
1

Some New Results on

Supervisory Control of Petri Nets

with Decentralized Monitor Places
Francesco Basile (*), Alessandro Giua (**), Carla Seatzu (**)

(*) DITIE, University of Salerno, Italy. fbasile@unisa.it

(**) DIEE, University of Cagliari, Italy. {giua,seatzu}@diee.unica.it

Abstract

This paper presents two new results on the problem of determining a set of decentralized controllers

for place/transition nets to enforce a global specification on the net behavior. Both the global specification

and the decentralized specifications are given in terms of Generalized Mutual Exclusion Constraints

(GMECs). First, an algorithm to select a decentralized specification that finds a compromise between

fairness among variables and the maximal cardinality is proposed assuming that the support of each

decentralized GMEC is a singleton. Then, a maximal solution in terms of permissiveness and fairness

among places is proposed removing the previous assumption.
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I. INTRODUCTION

This paper focuses on decentralized supervisory control of Petri Nets (PNs). Decentralized

supervisory control has received a great attention in the Discrete Event Systems (DES) area in the

last decade (5) but usually formal languages and automata based approaches have been preferred

(1; 4; 6; 7) although the compact representation of PNs may potentially help in reducing the

complexity of the problem.

In particular, we study the problem of determining a set of local supervisors when the global

specification is given by a set of Generalized Mutual Exclusion Constraints (GMECs) (W ,k),

where W = [wT
1 ,wT

2 , ...wT
nc

]T , k = [k1, k2, ...knc ]
T and the set of legal markings is M(W ,k) =

{m ∈ Nm | W ·m ≤ k}. A control architecture without central coordinator and communication

between local supervisors is here considered. The set of places is partitioned into ν disjoint sets

Pj , and the j-th local supervisor may enforce only places in Pj to assume a certain set of values.

In (2) under the assumption that: (A1) all weights are positive, i.e., W ≥ 0, k ≥ 0, (A2) all

transitions are controllable and observable, (A3) the support of each decentralized GMEC is a

singleton, thus ν = m and Pj = {pj}, for j = 1, . . . , m, it was shown that this problem can

be solved by computing an integer inner box I(u) = {m ∈ Nm | m ≤ u} included in the set

of legal markings defined by the global GMEC M(W , k). In particular, the problem of finding

a maximal integer inner box I ⊆ M(W ,k), i.e. an inner box such that there does not exist a

box Ĩ 6= I and I ( Ĩ ⊆ M(W ,k), was considered. A solution that aims to guarantee fairness

among places was proposed, that can be computed using a simple iterative algorithm.

Based on the approach in (2) two new results are presented in this paper.

(1) We first show that, if assumption (A3) is removed allowing the support of decentralized

GMECs to include two or more places, a maximal set of legal markings can be obtained directly

from the solution computed under assumption (A3).

(2) We propose an algorithm to optimize the permissiveness of the closed loop behavior under

decentralized control by selecting with an heuristic rule the decentralized specifications that find

a compromise between fairness among variables and the maximal cardinality of the set of legal

markings under decentralized control. This procedure works under assumptions (A1),(A2) and

(A3). Furthermore, an example shows that the selection is improved if additional GMECs coming

from net properties (e.g., place bounds) are added to the control specification.
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II. BASIC DEFINITIONS

A. Petri nets

A Place/Transition (P/T) is represented by N = (P, T, Pre,Post) where: P is a set of m

places; T is a set of n transitions; P ∩ T = ∅, P ∪ T 6= ∅; Pre (Post) is the m × n sized,

natural valued, pre-(post-)incidence matrix. We denote by C the incidence matrix, by the m× 1

vector m : P → N the net marking, by m[t〉m′ the fact that an enabled transition t may

fire at m yielding m′. A firing sequence from m0 is a (possibly empty) sequence of transitions

σ = t1, . . . , tk such that m0[t1〉m1[t2〉m2 . . . [tk〉mk. A P/T system 〈N, m0〉 is a P/T net N with

an initial marking m0. A marking m is reachable in 〈N, m0〉 iff there exists a firing sequence

σ such that m0[σ〉m. Given a net system 〈N, m0〉 the set of reachable markings is denoted

R(N, m0). Consider a net system 〈N, m0〉, the bound of place p is B(p) = max{m(p)|∀m ∈
R(N, m0)}.

B. Generalized Mutual Exclusion Constraints

A Generalized Mutual Exclusion Constraint (GMEC) is a couple (w, k) where w : P → Z

is an m dimensional row vector and k ∈ Z. A GMEC defines a set of legal markings:

M(w, k) = {m ∈ Nm | w ·m ≤ k}.

The non legal markings are called forbidden markings. A controlling agent, called supervisor,

must ensure the forbidden markings will be not reachable. So the set of legal markings under

control is Mc(w, k) = M(w, k) ∩ R(N, m0). We call support of (w, k) the set Qw = {p ∈
P |w(p) 6= 0}.

