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Abstract

Infinitesimal Perturbation Analysis (IPA) recently has been extensively investigated in
the setting of fluid queues, where it was shown to yield simple algorithms for computing the
gradients of several performance functions. More lately, efforts have been made to extend its
application domain from fluid queueing networks to other kinds of stochastic hybrid systems.
In this vein, the present paper inaugurates a study of the application of IPA to a class of
hybrid Petri nets. The main point of concern is the modeling element of the fluid transition
with multiple input places, representing concurrency and synchronization in Petri nets, and
not yet studied in the context of IPA. We first derive the IPA gradient of the throughput
with respect to fluid flow parameters at the input places, and then consider an example
of optimizing throughput in a fork-join system. Simulation experiments are presented in
support of the theoretical results. We point out that the main purpose of the paper is to
initiate a study of IPA in the setting of hybrid Petri nets, and not to consider application
examples.
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1 Introduction

Infinitesimal Perturbation Analysis (IPA) has been established as a general technique for sensi-
tivity analysis of Discrete Event Dynamic Systems (DEDS), providing algorithms for the gra-
dients (derivatives) of sample performance functions [9, 4]. Ever since its inception in the early
nineteen-eighties [10], IPA has been applied mainly to queueing models, where performance met-
rics of delay and throughput are of primary interest. Its main appeal stems from the simplicity
of the formulas it yields for the sample gradients of these performance functions. However, this
initial appeal has been dampened by the discovery that in many realistic queueing models, the
resulting gradients are statistically biased, thereby casting doubt on the viability of the IPA
approach in sample-based performance optimization [7].

To overcome this problem, recently IPA has been investigated in the setting of fluid queues,
labeled Stochastic Flow Models (SFM) [5, 13]. Not only does it yield unbiased sample derivatives
for a far-larger class of systems and performance functions than in the traditional (discrete)
queueing setting, but also the algorithms for the IPA gradients tend to be model-free and simple
to compute. For example, one of the earliest results on IPA in the SFM setting concerns the
average loss rate due to spillover in a queue with a finite buffer, as a function of the buffer size
[5, 13]. The sample derivative of this performance function over a T seconds-long time interval
was shown to be −NT /T , where NT is the number of busy periods in the time-interval [0, T ] that
incur any loss. Figure 1 shows an example of the trajectory of the buffer contents (amount of
fluid) where NT = 2, since there are three busy periods but only two of them have loss (indicated
in the figure when the buffer is full). This formula for the sample derivative is model-free in the
sense that it can be computed directly from the sample path of the system, without any explicit
knowledge of the flow processes or their underlying distributions. Furthermore, the inflow-rate
process need not be piecewise constant, continuous, or Markovian.

The above result stimulated a further study of IPA in the setting of general SFM networks (see [3]
and references therein). Performance metrics of interest include throughput, loss, and delay, and
they are viewed as functions of variable parameters such as service rates, inflow rates, buffer sizes,
and various flow control parameters. Several application areas have been considered, including
telecommunications [1, 8], manufacturing [3], and traffic control [12]. In all of these studies the
IPA gradients were computed by model-free and easily-computable formulas and algorithms.
Moreover, these algorithms typically exhibited robustness with respect to model variations, and
hence provided adequate sensitivity estimates when applied, under certain circumstances, to
sample paths obtained from discrete queueing systems.

Current research in IPA aims at extending its scope from SFM to other types of stochastic
hybrid systems, and in this context the present paper inaugurates an investigation of hybrid
Petri nets. What is peculiar about such system-models is that they capture the concepts of
concurrency and synchronization, which have not yet been investigated from the standpoint of
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Figure 1: Buffer contents vs. time

IPA.

Hybrid Petri nets (HPN) [6] are a class of models that combine fluid and discrete event dynamics.
Various formulations have been defined, and they all extend the “traditional” concept of Petri
nets to include the flow of both fluid and tokens. Whereas the fluid-flow rates describe the
continuous, time-driven dynamics, tokens’ transitions represent the dynamics of discrete events.
This paper considers an example of such a system, whose analysis will focus on the time-driven
(continuous) dynamics. To this end we will view the fluid flow rates on a given arc in the
network as a piecewise-continuous, random function of time (t), whose discontinuities correspond
to the discrete events. In particular, we will perform sensitivity analysis for processes associated
with fluid transitions, which has not yet been done in the setting of IPA. Our analysis focuses
on the continuous dynamics and it does not explicitly use the discrete-event dynamics; for a
comprehensive exposition of hybrid Petri nets please see [6] [2]).

