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Abstract

In this paper we consider the problem of load balancing over heterogeneous networks, i.e. networks
whose nodes have different speeds. We assume that tasks are indivisible and with different weights. Our
goal is that of minimizing the maximum execution time over nodes.

We provide a gossip-based distributed algorithm whose convergence to a bounded set is guaranteed.
We show that the convergence time of the proposed algorithm relies ultimately on the average meeting
time between two agents performing a random walk on a graph.
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I. INTRODUCTION

In this paper we consider the problem of load balancing over heterogeneous networks, i.e.
networks whose nodes have different speeds. Our goal is that of determining, using consensus
algorithms based on gossip [4], [6], [16], [18], the solution that minimizes the maximum
execution time over nodes. It is based on the recent work by Kashyap et al. [18] and on our
previous results in [12] where homogeneous networks have been considered.

The study of consensus networks has recently stirred much interest in the control community
with a particular focus on the deep connection between consensus and algebraic graph theory
[9], [14], [15], [17], [20], [23], [24], [25], [26].

In several applicative domains related to consensus the assumption that the state of each node
is a continuous variable is clearly an oversimplified assumption, and it is necessary to explicitly
take into account the discrete nature of loads composed by indivisible tasks (discrete or quantized
consensus) [2], [3], [10], [18], [19], [22]. An interesting application in this sense is given by load
balancing over networks [1], [5], [7], [11], [13], [21]. This is the reason why our presentation
will be carried out within this framework even if the proposed results can also be applied to
other application domains.

In particular, in this paper we propose a general framework for quantized consensus assuming
the network is heterogenous, i.e., composed by nodes of different speeds. This is an appropriate
formalism to describe several real applications, e.g., a network consisting of a low cost cluster
made by off-the-shelf, low cost, processing units where the heterogeneity is the result of the low
cost requirement (second hand hardware for instance). The consensus problem for this type of
nets, as far as we know, has not received much attention in the control literature.

The objective is that of balancing the total load in the net assigning to each node i a fraction
xi of the total load proportional to its speed, so as to minimize the maximum execution time.
We develop a gossip algorithm that converges to a predefined configuration under the constraint
that at each time the total load of the net remains constant.

We assume that the total load is composed by discrete tasks with weights of arbitrary size. In
such a case the optimal solution does not always correspond to a configuration in which all nodes
have the same execution time. As discussed in [12] this is not related to our particular approach
but is intrinsic in the nature of gossip, that implements at each step a pairwise optimization,
and does not always yield an optimal solution. However, we prove that there exists a bounded
set that contains the optimal solution that is always reachable and we study the convergence
properties and the convergence time to this bounded set.

As mentioned in the literature [12], [18], in the case of discrete consensus to ensure good
convergence properties it is necessary to enrich the gossip algorithm with an appropriate swapping
rule. Whenever a balancing between two nodes is not possible, the swap "shakes" the network
configuration to redistribute the load and allows loads composed by discrete tasks to travel in
the network, reaching a situation in which a new balancing may occur.

As a final remark we observe that no task status exchange nor task transfer costs have
been considered here for fine granularity load balancing. This can be reasonable in the case of
load balancing on Massively Parallel Processing (MPP) or heterogeneous nodes with specially
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dedicated, high–speed communication channels. However, assuming that no cost is associated to
transfer is an oversimplified assumption in most of the load balancing applications where nodes
should only exchange their loads when strictly necessary. We made such an assumption because
it is necessary to introduce swaps that allow the balancing among nodes that are not connected.
Note however that, as already discussed above, even if the proposed procedure is presented with
reference to the load balancing application, it provides a general result in terms of quantized
consensus over heterogeneous networks.

Finally, we assume that no random perturbations occur for the convenience of system analysis,
even if we are aware that such perturbations may be not negligible in certain realities (e.g.,
network traffic, memory utilization, ect.).

The main contribution of this paper is twofold. Firstly, starting from the results in [12], [18] it
provides a gossip-based algorithm for heterogeneous networks using the notion of swap domains.
Secondly, it provides an analysis of the convergence properties of the proposed algorithm for
some classes of network topology.

