
1

A Comparison Between Two Diagnostic Tools
Based on Automata and Petri Nets

Stefano Lai, Davide Nessi, Maria Paola Cabasino, Alessandro Giua, Carla Seatzu

Abstract

In this paper we consider two diagnosis procedures for discrete event systems based respectively
on automata and Petri nets. First we compare them in terms of applicability and generality. Secondly,
we apply them to the WODES diagnosis benchmark and compare them in terms of computational
complexity. As a result we conclude that the automata procedure is more general, but the Petri net
approach presents significant advantages in terms of computational complexity.

Published as:
S. Lai, D. Nessi, M.P. Cabasino, A. Giua, C. Seatzu, ”A comparison between two diagnostic
tools based on automata and Petri nets,” 9th Int. Workshop on Discrete Event Systems (Gteborg,
Sweden), pp. 144-149, May 2008.

S. Lai, D. Nessi, M.P. Cabasino, A. Giua and C. Seatzu are with the Department of Electrical and Electronic Engineering,
University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy stefyial84@libero.it, ilnessi@hotmail.com,
(cabasino,giua,seatzu)@diee.unica.it.

February 23, 2010 DRAFT

I. INTRODUCTION

The diagnosis of discrete event systems is a research area that has received a lot of attention
in the last years and has been motivated by the practical need of ensuring the correct and safe
functioning of large complex systems.

Several original theoretical approaches have been proposed using automata, e.g., by Boel and
van Schuppen [1], by Debouk et al. [2], by Hashtrudi Zad et al. [3], by Jiang and Kumar [4],
by Lunze and Schroder [5], by Sampath et al. [6], [7], and by Hashtrudi et al. [8].

Petri net models have also often been used in this context: the intrinsically distributed nature
of Petri nets where the notion of state (i.e., marking) and action (i.e., transition) is local has often
been an asset to reduce the computational complexity involved in solving a diagnosis problem.
Among the different contributions in this area we recall the work of Ushio et al. [9], Benveniste
et al. [10], [11], Haar et al. [12], Jiroveanu and Boel [13], Jiroveanu et al. [14], Giua and Seatzu
[15], and Cabasino et al. [16].

In this paper we focus our attention on two different diagnosis procedures. The first one is
based on automata and has been firstly introduced in [7] by Sampath et al.. The second one is
based on Petri nets and has been proposed by some of us in [15], [16].

In Section III we recall the basic ideas behind such approaches and discuss the differences
between them from a theoretical point of view. Although the automata approach only deals with
finite state systems, it can be applied to arbitrarily labeled automata and can be used not only
to solve the diagnosis problem, but also to check diagnosability, i.e., to establish a priori if a
certain fault can be detected after the observation of words of finite length. On the contrary, the
Petri net approach allows one to deal also with some classes of infinite state systems, but so far
has only been applied to free labeled nets and no results concerning diagnosability are known.

In Section IV we present the WODES diagnosis benchmark, and in Section V we study the
computational complexity of diagnosing the benchmark with a tool we developed in Matlab, that
implements the Petri net procedure, and the UMDES library [17] that implements the automata
procedure. From the results we have collected, we conclude that the Petri net tool is more efficient
from a computational point of view. This is not surprising because the Petri net approach is based
on the notion of basis markings and j-vectors that allow a compact representation of the reachable
state space, while the automata approach is based on the diagnoser that requires an exhaustive
enumeration of the state space.

II. BACKGROUND

A. Finite state automata
A deterministic finite state automaton (FSA) is a fourtuple G = (X, E, δ, x0) where X is the

finite state space, E is the set of events, δ : X × E −→ X is the partial transition function, x0

is the initial state.
A nondeterministic finite state automaton (NFSA) is a fourtuple G = (X, E, ∆, x0) where

∆ ⊆ X×Eε×X is the transition relation, Eε = E ∪{ε} and ε is the empty trace, i.e., the trace
containing no events.

Finally, the language generated by G is L(G) = {w ∈ E∗ : δ(x,w) is defined}.