2 Throughput Sensitivity in Fluid Transitions

This section concerns the throughput sensitivity of a fluid transition (continuous transition)
in terms of various traffic flow parameters. A typical scenario is shown in Figure 2, where a
transition, referred to as the processing transition, has n input places. Each input place has a
fluid source that is represented via a fluid transition, called an input transition. Let vi(t) denote
the instantaneous flow rate from the input transition i, and let Vx(t) denote the maximum flow
rate of the processing transition, where t ∈ [0, T ] for a given T > 0. Furthermore, let mi(t)
denote the amount of fluid (workload) in place i, and let vx(t) denote the instantaneous flow
rate from the processing transition. According to the axiomatic definition of dynamical systems
[14] we can view vi(t) and Vx(t) as the input to the system while mi(t), i = 1, . . . , n, and vx(t)
comprise its state variable. These random processes are defined on a common probability space
(Ω,F , P ), and their realizations are assumed to be piecewise continuous; formal definitions will
be stated later.

Define the set of empty places at time t via

I(t) = {i = 1, . . . , n : mi(t) = 0}. (1)

Now the state variables are related to the input processes via the following two equations,

ṁi(t) = vi(t)− vx(t) (2)

3



m

v

v

v m
1

n

x

n

1

Figure 2: Fluid transition

with ‘dot’ denoting derivative with respect to time, and

vx(t) =

{
Vx(t), if I(t) = ∅
min{vi(t), i ∈ I(t)}, if I(t) 6= ∅. (3)

A few remarks are due.

(i). Equation (3) implies that a transition “fires” (processes fluid) at its maximum rate as long
as none of its input places is empty, while an empty input place would slow down the firing rate.

(ii). Because of the circular relation between the various functions in (1) – (3), these equations
have to be viewed as jointly defining I(t), mi(t), and vx(t). As mentioned earlier, additional,
mild assumptions will be stated later to ensure the consistency of these definitions.

(iii). Equation (2) requires given initial conditions mi(0), i = 1, . . . , n.

(iv). If I(t) does not change its value in some open interval (τ̄ , t̄) ⊂ [0, T ], then ∀t ∈ (τ̄ , t̄), and
∀i, j ∈ I(t), vi(t) = vj(t). In this case,

vx(t) = vi(t), ∀t ∈ (τ̄ , t̄), ∀i ∈ I(t). (4)

(v). Several papers on hybrid Petri nets impose structural assumptions on the input flow func-
tions, like piecewise constancy (e.g., [2]). Our analysis can be carried out verbatim for the more
general case of piecewise continuity.

Next, let θ be a real-valued parameter upon which the aforementioned processes depend. For
example, θ can be the maximum flow rate of the processing transition, or a parameter of the
probability law of any one of the input processes. To maintain generality, we assume henceforth
that all of the input processes are functions of θ, and hence we denote their realizations by
vi(θ; t) and Vx(θ; t), respectively. Consequently, all of the other processes mentioned above are
functions of θ as well, and we denote them by mi(θ; t) and vx(θ; t). This dependence on θ means
the following: Fix a value of θ, and let the system evolve for t ∈ [0, T ] in the interval [0, T ].
In other words, θ does not change while the system evolves in this way. Then the resulting
processes, {vi(θ; t)}, {mi(θ; t)}, etc., satisfy Equations (1) – (3) for all t ∈ [0, T ]. We assume
that θ is confined to a given compact interval Θ, and we point out that generally θ can be a
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Figure 3: Fluid-level trajectories in the places

multivariable parameter as well, but we consider the scalar case in order to keep the discussion
simple.

Our concern in this paper is with the average throughput over the interval [0, T ] as a function
of θ. Denoting this function by J(θ), we define it as

J(θ) = T−1

∫ T

0
vx(θ; t)dt. (5)

We next derive a formula for the IPA derivative dJ
dθ . Fix θ ∈ Θ. Suppose that all of the derivative

terms mentioned in the sequel exist; assumptions guaranteeing this will be made later, in the
context of a specific example. We define an empty period of place i as a maximal positive-length
subinterval of [0, T ] during which mi(t) = 0. Suppose that there are ki empty periods of place i

in the interval [0, T ]; we denote them by [τi,j , ti,j ], j = 1, . . . , ki, in increasing order. Note that
we exclude from the definition of empty periods the case where τi,j = ti,j , i.e., empty periods
consisting of a single point. A particular scenario is shown in Figure 3 for the case where n = 2.