II. PROBLEM STATEMENT

We consider a heterogeneous network of n nodes whose connections can be described by
an undirected connected graph G = (V,E), where V = {1, 2, . . . , n} is the set of nodes and
E ⊆ V ×V is the set of edges. To each node i ∈ V is allocated a load xi that must be processed.
The speed factor, denoted γi, represents the amount of load that can be processed in a time unit
by node i.

We assume that K indivisible tasks should be assigned to the nodes, and an integer cost cj

(j = 1, . . . , K) is associated to each task. We define a cost vector c ∈ NK whose j-th component
is equal to cj , and n binary vectors ~yi ∈ {0, 1}K such that

yi,j =

{
1 if the j-th task is assigned to node i

0 otherwise.
(1)

Note that with the proposed notation the load of each node can be expressed as xi = cT~yi.
In the following we denote γmin the smallest speed in the network (clearly γmin > 0), and

cmax the maximum cost of tasks in the network.
The load distribution which we are looking for is the one that minimizes the maximum

execution time, starting from any initial condition. Namely, if we define the load and speed
vectors

~x =
[

x1 x2 . . . xn

]T

γ =
[

γ1 γ2 . . . γn

]T

and Γ = diag(γ), we would like to minimize the following objective function:

f(x) = max
i=1,...,n

xi

γi

= ‖Γ−1x‖∞ (2)

under the assumption that the total load remains constant, namely 1T x = 1T x(0), where x(0)

represents the initial load configuration.
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Using a centralized approach an optimal solution to this problem can be determined solving
the following integer programming problem with binary variables:





min V = ‖cT Y Γ−1‖∞
s.t.

Y 1 = 1

yi,j ∈ {0, 1} ∀ i = 1, . . . , n; j = 1, . . . , K.

(3)

We denote Y ∗ (resp., V ∗) the optimal solution (resp., the optimal value of the performance
index) of Problem (3).

In the following section we provide a dynamic decentralized balancing scheme based on
gossip.

III. GOSSIP ALGORITHM

A. Swap definition

We first define a task exchange process between two adjacent nodes that, while not changing
the value of the objective function, modifies the load configuration. The definition we propose
here is an extension of the one in [12].

Definition 1 (Swap): Let us consider two nodes i and r incident on the same edge. Let Ki(t)

(Kr(t)) be the set of tasks contained in node i (r) at time t. Let Ii ⊆ Ki(t) and Ir ⊆ Kr(t) be
two subsets of their tasks such that Ii ∪ Ir 6= ∅.

Let us call swap the operation that moves the tasks in Ii to r, and the tasks in Ir to i at time
t + 1, reaching the distribution

Ki(t + 1) = Ir ∪ (Ki(t) \ Ii),

Kr(t + 1) = Ii ∪ (Kr(t) \ Ir)

provided that the objective function locally defined for the two nodes does not change, i.e.,

max





∑
j∈Ki(t+1)

(
cj

γi

)
,

∑
j∈Kr(t+1)

(
cj

γr

)

 =

max





∑
j∈Ki(t)

(
cj

γi

)
,

∑
j∈Kr(t)

(
cj

γr

)

 .

In particular, a total swap occurs if Ii = Ki(t) and Ir = Kr(t), while a partial swap occurs
if either Ii ( Ki(t) or Ir ( Kr(t). ¥

We point out that there are many ways to implement a swap. We deliberately left it undefined
since the problem of finding the optimal way to swap loads to minimize the convergence time
of dynamic load balancing is an open problem of research.
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B. A distributed algorithm

We now provide a decentralized rule to solve the optimization problem presented in Section II
that is based on gossip.

We define two binary vectors ŷi and ŷr with the same meaning as ~yi and ~yr but with a
number of elements equal to the number of tasks locally present in the nodes. We denote
K̂ir(t) = |Ki(t)∪Kr(t)| the set of tasks present in nodes i and r at time t. We define ĉ = c ↑K̂ir(t)

the projection of c in K̂ir(t), namely a vector whose elements are the costs of the tasks present
in nodes i and r at time t.

Algorithm 2 (Gossip Algorithm with discrete tasks):
1) Let t = 0.
2) Select an edge {i, r} at random.
3) Solve the integer programming problem (IPP):





k∗ = min k

s.t.
ĉT ŷi

γi

≤ k

ĉT (1− ŷi)

γr

≤ k

k ∈ R+ ∪ {0}
ŷi ∈ {0, 1}K̂ir(t)

(4)

4) If k∗ < max

{
ĉT ŷi(t)

γi

,
ĉT (1− ŷi(t))

γr

}
then let

ŷi(t + 1) = ŷi,

ŷr(t + 1) = ~1− ŷi

else execute a swap.
5) Let t = t + 1 and goto step 2.

