implementing
the proposed algorithm for recovery. At time T1 = 50 sensor S1 is stuck; at time T2 = 150

sensor S7 is stuck as well. At time T3 sensors S2 and S3 suspect of the behavior of node S1 and
perform a Motion probe. At time T4 sensors S2 and S3 detect the faulty behavior of node S1,
disconnect it from the network and apply the recovery input to nullify its contribution. At time
T5 sensors S4 and S5 (neighbors of S7) detect the suspicious behavior of the second faulty nodes,
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Fig. 3. Evolution of a sensor network with a single "stuck at" fault when the fault recovery procedure is implemented.

S7, while sensor S9 for some reason does not recognize such behavior. At time T6 sensors S4 and
S5 complete the motion probe, detect no reaction and disconnect form sensor S7 nullifying its
contribution. After some time also node S9 detects the suspicious behavior of node S7 and at time
T7 it disconnects it and applies the recovery. At this point the network of the remaining nodes,
that despite the faulty nodes remained connected, converges toward the initial average of the
healthy nodes’ states. This simulation gives an example of how the phases of fault identification
and recovery can be applied asynchronously by the neighbors of the faulty nodes.

C. Divergence faults

In this last set of simulations we show how the proposed method for fault identification and
recovery can be applied also to different or more general kinds of fault.

In Figure 6 is shown the sensor network in Figure 1 performing consensus. Here at time
t = T1 node S1 starts to disobey to the consensus protocol and starts to increase (in such a case,
linearly) indefinitely its value due to a software or hardware bug. The remaining nodes in the
network unaware of the fault start following its path and the original measurements are lost.

In Figure 7 is shown the same network with the same initial conditions as the previous
examples with a fault at sensor S1 at t = T1 when the fault recovery and identification procedure
is implemented. This time the neighbors of sensor S1 detect its suspicious behavior thanks to
a fault model embedded in their memory. As soon as they detect a neighbor increasing or
decreasing at a certain rate they execute a motion probe and wait for the node’s reaction. Since
node S1 does not change its behavior as function of the inputs given by nodes 2 and 3, it is
correctly identified as faulty and disconnected from the network.
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Fig. 4. Evolution of a sensor network with multiple "stuck at" faults.
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Fig. 5. Evolution of a sensor network with multiple "stuck at" faults when the fault recovery procedure is implemented.

DRAFT



12

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

Time

S
en

so
r 

va
lu

es

T1

Initial network average

Fig. 6. Evolution of a sensor network with single "ramp" faults.
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Fig. 7. Evolution of a sensor network with single "ramp" fault when the fault recovery procedure is implemented.
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Remark 1: Since the algorithm is decentralized, the overhead required is proportional to
the average degree of the network. If the average degree of the network is constant as the
number of nodes increases, the trade-off between overhead/performance improves. Furthermore,
the presence of only one faulty node disrupts the network convergence properties with any
number of nodes. It becomes clear that as the number of nodes increases, the probability of
node failure increases and the fault diagnosis and recovery algorithm becomes essential.

VII. CONCLUSION

In this paper we have provided a set of tools for decentralized fault diagnosis and recovery
for sensor networks. We provided a set of heuristics for fault identification based on the faults’
models. Simulation results are provided to show the effectiveness of the heuristics. The study
of more general kinds of faults will be object of future research in this topic.
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