B. Petri nets
A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P ×T → N and Post : P ×T → N are the pre– and
post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative
integer number of tokens, represented by black dots. We denote M(p) the marking of place p.
A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =
M +C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk

is enabled
at M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector
y ∈ Nn, named the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the
transition t is contained k times in σ.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted
R(N, M0). The language L(N, M0) of 〈N, M0〉 is the set of its firing sequences, i.e., L(N,M0) =
{σ ∈ T ∗ | M0[σ〉}.

A Petri net having no directed circuits is called acyclic.

III. DIAGNOSIS

In this section we briefly recall the diagnosis approach using automata first presented by
Sampath et al. in [7]. For more details on this we address to [18]. Then, we introduce the
diagnosis approach using Petri nets [15], [16]. Finally, we compare the two diagnosis procedures.

A. Diagnosis using automata
The system to be diagnosed is modeled by a NFSA. Faults are modeled by unobservable

events, but there may also exist other events that represent legal behaviors that are unobservable
as well. Thus we assume that the set of events can be partitioned as E = Eo ∪Eu, where Eo is
the set of observable events, and Eu is the set of unobservable events. The set of fault events is
denoted Ef and it holds Ef ⊆ Eu. The set Ef can be further partitioned into r different subsets
Ei

f , where i = 1, . . . , r, that model the different fault classes.
Given a NFSA G = (X, E, ∆, x0) it is always possible to define a DFSA, called observer of

G, Obs(G). The projection on Eo of the language generated by G coincides with the language
generated by the observer Obs(G), namely with L(G). Each state of Obs(G) is composed by a
subset of X . In particular, the initial state of the observer x0obs

includes x0 and all the states of G
that are reachable starting from x0 executing one or more unobservable events in G. Analogously,
a generic state reachable from x0obs

with an observable sequence of events w ∈ E∗
o is composed

by the set of states that are reachable in G from the states in x0obs
executing w interleaved with

zero or more unobservable events.
The diagnoser Diag(G) is a DFSA as well and it can be built with the same procedure

used for the observer. The states of Diag(G) are composed by ordered sets of r + 1 entries,
{x, l1, l2, . . . , lr}, where x ∈ X is a state of G and li ∈ {Fi, Ni} is the label associated to the
ith fault class. In particular, li = Fi if x has been reached firing at least one fault event of class
i, otherwise li = Ni.

Note that the state of a diagnoser may contain two different sets relative to the same state
x ∈ X and the same fault class, namely {x, l1, . . . , li, . . . , lr} and {x, l1, . . . , l

′
i, . . . , lr} where

li = Fi and l′i = Ni. This happens when the same state x can be reached in G executing words
that contain fault events in the ith class and words not containing them.

The states of Diag(G) can be classified as follows.
• Positive state to the ith class: all entries relative to the ith class are equal to Fi. This means

that if the word that leads to such a state is observed, then we can be sure that a fault event
in the ith class has occurred.

• Negative state to the ith class: all entries relative to the ith class are equal to Ni. This
means that if the word that leads to such a state is observed, then we can be sure that no
fault event in the ith class has occurred.

• Uncertain state to the ith class: it includes both sets labeled with Ni and sets labeled with
Fi. In such a case a fault event may either have occurred or not.

The diagnoser can be used to solve two different types of problems.
• Diagnosis: given a sequence of observable events w it allows to determine, for each class,

if a fault in that class has occurred for sure or not, or it may have occurred, but we cannot
be sure of this.
This is equivalent to establish if the state of the diagnoser that is reached executing w is
respectively, positive, negative or uncertain to each class.

• Diagnosability: it allows to determine if a system is diagnosable, i.e., if it is possible to
reconstruct the occurrence of fault events observing words of finite length.

B. Diagnosis using Petri nets
Faults are modeled by unobservable transitions, but there may also exist other transitions that

represent legal behaviors that are unobservable as well. Thus we assume that the set of transitions
can be partitioned as T = To ∪ Tu, where To is the set of observable transitions, and Tu is the
set of unobservable transitions. The set of fault transitions is denoted Tf and it holds Tf ⊆ Tu.
The set Tf can be partitioned into r different subsets T i

f , where i = 1, . . . , r, that model the
different fault classes.