¥
In practice IPP (4) provides the load distribution that minimizes the execution times at the

two nodes. If the resulting distribution is better than the previous one, the load is assigned
accordingly, otherwise a swap is executed.

Note that Algorithm 2 is based on the solution of NP-Hard problems. Appropriate heuristics,
with a polynomial complexity in the number of tasks, can be formulated that still guarantee the
convergence to a set Ỹ that will be defined in the following. An example of such heuristics is
given in [12] in the case of unitary speeds.

The swap allows to overcome several blocking conditions: anytime the network reaches a
local minimum of the objective function the swap "shakes" the network ensuring convergence
within some precise bounds (see Theorem 7).
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Fig. 1. The network discussed in Example 3.

t edge node 1 node 2 node 3 V (Y )

0 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5
1 {1, 3} 3, 5, 6 1, 2, 2, 3, 4, 7, 10 14.5
2 {2, 3} 3, 5, 6 1, 2, 7 2, 3, 4, 10 14
3 {1, 3} 5, 6 1, 2, 7 2, 3, 3, 4, 10 11

TABLE I
THE RESULTS OF APPLYING ALGORITHM 2 AT THE NET IN EXAMPLE 3.

Example 3: Let us consider the fully connected1 net in Fig. 1 composed by 3 nodes with
speeds γ1 = γ2 = 1 and γ3 = 2. Assume that it contains 10 tasks whose weights are equal to
c1 = 1, c2 = c3 = 2, c4 = c5 = 3, c6 = 4, c7 = 5, c8 = 6, c9 = 7 and c10 = 10.

Assume that the initial configuration is

K1(0) = {3, 10}, K2(0) = ∅,
K3(0) = {1, 2, 4, 5, 6, 7, 8, 9}.

Using Algorithm 2, we obtain the optimal load balancing in three steps, as summarized in
Table I. In particular, here we have pointed out the selected edges, the weights of the tasks in
each node, and the resulting values of the objective function. ¥

C. Convergence properties

We now discuss the convergence properties of Algorithm 2 that are strictly related to the
possibility of having swaps.

Definition 4 (Swap domain): We call "swap domain" Gγ ⊆ G a connected subgraph induced
by nodes with the same speed. ¥

In practice, given a graph that can be partitioned in a certain number of swap domains, if we
perform graph compression and merge all the nodes belonging to the same swap domain under
a single aggregate node, and repeat the procedure for all the swap domains, we finally obtain a
fully connected (compressed) graph.

1A network is fully connected if there is an arc from each node to any other one.
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Fig. 2. The network discussed in Example 5.

Example 5: Let us consider the network in Fig. 2 that has seven nodes with three different
speeds. This network can be partitioned in three different subgraphs G1, G2 and G3 induced
respectively by nodes {1, 2}, {3, 4} and {5, 6, 7}. In this case each swap domain is connected
to each other. ¥

Each swap domain identifies a set of nodes where "total swaps" may happen. On the contrary
"total swaps" between adjacent nodes of different domains cannot occur.

It is relevant to note that the definition of "swap domain" is embedded in the graph topology.
In particular the nodes don’t need to know in which domain they are or even that any domain
exists.

Definition 6: We call final set

Ỹ = {Y = [~y1 ~y2 · · · ~yn] |
∣∣∣∣
cT~yi

γi

− cT~yr

γr

∣∣∣∣ ≤
cmax

γmin

,

∀ i, r ∈ {1, . . . , n}}
(5)

i.e., the set of configurations such that, for any couple of nodes i, r ∈ V , the difference among
their execution times is at most equal to the ratio cmax/γmin. ¥

Theorem 7: Let Y (t) be the matrix that summarizes the load balancing resulting from Algo-
rithm 2 at the generic time t. If each swap domain is connected to each other, it holds

lim
t→∞

Pr
(
Y (t) ∈ Ỹ

)
= 1

where Pr(Y (t) ∈ Ỹ) denotes the probability that Y (t) ∈ Ỹ .
Proof: We define a Lyapunov-like function