We make the following assumptions for every fixed θ ∈ Θ.

Assumption 2.1 With probability 1 (W.p.1) the functions vi(θ; ·), i = 1, . . . , n, and Vx(θ; ·),
are piecewise Lipschitz continuous in the interval t ∈ [0, T ].

Assumption 2.2 All of the derivative terms that are mentioned below, exist w.p.1.

Assumption 2.3 For all i = 1, . . . , n, dmi
dθ (θ; 0) = 0.

A few remarks are due.

Assumption 2.1 means that the input functions are piecewise continuous and Lipschitz contin-
uous on the intervals where they are continuous. This assumption implies that all the terms
defined by Equations (1) – (3) and (5) are well defined.

It is possible to make assumptions on the input processes from which the statement in Assump-
tion 2.2 follows, but that would be abstract and cumbersome in the general case. On the other
hand, such assumptions can be quite simple and intuitive when made in the context of specific
examples, as will be seen in the next section.
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Assumption 2.3 means that the initial conditions mi(θ, 0) are independent of θ, certainly a mild
assumption.

We have to make one more assumption about the starting times and end times of empty periods.
We mentioned earlier that jumps (discontinuities) in the input processes {vi(θ; ·)} and {Vx(θ; ·)}
are due to the occurrence of certain discrete events. In addition to these, we will consider as
discrete events the changeover in the state of a place from empty to non-empty and vice versa.
Similarly to [5], we classify these events as follows. (i) Exogenous events are discontinuities in
the input processes {vi(θ; ·)} and {Vx(θ; ·)} whose timing is independent of θ. (ii). Endogenous
events are the beginning of empty periods at the various places. We point out that these
events are called macro-events in [2]. (iii) An Induced event is the end of an empty period
at one of the places that is triggered by the start of an empty period at another place (an
explanation follows). Now we will assume that all discontinuities in the input processes {vi(θ; ·)}
and {Vx(θ; ·)} are exogenous events. This assumption is justified in some situations, including
the example discussed in the next section; cases where it does not hold require an extension of
the analysis, as it was done for the application of IPA to SFMs [3]. Endogenous events, namely
the beginning of empty periods, occur whenever one of the places is drained until it becomes
empty; there is no reason to have a jump in any input process at that time, and this justifies
the assumption that endogenous events and exogenous events do not co-occur. However, en
endogenous event (the start of an empty period) may cause an abrupt decrease in vx(θ, ·), and
this can trigger the end of an empty period at another place, hence an induced event.

Recall that ti,j denotes the end of the jth empty period at place i.

Formally, we make the following assumption.

Assumption 2.4 Fix θ ∈ Θ. W.p.1, the following holds: (i). All discontinuities in the input
processes {vi(θ; ·)} and {Vx(θ; ·)} are exogenous events. (ii) Only a single exogenous event or
endogenous event can occur at a given time. (iii). If ti,j is not the time of an induced event,
then either dti,j

dθ = 0, or the function vi(θ; ·)− vx(θ; ·) is continuous at t = ti,j.

Corollary 2.5 If ti,j is not the time of an induced event, then either dti,j
dθ = 0, or the function

vi(θ, ·)− vx(θ, ·) is continuous at t = ti,j and vi(ti,j)− vx(ti,j) = 0.

Proof. Suppose that ti,j is not the time of an induced event. If the function vi(θ, ·) − vx(θ, ·)
has a jump at t = ti,j then the result is obvious from Assumption 2.4(iii). If that function is
continuous at t = ti,j then, since ti,j is the end of an empty period, the function vi(θ, ·)−vx(θ, ·)
changes its sign there from nonpositive to non-negative, and hence vi(θ, ti,j)− vx(θ, ti,j) = 0. ¤

Next, define tmax to be the last time-point when an empty period at any place ends, namely,
tmax := max{ti,j : i = 1, . . . , n; j = 1, . . . , ki}. Then either tmax = T , or tmax < T . In the first
case, shown in Figure 3, the final time T is contained in an empty period in at least one of the
places, and hence I(T ) 6= ∅ (in Figure 3, I(T ) = {1}). On the other hand, in the second case,
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none of the places is empty at time t = T , and therefore I(T ) = ∅.