The diagnosis with Petri nets is based on two main notions: j-vector (or justification-vector)
and basis marking [15].

Given an observation w ∈ T ∗
o , we denote as J (w) the set of justifications, i.e., the set of

minimal sequences of unobservable transitions interleaved with w and whose firing enables w.
We denote as j-vectors the firing vectors relative to the justifications in J (w).

Finally, the set of basis markings Mb,w is the set of markings reached from M0 firing w
interleaved with a justification σu ∈ J (w). The generic marking in Mb,w is denoted Mb,w.

The diagnoser is a function ∆ : T ∗
o × {T 1

f , . . . , T r
f } −→ {0, 1, 2, 3} that associates to each

observation w and to each fault class Tfi
, i = 1, . . . , r, a diagnosis state.

• 0: the ith fault cannot have occurred because none of the firing sequences consistent with
the observation contains fault transitions of class i.

• 1: a fault transition of class i may have fired but is not contained in any justification of w.
• 2: a fault transition of class i is contained in one (but not in all) justifications of w.
• 3: the ith fault must have occurred, because all firable sequences consistent with the

observation contain at least one fault transition of class i.
In [16] we shown that the procedure to evaluate the diagnosis states may be carried out

by simply performing matrices multiplications and evaluating the feasibility of certain integer
constraint sets. Such a procedure may be applied to all net systems whose unobservable subnet
is acyclic.

Clearly, the most burdensome part of the proposed procedure consists in evaluating the
feasibility of a finite number of integer constraint sets. However, as shown in [16], in the case of
bounded net systems this computation may be moved off-line. An oriented graph, that we call
basis reachability graph (BRG) may be constructed off-line, that summarizes all the information
required for diagnosis. Then, given any observable word w, for any fault class T i

f , we may
evaluate the corresponding diagnosis state by simply looking at the BRG.

The main limitation of this approach is that it only allows one to solve a diagnosis problem.
How to use it to also check diagnosability is still an open-issue.

C. Comparison between the two approaches
In this section we compare the above two procedures in terms of applicability and generality

of the results. A comparison in terms of computational complexity is proposed in Section V.
For more details we address to [19].

The main differences can be summarized as follows.
• The automata approach allows one to check diagnosability while the Petri net one does not.
• The automata approach can be applied to arbitrarily labeled NFSA. On the contrary, the

Petri net approach, in its present formulation, is limited to free-labeled nets. However, we
believe that it can be easily extended to arbitrarily labeled Petri nets: in such a case a larger
number of basis markings should be taken into account.

• Both approaches pose some structural conditions on the unobservable systems. The automata
approach requires that no cycle of unobservable events may happen after the occurrence
of fault events. The Petri net approach requires a stronger assumption: the unobservable
subnet must be acyclic.

• The automata approach is based on NDFA, thus it can only deal with systems with finite
state space. On the contrary, the Petri net approach allows one to also deal with unbounded
systems, namely systems with an infinite state space.
Note, however, that the BRG of a Petri net can only be computed if the system has a finite
number of basis markings; this condition may fail if the net is unbounded.

• An advantage of the Petri net approach is that looking at the j-vectors, we know not only
if the fault has occurred, but we also know how many times it has occurred.

IV. THE CONSIDERED BENCHMARK

The benchmark describes a family of manufacturing systems characterized by three parameters:
n, m and k.

• n is the number of production lines.
• m is the number of units of the final product that can be simultaneously produced. Each

unit of product is composed of n parts.
• k is the number of operations that each part must undergo in each line.
To obtain one unit of final product n orders are sent, one to each line; this is represented by

observable event ts. Each line will produce a part (all parts are identical) and put it in its final
buffer. An assembly station will take one part from each buffer (observable event te) to produce
the final product.

The part in line i (i = 1, . . . , n) undergoes a series of k operations, represented by unobservable
events εi,1, εi,2, · · · , εi,k.