V (t) = [V1(t), V2(t)] (6)

consisting of two terms. The first one is equal to the objective function of (3), namely

V1(t) = ‖cT Y (t)Γ−1‖∞. (7)
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The second one is a measure of the number of nodes whose execution time is equal to ‖cT Y (t)Γ−1‖∞,
i.e.,

V2(t) =

∣∣∣∣arg max
i=1,...,n

cT~yi(t)

γi

∣∣∣∣ . (8)

Note that we impose a lexicographic ordering on the performance index, i.e., V = V̄ if
V1 = V̄1 and V2 = V̄2; V < V̄ if V1 < V̄1 or V1 = V̄1 and V2 < V̄2.

The proof is based on three arguments.
(1) We first prove that V (t) is a non increasing function of t.
This is trivially true when a swap is executed, since in such a case V (t + 1) = V (t).
Consider the case in which the selected nodes i and r balance their load. It holds

max

{
cT~yi(t + 1)

γi

,
cT~yr(t + 1)

γr

}
<

max

{
cT~yi(t)

γi

,
cT~yr(t)

γr

}
,

hence three different cases may happen.
(a) One of the selected nodes is the only node in the network such that its execution time is

equal to ‖cT Y Γ−1‖∞. In such a case V1(t + 1) < V1(t) hence V (t + 1) < V (t).
(b) One of selected nodes is such that its execution time is equal to ‖cT Y (t)Γ−1‖∞ but there

exists at least one other node in the network with the same execution time. In such a case
V1(t + 1) = V1(t) and V2(t + 1) = V2(t)− 1, hence V (t + 1) < V (t).

(c) The execution time of both the selected nodes is smaller than ‖cT Y (t)Γ−1‖∞. In such a
case V (t + 1) = V (t).

(2) Secondly, we observe that, if the current configuration is outside the final set Ỹ , then there
exists at least one node whose execution time is equal to ‖cT Y (t)Γ−1‖∞ that could balance his
load with (at least) one other node if they were incident on the same arc: this would reduce
function V (t) (see cases (a) and (b) of the previous item).

To prove this we observe that if the current configuration is outside the final set Ỹ , then there
exists (at least) one couple of nodes i and r such that

cT~yi(t)

γi

− cT~yr(t)

γr

>
cmax

min{γi, γr} (9)

where cT ~yi(t)
γi

is equal to the maximum execution time. If we move a task cj ≤ cmax from node
i to node r we have:

cT~yi(t + 1) = cT~yi(t)− cj,

cT~yr(t + 1) = cT~yr(t) + cj.

Now
cT~yi(t + 1)

γi

=
cT~yi(t)− cj

γi

<
cT~yi(t)

γi

(10)

and
cT~yr(t)

γr

+
cj

γr

≤ cT~yr(t)

γr

+
cmax

min{γi, γr} <
cT~yi(t)

γi
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where the second inequality follows from assumption (9); thus

cT~yr(t + 1)

γr

=
cT~yr(t) + cj

γr

<
cT~yi(t)

γi

. (11)

By (10) and (11) it follows that

max

{
cT~yi(t + 1)

γi

,
cT~yr(t + 1)

γr

}
<

max

{
cT~yi(t)

γi

,
cT~yr(t)

γr

}
.

(3) Finally, we observe that being each swap domain connected to each other, there exists a
series of swaps that lead to a configuration in which the loads of the two nodes identified in the
previous item are adjacent and the arc between them is selected. This happens with probability
1 as t goes to infinity. ¤

Remark 8: Theorem 7 characterizes the convergence properties of Algorithm 2 in terms of a
finite set Ỹ . This obviously does not imply that an optimal load balancing is achieved.

As shown in [12] this is not a limitation of the particular proposed algorithm. An optimal
load balancing with non-unitary tasks cannot always be achieved by greedy gossip algorithms,
that balance the load between two nodes at each step, even on a fully connected network. In
fact, to reach consensus an optimization involving more than two nodes at the same time may
be necessary. ¥

We also note that Theorem 7 provides only a sufficient condition for the convergence inside
the set Ỹ . To prove that it is not necessary we may consider an initial load distribution that is
already balanced, i.e. Y (0) ∈ Ỹ . Furthermore, due to the random nature of the gossip algorithm,
it is also easy to formulate other examples that end in Ỹ even if the assumptions of Theorem 7
do not hold.