The following result yields the IPA derivative dJ
dθ (θ).

Proposition 2.6 Fix θ ∈ Θ.

(1) If tmax = T , then for every i ∈ I(tmax),

dJ

dθ
(θ) = T−1

∫ T

0

∂vi

∂θ
(θ, t)dt. (6)

(2) If tmax < T , then for every i ∈ I(tmax),

dJ

dθ
(θ) = T−1

(∫ tmax

0

∂vi

∂θ
(θ, t)dt +

∫ T

tmax

∂Vx

dθ
(θ; t)dt

)
. (7)

Proof. (1). Fix i ∈ I(tmax). Recall that, for every t ∈ [0, T ], the input flow rate to place i is
vi(θ; t), and the output flow rate from place i is vx(θ; t); consequently,

∫ T

0

(
vi(θ; t)− vx(θ; t)

)
dt = mi(θ; T )−mi(θ; 0). (8)

Since tmax = T and i ∈ I(tmax), we have that mi(θ;T ) = 0, and therefore, and by (8),
∫ T

0
vi(θ; t)dt−

∫ T

0
vx(θ; t)dt = −mi(θ, 0). (9)

By (5) and (9),

J(θ) = T−1
(∫ T

0
vi(θ; t)dt + mi(θ; 0)

)
. (10)

By Assumption 2.3, ∂mi
∂θ (θ; 0) = 0. By Assumption 2.4(i), every jump point of vi(θ; ·) is the

time of an exogenous event, and hence, if t̄ is the time of such a discontinuity, then dt̄
dθ = 0.

Consequently, and by (10) and Leibnitz rule, Equation (6) follows.

(2). Fix i ∈ I(tmax). Observe that Equation (8) is satisfied, but it is no longer true that
mi(θ; T ) = 0. However, place i is empty at time tmax and therefore mi(θ; tmax) = 0, and hence,
similarly to Equation (9), we have that

∫ tmax

0

(
vi(θ; t)− vx(θ; t)

)
dt (11)

= mi(θ; tmax)−mi(θ; 0) = −mi(θ; 0).

Moreover, for every t ∈ [tmax, T ], vx(θ; t) = Vx(θ; t), and therefore, and by (5) and (11),

J(θ) = T−1
∫ T
0 vx(θ; t)dt

= T−1
( ∫ tmax

0 vx(θ; t)dt +
∫ T
tmax

vx(θ; t)dt
)

(12)

= T−1
( ∫ tmax

0 vi(θ; t)dt + mi(θ; 0) +
∫ T
tmax

Vx(θ; t)dt
)
.
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Taking derivatives in (12), and using Assumption 2.3 and Assumption 2.4(i) in conjunction with
Leibnitz rule, we obtain that

dJ
dθ = T−1

( ∫ tmax

0
∂vi
∂θ (θ; t)dt +

∫ T
tmax

∂Vx
∂θ (θ; t)dt+

+
(
vi(θ; t−max)− Vx(θ; t+max)

)
dtmax

dθ

)
.

(13)

But Vx(θ, t+max) = vx(θ; t+max). Moreover, tmax is defined as the last time any place is empty, and
hence it cannot be the time of an induced event (since an induced event would be the start of
another empty period, which would end at a later time). Therefore, and by Assumption 2.4(iii)
and Corollary 2.5, either dtmax

dθ = 0 or

vi(θ; t−max)− vx(θ; t+max) = vi(θ; tmax)− vx(θ; tmax) = 0;

in any event,
(
vi(θ; t−max) − Vx(θ; t+max)

)
dtmax

dθ = 0 and hence, and by (13), Equation (7) is
satisfied. ¤

3 An application example

In this section we focus on a particular application example in the manufacturing domain. Raw
material is supplied to the system at a constant rate, processed concurrently into parts by
three machines, and then assembled into finished products. Whereas the assembly machine
is reliable, the three processing machines can fail, and the durations of their failure modes
and operational modes can have general distributions. Furthermore, we assume that machines’
failure/repair schedules are time-dependent (as opposed to operation-dependent), and we denote
the probability space underlying these schedules by (Ω,F , P ). We consider the performance
metric of the system’s throughput, namely the output rate from the assembly machine, and
we attempt to maximize it as a function of the routing ratios of the raw material to the three
processing machines.