After this series of operations two events are possible: either the part is regularly put in the
final buffer of the line, or a fault may occur.

• Putting the part in the final buffer of line 1 corresponds to unobservable event ε1,k+1, while
putting the part in the final buffer of line i (i = 2, . . . , n) corresponds to observable event
ti,k+1.

• There are n − 1 faults, represented by unobservable events fi (i = 1, . . . , n − 1). Fault fi

moves a part from line i to line i + 1. Note that on line i (i = 1, . . . , n− 1) the fault may
only occur when the part has finished processing and is ready to be put in its final buffer;
the part goes to the same processing stage in line i + 1.

A Petri net model of this system is shown in Fig. 1, where thick transitions represent observable
event and thin transitions represent unobservable events.

 p1,1

 ε1,1

 p1,2

 p1,k

 p1,k+2

 p1,k+1

 ε1,k+1

 ε1,k

 p2,1

 ε2,1

 p2,2

 p2,k

 p2,k+2

 p2,k+1

 t2,k+1

 ε2,k

 pn,1

 εn,1

 pn,2

 pn,k

 pn,k+2

 pn,k+1

 tn,k+1

 εn,k
 f1 f2 fn-1

 ts

 te

 p0 m

Fig. 1. The considered benchmark.

V. NUMERICAL SIMULATIONS

In this section we compare the tool we developed in Matlab [20], that implements the Petri net
procedure, and the UMDES library [17] that implements the automata procedure. In particular,
such a comparison is carried out on the benchmark introduced in Section IV, whose Petri net
model is sketched in Fig. 1, while the automaton model corresponds to the reachability graph
of the Petri net system that is not reported here for sake of brevity.

Several numerical simulations have been run for different values of n, k and m, that are
summarized in Tables I, II and III.

Note that for sake of simplicity we assumed that all faults belong to the same class.
All simulations have been run on a PC Intel with a clock of 1.80 GHz.
• Columns 1 and 2 show the values of n and k.
• Column 3 shows the number of nodes |R| of the reachability graph, and thus the number

of states of the NFSA modeling the system.
• Column 4 shows the time tR in seconds we spent to compute the reachability graph using

a function we developed in Matlab.
• Column 5 shows the number of nodes |BRG| of the BRG.
• Column 6 shows the time tBRG in seconds we spent to compute the BRG using a function

we developed in Matlab [20].
• Column 7 shows the number of nodes |Obs| of the observer.
• Column 8 shows the time tObs in seconds we spent to compute the observer using the

UMDES library [17].
• Column 9 shows the number of nodes |Diag| of the diagnoser.

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Diag| tDiag [sec]
2 1 15 0.011 5 ¡ 0.03 4 0.053 12 0.048
2 2 24 0.019 5 ¡ 0.03 15 0.060 39 0.049
2 3 35 0.026 5 0.032 22 0.059 58 0.050
2 4 48 0.038 5 0.032 34 0.060 88 0.053
3 1 80 0.074 17 0.12 51 0.061 151 0.056
3 2 159 0.234 17 0.145 228 0.063 698 0.084
3 3 274 0.693 17 0.15 494 0.073 1480 0.155
3 4 431 1.85 17 0.15 794 0.12 2405 0.31
4 1 495 2.52 69 0.51 4172 0.619 14009 16.66
4 2 1200 19.04 69 0.57 32132 319.6 126041 4874
4 3 2415 95.33 69 0.67 120083 6169.4 o.t. o.t.
4 4 4320 368.8 69 0.766 o.t. o.t. n.c. n.c.
5 1 3295 203.6 305 4.82 o.m. o.m. n.c. n.c.
5 2 o.t. o.t. 305 5.06 n.c. n.c. n.c. n.c.
5 3 o.t. o.t. 305 6.37 n.c. n.c. n.c. n.c.
5 4 o.t. o.t. 305 6.6 n.c. n.c. n.c. n.c.

TABLE I
NUMERICAL RESULTS IN THE CASE OF m = 1.