Finally we also observe that no swap is necessary to obtain a solution inside Ỹ in the case
of a fully connected network, since any node can communicate with any other node.

IV. CONVERGENCE TIME OF ALGORITHM 2

In this section we discuss the expected convergence time of Algorithm 2, and provide an
upper bound to it in the case of two different net topologies2.

In the following we assume that only total swaps are allowed inside each swap domain.
The convergence time is a random variable defined for a given initial load configuration

Y (0) = Y as:
Tconv(Y ) = inf {t | ∀ t′ ≥ t, Y (t′) ∈ Ỹ}.

Thus, Tconv(Y ) represents the number of steps required at a certain execution of Algorithm 2 to
reach the convergence set Ỹ starting from a given tasks distribution.

Let us firstly introduce the following notation.

2The approach we use for this evaluation is inspired by the methodology used by Kashyap et al. in [18].
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• Nmax is the maximum number of improvements of V (t) defined as in (6), needed by any
realization of Algorithm 2 to reach the set Ỹ , starting from a given configuration.

• Tmax is the maximum average time between two consecutive improvements of V (t) defined
as in (6), needed by any realization of Algorithm 2, starting from a given configuration.

Using the previous notation, it follows that the expected convergence time is

E [Tconv(Y )] ≤ Nmax · Tmax. (12)

The following proposition provides an upper bound on Nmax that is independent from the net
topology.

Proposition 9: Let us consider a net with n nodes and let γ be the corresponding speed vector.
Let x(0) be the vector representative of the initial amount of load at nodes. It holds:

Nmax ≤ (n− 1) · % · (M −m) (13)

where
M = ‖Γ−1x(0)‖∞,

m =

n∑
i=1

xi(0)

n∑
i=1

γi

=
1T x(0)

1T Γ1
,

% = max
{i,r}∈E

mcm{γi, γr},

(14)

and mcm denotes the minimum common multiple.
Proof: By definition the maximum number of improvements of V1 = f needed by any

realization of Algorithm 2 to reach the set Ỹ is smaller or equal to the ratio between the global
improvement of f needed before reaching the convergence set Ỹ starting from x(0), and its
minimum admissible improvement.

By Step 5 of Algorithm 2 the load distribution is updated if and only if leads to an improvement
of the objective function, otherwise a swap is executed. Thus, the largest value of f(x) occurs
at the initial configuration and is equal to M = f(x(0)) = ‖Γ−1x(0)‖∞.

The minimum value of f(x) corresponds to the case of perfect load balancing, that in general
is not achievable in the discrete case. However, a lower estimate of it is given by its optimal

value in the case of infinitely divisible tasks, namely by f(x∗) where x∗ = αγ and α =
1x(0)

1T Γ1
.

Thus, if we define m = f(x∗) = α, then for any load balancing x it holds m ≤ f(x).
We also observe that the minimum load exchange is equal to 1 since all tasks have an

integer cost. Now, if we consider the generic edge {i, r}, we know that the minimum im-
provement of f that we may obtain when balancing this edge is equal to 1/mcm{γi, γr}. As
a consequence the minimum improvement of f at a generic step of Algorithm 2 is equal to
1/% = 1/ max{i,r}∈E mcm{γi, γr}, where E is the set of edges.

Thus, we may conclude that the largest number of improvements of f before reaching the
convergence set Ỹ starting from x(0) is at most equal to % · (M −m).
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Finally, in the worst case n−1 consecutive balancing may occur before having an improvement
of f , namely n−1 consecutive reductions of V2 may occur before having a reduction of V1 = f .
In particular, this case may happen if n− 1 nodes have the same execution time that is equal to
the maximum one. In this case, a first balancing may occur between the only "different" node
and any of the other ones. Then, a new balancing may occur between any of the remaining n−2

nodes with the maximum execution time and one with a smaller execution time, and so on. ¤
We now focus on Tmax. Evaluating Tmax, and hence the average convergence time (12) of

Algorithm 2, is in general a difficult issue because it is strictly related to the particular topology
of the net.