The continuous Petri net model of the system is shown in Fig. 4. Fluid flow is generated by the
transition t0 at an assumed unitary rate, and then deposited in a buffer represented by the place
p0. The three processing machines, denoted by Mi, i = 1, 2, 3, are represented by the transitions
ti, i = 1, 2, 3, and the buffers that follow them are modeled by the places pi, i = 1, 2, 3. The
assembly machine is represented by the continuous (fluid) transition tx, whose maximum rate is
assumed to be unitary. Let θi, i = 1, 2, 3, represent the fraction of fluid that is routed at place p0

to transition ti when all of the machines are operational. Then θi ∈ [0, 1], and θ1 + θ2 + θ3 = 1.
We call θi the nominal routing fraction to ti. Let us denote by vi the fluid flow rate through
ti. Since the fluid inflow rate from t0 to p0 is assumed to be 1, we have that vi = θi whenever
all three machines are operational. However, when some of the machines are down, vi 6= θi. We
adopt the policy that whenever a machine is down but not all of the machines are down, the
fluid that was supposed to flow to transition ti is divided among the operational machines in
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Figure 4: The Petri net system considered in Section 3

proportion to their respective nominal routing fractions. Thus, if only machine i is operational
while machines j and k are down, then vi = 1 while vj = vk = 0; and if machines i and j are

operational while machine k is down, then vi = θi +
θkθi

θi + θj
and vj = θj +

θkθj

θi + θj
.

Finally, if all of the machines are down then vi = 0 for all i = 1, 2, 3. In all but that latter case,
it is readily seen that v1 + v2 + v3 = 1. Finally, let us denote by vx the fluid flow rate through
the assembly transition tx. It is readily seen that vx can be determined according to Equation
(3), where we recall that the maximum flow rate is Vx = 1.

Our goal here is to determine the values of θ1, θ2 and θ3 that maximize the average throughput
of the system. Since θ3 can be determined by θ1 and θ2 and the sample path, we can adopt the
optimization parameter to be (θ1, θ2), which we denote by the two-dimensional vector θ ∈ R2.
The sample performance function is

J(θ) := T−1

∫ T

0
vx(θ; t)dt, (14)

and the optimization problem we consider is to maximize the expected-value function E[J(θ)],
E[·] denoting expectation in (Ω,F , P ).

We now show how to solve this optimization problem using the framework described in the
last section, and especially Proposition 2.6. In order to maximize E[J(θ)] we use a stochastic
approximation algorithm of the Robbins-Monro type (see [11]) that computes an iteration-
sequence θ(k) := (θ1(k), θ2(k)) ∈ R2, k = 1, 2, . . .. The algorithm has the following form:

Algorithm 3.1 Data: θ(1) ∈ R2 such that θi(1) ∈ [0, 1] for i = 1, 2, a small ε > 0, and a
positive step-size sequence {λk}∞k=1 satisfying the convergence conditions for Robbins-Monro al-
gorithms, namely

∑∞
k=1 λk = ∞ and

∑∞
k=1 λ2

k < ∞.
Step 1: Set k = 1.
Step 2: Simulate the system for a T -second horizon, and compute the sample derivatives ∂J

∂θi
(θ(k)),

i = 1, 2, by using Proposition 2.6.
Step 3: For i = 1, 2, if θi(k) + λk

∂J
∂θi

(θ(k)) ∈ (ε, 1− ε), set

θi(k + 1) = θi(k) + λk
∂J

∂θi
(θ(k)); (15)
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∂v1/∂θ1 ∂v1/∂θ2 ∂v2/∂θ1 ∂v2/∂θ2 ∂v3/∂θ1 ∂v3/∂θ2

M1, M2, M3 ON 1 0 0 1 −1 −1

M1, M2 ON

M3 OFF

θ2

(θ1 + θ2)2
− θ1

(θ1 + θ2)2
− θ2

(θ1 + θ2)2
θ1

(θ1 + θ2)2
0 0

M1, M3 ON

M2 OFF

1

1− θ2

θ1

(1− θ2)2
0 0 − 1

1− θ2
− θ1

(1− θ2)2

M2, M3 ON

M1 OFF
0 0

θ2

(1− θ1)2
1

1− θ1
− θ2

(1− θ1)2
− 1

1− θ1

otherwise 0 0 0 0 0 0

Table 1: The values of ∂vi/∂θj , i = 1, 2, 3, j = 1, 2, relative to the example in Section 3

and otherwise, set θi(k + 1) = θi(k).
Step 4: Set k = k + 1, and go to Step 1. ¥

A few remarks are due. (i). Step 3 ensures that θ(k) remain feasible for all k = 1, 2, . . ., namely
θ(k) ∈ [0, 1]× [0.1]. (ii). The convergence of such algorithms (and many extensions thereof) to
local minima have been proved in several references; see, e.g., [11]. (iii). The partial-derivative
terms ∂vj