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Diag| tDiag [sec]
2 1 96 0.094 17 0.078 349 0.125 3864 1.764
2 2 237 0.521 17 0.078 9849 9.754 o.m. o.m.
3 1 1484 27.19 140 1.17 o.t. o.t. n.c. n.c.
3 2 5949 648.8 140 1.031 o.t. o.t. n.c. n.c.
4 1 28203 20622 1433 86 o.t. o.t. n.c. n.c.
4 2 o.t. o.t. 1433 86.4 n.c. n.c. n.c. n.c.

TABLE II
NUMERICAL RESULTS IN THE CASE OF m = 2.

n k |R| tR [sec] |BRG| tBRG [sec] |Obs| tObs[sec] |Diag| tDiag [sec]
2 1 377 1.221 39 0.25 o.t. o.t. n.c. n.c.
2 2 1293 19.038 39 0.25 o.t. o.t. n.c. n.c.
3 1 12048 2978 553 7.65 o.t. o.t. n.c. n.c.
3 2 o.t. o.t. 553 7.55 n.c. n.c. n.c. n.c.
4 1 o.t. o.t. 9835 2392.3 n.c. n.c. n.c. n.c.
4 2 o.t. o.t. 9835 2395.3 n.c. n.c. n.c. n.c.

TABLE III
NUMERICAL RESULTS IN THE CASE OF m = 3.

• Column 10 shows the time tDiag in seconds we spent to compute the diagnoser using the
UMDES library [17].

Note that, since in some cases the times to run simulations are very short, in order to minimize
the variance of such times — related to the concurrency of the processes executed by the

processor — the average time over several simulations has been computed. In particular, the
first 9 rows of Table I and the first row of Table II show the average time over 100 simulations.
The 10th row of Table I shows the average time over 20 simulations. In all the other cases only
one simulation has been run.

Some boxes of the above tables contain non numerical values.
• o.t. (out of time): denotes that the corresponding value has not been computed within 6

hours;
• n.c. (not computable): denotes that the corresponding value cannot be computed: e.g., if

the observer is o.t. the corresponding diagnoser cannot be evaluated;
• o.m. (out of memory): denotes that the corresponding value has not been computed because

the virtual memory of the calculator has run out.
Tables I, II and III show that the time spent to compute the reachability graph, the observer

and the diagnoser highly increases with the dimension of the net, namely with n and k, and
with the number of products m. In same cases it has been even impossible to compute them.

On the contrary, the time spent to compute the BRG is always reasonable even for high values
of n, k and m.

We can observe that there is not a clear relationship between the number of nodes of the
reachability graph and the number of nodes of the observer. As an example, let us consider the
two cases: n = 3, k = 3, m = 1 and n = 2, k = 2, m = 2. In the first case the number of nodes
of the reachability graph is |R| = 274 and the number of nodes of the observer is |Obs| = 494.
In the second case |R| = 237 < 274 and |Obs| = 9849 >> 494.

We can also observe that, as expected, the number of states of the diagnoser |Diag| is greater
than the number of states of the observer |Obs|. Thus, it is always possible to construct the
observer if it is possible to construct the diagnoser, but not viz (e.g., n = 4, k = 3, m = 1).
However, there is not a clear relationship between the complexity in evaluating them. As an
example let us consider the two cases: n = 4, k = 2, m = 1 and n = 2, k = 2, m = 2. In the
first case |Obs| = 32132 and it has been possible to also compute the diagnoser. In the second
case |Obs| = 9849 << 32132 and it has not been possible to compute the diagnoser within 6
hours.

Tables I, II and III also show that the number of nodes of the BRG only depends on n and
m, while it is invariant with respect to k. Only the contrary, |R|, |Obs| and |Diag| also highly
increases with k.

The relationship among the time to compute the reachability graph, the BRG, the observer
and the diagnoser, respectively, and the values of n and k is better highlighted in Fig. 2 in the
case of m = 1.