In the following we consider two cases: fully connected networks and generalized ring topology
nets. In both cases the computation is carried out using Markov chains. It is not easy to generalize
such analytical results to arbitrary net topologies. However, similar approaches based on Markov
chains can always be used to evaluate numerically an upper bound on Tmax for a particular net
example.

A. Fully connected networks

Proposition 10: Let us consider a fully connected network, and let n be the number of nodes.
It holds

Tmax =
n(n− 1)

2
. (15)

Proof: The maximum average time between two consecutive balancing occurs when only
one balancing is possible. Thus, if N is the number of arcs of the net, then the probability of
selecting the only arc whose incident nodes may balance their load is equal to p = 1/N , while
the average time needed to select it is equal to N . Since the network is fully connected, if n is
the number of nodes, the number of arcs is N = n(n− 1)/2 and so Tmax = n(n− 1)/2. ¤

Proposition 11: If a net is fully connected, the average convergence time of Algorithm 2 is

E [Tconv(Y )] ≤ % · (M −m) · n(n− 1)2

2
= O(n3).

Proof: Follows from equation (12) and Propositions 9 and 10. ¤

B. Generalized ring topology

Definition 12 (Generalized ring topology): A graph G = (E, V ) has a generalized ring topol-
ogy if it satisfies the following assumptions.

• It is composed by s rings, each one with k nodes. The generic j-th ring Rj is a graph
Rj = (Vj, Ej) with Vj = {1, . . . , k} and

Ej = {{i, r} ∈ E | r = i + 1, ∀i = 1, . . . , k − 1} ∪ {k, 1}.
• The same speed is associated to all nodes in the same ring, while nodes of different rings

have different speeds. Thus each ring defines a different swap domain.
• Let (i, j), with i = 1, . . . , k and j = 1, . . . , s, be the i-th node of ring Rj . Let Σi = {(i, j) ∈

V, j = 1, . . . , s} be the set of the nodes of index i in all rings. All nodes in Σi are fully
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 Fig. 3. A net with a generalized ring topology where s = 3 and k = 4.

connected, i.e., for all i = 1, . . . , k, there exists an edge in E that connects each node in
Σi with any other node in Σi.

¥
An example of a net with a generalized ring topology is reported in Fig. 3: here s = 3 and

k = 4.
Note that such a topology well fits with our problem for two main reasons. Firstly, it is scalable

both in the number of nodes in the rings and in the number of rings (namely in the number of
swap domains). Secondly, the diameter of the net, namely the maximum distance among nodes
that may balance, increases with the number of nodes in the ring.

Proposition 13: Let us consider a net with a generalized ring topology. Let s be the number
of rings and n = k · s be the total number of nodes in the net.

If only total swaps are executed3, then it holds

Tmax ≤ n2(s + 1)

32 · s ·
(n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16) . (16)

Proof: We preliminary observe that, due to the gossip nature of Algorithm 2 and to the
random rule used to select the edges, the problem of evaluating an upper bound on Tmax can
be formulated as the problem of finding the average meeting time of two agents walking on a
graph executing a random walk4. In fact, the average meeting time of the two agents may be
thought as the average time of selecting an edge whose incident nodes may balance their load.

3In this paper we will always assume that only total swaps are executed. When partial swaps are also allowed all the bounds
on the convergence time change. We do not provide a bound for such a case.

4This problem has been extensively studied in different fields [8].
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Note that in general more than two edges may balance their load, thus assuming that only two
agents are walking on the graph provides us an upper bound on the value of Tmax. In particular,
the worst case in terms of meeting time occurs when the two agents are on different rings.

In the following we compute the average meeting time using discrete Markov chains. For the
sake of simplicity, we assume that the number of nodes k in each ring is even5.

We call distance between two agents in nodes (i, j) and (i′, j′), di,i′ = 1+min{|i− i′|, k−|i−
i′|}, namely the number of arcs in the shortest path connecting node i with node i′. In simple
words the above distance is equal to the distance between the two agents, computed as if they
were in the same ring, plus 1. This is consistent with the assumption that, in a generalized ring
topology net, any node with a given index in a certain ring is connected to all the other nodes
having the same index in different rings. Therefore nodes with a unitary distance are nodes
within the same section Σ. Under the assumption that k is even, the maximum distance between
the two agents is equal to D = k/2 + 1.

The Markov chain relative to a net with an even value of k is shown in Fig. 4, thus it is a
particular birth-death process.