∂θi
, j = 1, 2, 3, i = 1, 2, that appear in Equations (6) and (7) depend on the enabling

conditions (states) of the machines Mj , j = 1, 2, 3, and are summarized in Table 1.

Let us now present the results of some numerical simulations. In all considered cases the dura-
tions of the machines’ states are exponentially distributed and mutually independent, with mean
ON and OFF periods of machine i denoted by λi,f and λi,r, respectively. We point out that
this guarantees Assumptions 2.1, 2.3 and 2.4. Assumption 2.2 is also satisfied except, perhaps,
if θi = θj for some i 6= j; in which case the one-sided derivatives exist and can be used in the
algorithm instead of the derivatives. The step size in Step 3 of the algorithm was chosen to be
λk = 0.5/k0.6. In all cases the simulation processed discrete parts, and the system is empty at
time t = 0.

– Case 1. Let λ1,f = λ2,f = λ3,f = 0.9 and λ1,r = λ2,r = λ3,r = 0.1. Moreover, θ(1) = (0.2, 0.8),
and T = 30 in equation (14). We ran the algorithm for kmax := 160.

The values of θ1(k) and θ2(k) for k = 0, 1, . . . , kmax, are shown in Figure 5. As it can be observed
both parameters converge to 1/3. Obviously, θ3 = 1/3 as well since θ3 = 1− θ1− θ2. This result
is quite intuitive given the current values of λi,f and λi,r. In fact, being such values equal for all
the machines, their average operational times are the same, and consequently the flow will be
equally shared among them.

The results of an evolution of markings m1, m2, m3 and m0 are shown in Figure 6 in the case
of θ1 = θ2 = θ3 = 1/3. As it can be easily observed the marking of place p0 is always empty
apart from a very short time interval in which all the machines M1, M2 and M3 are in the OFF
state, as shown in Figure 7.
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Figure 5: The values of θ1,k and θ2,k for k = 0, 1, . . . , kmax in Case 1

– Case 2. Let us now present another situation whose solution can be easily interpreted by
simply looking at the considered physical system. Let λ1,f = λ2,f = 0.9, λ1,r = λ2,r = 0.1,
λ3,f = 0.1, and λ3,r = 0.9. θ(1) = (0.1, 0.2), and T = 30. We ran the algorithm for kmax := 100.

The values of θ1,k and θ2,k for k = 0, 1, . . . , kmax, are shown in Figure 8. As it can be observed
both these two variables converge to zero. Consequently, the optimal value of θ3 = 1− θ1 − θ2

is equal to one. This is not surprising because machine M3 is not operational most of the time,
while the other two machines are operational most of the time. Thus, when M3 is operational
(even if the other two machines are simultaneously working) for sure it is better to make M3

work as much as possible.

The two cases discussed in the example are rather simple, and thus the results obtained are not
surprising. Although the algorithm may be applied to more complex problems, whose solution
is not apparent a priori, we chose to discuss only these two cases in order to show how the
algorithm works and to verify that it converges to a (local) maximum point.

4 Conclusions and future work

The main contribution of this paper is that of applying IPA to Hybrid Petri nets. We focus
on a particular net structure representing concurrency and synchronization. We derive the IPA
gradient of the throughput with respect to fluid flow parameters at the input places, and then
use this information to solve an optimal routing problem in a fork-join system.

Our future work in this framework will be devoted to extend the proposed approach to more
general Petri net structures, providing systematic procedures to compute the IPA gradient of
certain interesting time functions.
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Figure 6: The evolution of m1, m2, m3 and m0 in Case 1
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Figure 7: The discrete state of M1, M2 and M3 modeled by transitions t1, t2 and t3, resp., in
Case 1
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Figure 8: The values of θ1,k and θ2,k for k = 0, 1, . . . , kmax in Case 2
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