Looking at Fig. 2 it can be noticed that while tBRG slowly increases with n and k, tR, tObs

and tDiag highly depend on these parameters. Moreover, while the BRG is computable for all
considered values of n and k, the reachability graph is only computable for n ≤ 4 if k ≥ 2;
the observer is only computable for n ≤ 3 if k = 4, and for n ≤ 4 if k = 1, 2, 3; finally, the
diagnoser is only computable for n ≤ 3 if k = 3, 4, and for n ≤ 4 if k = 1, 2.

On the basis of the above simulations we can conclude that from a computational point of
view, the Petri net tool is better than the automata tool. In particular, in several cases we realized
that the diagnoser cannot be built at all (at least in a reasonable time), while the BRG can always
be computed in a sufficiently small time.

This is not surprising: in fact thanks to the basis markings the reachability space can be
described in a compact manner. On the contrary the automata approach is based on an exhaus-
tive enumeration of all reachable states. This advantage is particularly evident in the case of
concurrent systems [19].

2 3 4 5
10

−2

10
−1

10
0

10
1

10
2

10
3

n

t
R

 [sec]

k=1
k=2
k=3
k=4

2 3 4 5

10
−4

10
−2

10
0

n

t
BRG

 [sec]

k=1
k=2
k=3
k=4

2 3 4
10

−2

10
0

10
2

10
4

n

t
Obs

 [sec]

k=1
k=2
k=3
k=4

2 3 4
10

−2

10
0

10
2

10
4

n

t
Diag

 [sec]

k=1
k=2
k=3
k=4

Fig. 2. The computational times tR, tBRG, tObs and tDiag with respect to n and k, in the case of m = 1.

On the other hand, as already highlighted above, the Petri net approach is only applicable
when performing on-line diagnosis, while the automata approach also provides necessary and
sufficient conditions for diagnosability.

We can finally observe that the small number of simulations we have been able to carry on
using automata does not allow us to evaluate how the computational complexity is related to n
and k in the automata approach. However, we can conjecture an exponential dependence on n
since the computational time varies from few seconds to “out of time” slightly increasing n.

Evaluating the dependence on k is even more difficult: for m = 1 and n = 2 the times to
compute the diagnoser are very small and comparable for all values of k; for m = 1 and n = 3
the time is still reasonable for all values of k, even if it increases approximately in a linear way
with k; for m = 1 and n = 4 it becomes “out of time” for k = 3.

Discussion
We have compared the complexity of solving the WODES benchmark problem with two

different tools, one using the BRG and the other one using the diagnoser. The diagnoser has
size which is exponential in the number of system states, whereas the size of the BRG is linear
in the size of the state space, being at most equal to the size of the reachability graph. Thus, it
was expected that the second tool should have better performance.

Note however, that it does not necessarily follow that Petri nets diagnosis approaches are better
than automata based approaches. We remind that there also exist other automata based approaches
that do not require an exhaustive enumeration of the diagnoser states. As an example, in [3],
a subgenerator of the Reachability Transistion System (RTS) reachable from the initial state, is
used in a similar fashion as the BRG. Since the system states that are only on unobservable
trajectories do not show up in the reachable subgenerator of RTS, the size of the reachable
subgenerator of RTS is also smaller than the original system. It would be interesting to test the
WODES benchmark problem on a tool based on this approach and compare with the results
obtained using our tool.

VI. CONCLUSIONS

In this paper we compared two diagnosis approaches of discrete event systems. The first one
is based on automata and the second one on Petri nets. In particular, we first discussed the
differences between them in terms of applicability and generality of the results and showed that
the automata approach is more general. Then, we considered a benchmark and compared them
in terms of computational complexity: from this point of view the Petri net approach is much
more efficient, and allows one to deal with larger dimensional systems.

VII. ACKNOWLEDGMENT

We thank Andres Rey for his help in the development of the tool MATLAB for the construction
of the BRG [20].

REFERENCES

[1] R. Boel and J. van Schuppen, “Decentralized failure diagnosis for discrete-event systems with costly communication
between diagnosers,” in Proc. WODES’02: 6th Work. on Discrete Event Systems (Zaragoza, Spain), Oct. 2002, pp. 175–
181.