Each node (apart from the first one, named A) is characterized by an integer number that
denotes the distance between the two nodes. Let us now discuss the weight of the arcs in the
Markov chain.

— The weight of the arcs going from nodes i to i + 1, and viceversa, for i = 2, . . . , D − 1

is equal to 2/N where N = ks(s + 1)/2 is the number of arcs6. This follows from the fact that
if a net has N arcs the probability of selecting a generic edge is equal to 1/N ; moreover, if the
distance between the two agents is i = 1, . . . , D − 1, two are the edges whose selection leads
to an increasing or decreasing of their distance.
The same reasoning explains the weight of the arc going from D − 1 to D and the weight of
the arc going from 2 to 1.

— If the distance between the two agents is unitary (the state of the Markov chain is 1)
two different cases may occur: either we select an edge that leads to a distance equal to 2, or
the edge incident on the nodes containing the agents is selected. The first case occurs with a
probability equal to 4/N ; the second case occurs with a probability equal to 1/N and leads to
the absorbing state A.

— Now, assume that the distance between the agents is equal to D. In such a case the selection
of 4 different arcs may lead to a decreasing of their distance. Therefore the arc of the Markov
chain going from node D to node D − 1 has a weight equal to 4/N .

— Finally, the weights of all self-loops are due to the fact that the sum of the weights of arcs
exiting a node is equal to 1 in a discrete Markov chain.

Given the Markov chain in Fig. 4 it is easy to compute the average hitting time of the absorbing
state from any admissible distance. This can be done solving analytically the following linear

5The case of rings with an odd number of nodes k is upper bounded by the case of rings with k + 1 nodes.
6The number of arcs of a ring topology net is equal to k times the number of arcs of each section Σ, plus k times the number

of arcs of each ring. Being each Σ a fully connected graph with s nodes, its number of arcs is equal to s(s− 1)/2. Therefore,
N = ks(s + 1)/2 + ks = ks(s + 1)/2.
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 A 1 2 3 D 

1-4/N 1-4/N 1-4/N 1-5/N    1 

1/N 2/N 2/N 2/N 4/N 

2/N 2/N 2/N 4/N 

 

Fig. 4. The Markov chain associated to a generalized ring topology net with an even value of k.

system of equations:
(I − P ′) τ = 1 (17)

where I is the D-dimensional identity matrix; P ′ has been obtained by the probability matrix P

of the Markov chain in Fig. 4 removing the row and the column relative to the absorbing state7;
τ is the D-dimensional vector of unknowns: its i-th component τ(i) is equal to the hitting time
of the absorbing state starting from an initial distance equal to i, for i = 1, . . . , D; finally, 1 is
the D-dimensional column vector of ones. We found out that the worst case in terms of hitting
time occurs when the two agents are at their maximum distance, i.e., for i = D. In particular it
is

τ(D) =
n2(s + 1)

32 · s ·
(n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16)

where the last equality follows from the fact that n = ks. This proves the statement being
Tmax ≤ τ(D). ¤

Proposition 14: If a net has a generalized ring topology and only total swaps are executed,
then the average convergence time of Algorithm 2 in terms of the number of nodes n is

E [Tconv(Y )]

≤ % · (M −m) · n2(s + 1)

32 · s ·
(n

s
+ 16

)
· (n− 1) = O(n4)

or, in terms of the net parameters k and s

E [Tconv(Y )]

≤ % · (M −m) · k2s(s + 1)

32
· (k + 16) · (k s− 1)

= O(k4s3).

Proof: Follows from equation (12) and Propositions 9 and 13. ¤

7It obviously holds that the hitting time of the absorbing state is null from the absorbing state itself.
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V. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of determining an optimal load balancing over networks
with nodes of different speed. The case of finite tasks with different costs has been considered.
A solution based on gossip has been proposed and convergence properties have been examined
in detail.

Then, we studied the convergence time of the proposed quantized gossip algorithm. In par-
ticular we examined two different net topologies, namely fully connected and generalized ring
topologies.

In this paper we assumed that swaps are executed randomly. One of our future lines of
research in this topic will be that of determining appropriate (deterministic) rules to execute
swaps that improve the convergence properties of Algorithm 2 and provide a stop criterion when
the optimality set is reached.
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