[2] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized protocols for failure diagnosis of discrete-event
systems,” Discrete Events Dynamical Systems, vol. 20, pp. 33–79, 2000.

[3] S. H. Zad, R. Kwong, and W. Wonham, “Fault diagnosis in discrete-event systems: framework and model reduction,” IEEE
Trans. Automatic Control, vol. 48 (7), pp. 1199–1212, 2003.

[4] S. Jiang and R. Kumar, “Failure diagnosis of discrete-event systems with linear-time temporal logic specifications,” IEEE
Trans. Automatic Control, vol. 49, no. 6, pp. 934–945, Jun. 2004.

[5] J. Lunze and J. Schroder, “Sensor and actuator fault diagnosis of systems with discrete inputs and outputs,” IEEE Trans.
Systems, Man and Cybernetics, Part B, vol. 34, no. 3, pp. 1096–1107, Apr. 2004.

[6] M. Sampath and S. Lafortune, “Active diagnosis of discrete-event systems,” IEEE Trans. Automatic Control, vol. 43, pp.
908–929, 1998.

[7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-event systems,”
IEEE Trans. Automatic Control, vol. 40 (9), pp. 1555–1575, 1995.

[8] S. H. Zad, R. Kwong, and W. Wonham, “Fault diagnosis in discrete-event systems: framework and model reduction,” IEEE
Trans. Automatic Control, vol. 48, no. 7, pp. 1199–1212, Jul. 2003.

[9] T. Ushio, L. Onishi, and K. Okuda, “Fault detection based on Petri net models with faulty behaviors,” in Proc. SMC’98:
IEEE Int. Conf. on Systems, Man, and Cybernetics (San Diego, CA, USA), Oct. 1998, pp. 113–118.

[10] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard, “Fault detection and diagnosis in distributed systems:
an approach by partially stochastic Petri nets,” Discrete Events Dynamical Systems, vol. 8, pp. 203–231, Jun. 1998.

[11] A. Benveniste, E. Fabre, S. Haar, and C. Jard, “Diagnosis of asynchronous discrete event systems, a net unfolding approach,”
IEEE Trans. Automatic Control, vol. 48, no. 5, pp. 714–727, May 2003.

[12] S. Haar, A. Benveniste, E. Fabre, and C. Jard, “Partial order diagnosability of discrete event systems using Petri net
unfoldings,” in Proc. 42th IEEE Conf. on Decision and Control, Dec. 2003, pp. 3748– 3753.

[13] G. Jiroveanu and R. Boel, “A distributed approach for fault detection and diagnosis based on time Petri nets,” Mathematics
and Computers in Simulation, vol. 70, pp. 287–313, 2006.

[14] G. Jiroveanu, R. Boel, and B. D. Schutter, “Fault diagnosis for time Petri nets,” in Proc. WODES’06: 8th Work. on Discrete
Event Systems (Ann Arbor, Michigan, USA), Jul. 2006, pp. 313– 318.

[15] A. Giua and C. Seatzu, “Fault detection for discrete event systems using Petri nets with unobservable transitions,” in Proc.
44th IEEE Conf. on Decision and Control, Dec. 2005, pp. 6323–6328.

[16] M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event systems using Petri nets with unobservable
transitions,” Automatica, (Submitted).

[17] S. Lafortune, “Umdes-lib software library. [online]. available: http://www.eecs.umich.edu/umdes/toolboxes.html.”
[18] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems - Second Edition. Springer, 2007.
[19] M. P. Cabasino, “Diagnosis of discrete event systems using automata and Petri nets,” Master’s thesis, Dep. Electric and

Electronic Engineering, University of Cagliari, Cagliari, Italy, 2005. (In Italian).
[20] A. Rey, “Diagnosis of Petri nets using the Basis Reachability Graph,” Master’s thesis, Dep. Electric and Electronic

Engineering, University of Cagliari, Cagliari, Italy, 2007. (In Italian).