A set of GMECs (W ,k), with W = [wT
1 , ...wT

nc
]T , k = [k1, ...knc ]

T , defines the set of

legal markings M(W ,k) = {m ∈ Nm | W · m ≤ k}. We call support of (W ,k) the set

QW = {p ∈ P ∩(∪nc
j=1Qwj

)}. It has been shown in (3) that a set of nc GMECs can be enforced

adding to the controlled net a set of nc places called monitors, provided that the initial marking

is legal.

C. Geometrical definitions

A box is a set of real vectors defined as

B(l,u) = {x ∈ Rd|l ≤ x ≤ u},
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where l and u are real d-vectors. If x ∈ Nd we call B(0,u) integer box and we denote it simply

as I(u).

An hypercube is a box such that u = l + λe, where λ is a scalar and e denotes the d-vector

of ones; an integer hypercube is an integer box I(u) such that u = λe where λ is a positive

integer scalar.

Given a set S, we denote by |S| its cardinality.

Definition 1: An integer box I(u) ⊆ M(W ,k) is a maximal cardinality inner box if there

does not exist an inner box I(ũ) 6= I(u) such that I(ũ) ⊆M(W ,k) and |I(u)| < |I(ũ)|. ¥
The following results hold.

• The cardinality of an integer inner box I(u) is equal to
∏
p∈P

(u(p) + 1) since each edge

includes all integer numbers from 0 to u(p).

• The cardinality of an integer hypercube I(τe) having a vertex in the origin with edge length

τ is equal to (τ + 1)m.

Note that determining a maximal integer hypercube is equivalent to determine a maximal

cardinality integer hypercube since all edges have the same length.

III. PROBLEM STATEMENT

Let 〈N, mp0〉 be a P/T system to be controlled, where N = (P, T, Pre,Post). Assume that

a global specification is given in terms of a GMEC (W ,k). Without loss of generality we take

QW = P , i.e., all places are bounded by the constraint. If such is not the case, we can simply

apply the proposed procedure to the projection on QW . Assume that the set of places P is

partitioned into ν subsets P1, . . . , Pν .

We want to determine a set of decentralized GMECs (W (j),k(j)) whose support is Pj , with

j = 1, . . . , ν, such that

∩ν
j=1M(W (j), k(j)) ⊆M(W , k). (1)

A set of M(j) = M(W (j),k(j)), j = 1, . . . , ν, satisfying (1) is called a set of decentralized

legal markings sets.

The choice of the decentralized GMECs, and thus of sets M(j)’s, is obviously not unique,

and depends in general on the dimension n
(j)
c of the decentralized GMECs (W (j),k(j)).

In the rest of the paper we will make the following two assumptions.
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(A1) Weights are positive, i.e., W ≥ 0, k ≥ 0.

(A2) Transitions are controllable and observable.

IV. BACKGROUND ON PREVIOUS RESULTS

In this section we recall some results we presented in (2) that hold under the following

additional assumption.

(A3) The support of each decentralized GMEC is a singleton, thus ν = m and Pj = {pj}, for

j = 1, . . . , m.

By assumption (A3) it follows that n
(j)
c = 1 and the effect of each decentralized GMEC is

that of imposing an upper bound on the corresponding place. Thus, the set ∩ν
j=1M(W (j), k(j))

can be regarded as the integer box I(u) where u is an m-integer vector whose j-th component

denotes the bound induced by the j-the decentralized GMEC on place pj .

Definition 2: An integer box I(u) ⊆M(W , k) is a maximal integer inner box if there does

not exist an inner box I(ũ) 6= I(u) such that I(u) ( I(ũ) ⊆M(W ,k). ¥
Note that the maximal integer inner box is in general not unique.

Proposition 3: (2) An integer box I(u) is a maximal integer inner box in M(W ,k) where

W ≥ 0 and k ≥ 0, if and only if ∀ p ∈ P :

min
i∈{1,...,nc}

ki −wi · u
wi(p)

< 1.

¥
Thus, an integer box I(u) is maximal if and only if in each direction there exists at least one

constraint that is saturated.

The following proposition provides a criterion to determine the maximal integer hypercube in

M(W ,k).

Proposition 4: Let M̄ = M(W ,k) be a marking set containing the null marking (m = 0).

Let us denote as τ(M̄) = max {τ ∈ N | I(τe) ⊆ M̄}.
It holds τ(M̄) = min

i=1,...,nc

τ(i,M̄) where

τ(i,M̄) =

⌊
ki∑

p∈P wi(p)

⌋

and b c denotes the floor operator. ¥
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Different criteria can be used to determine a maximal integer inner box I(u∗) in M(W ,k) (2).

The following algorithm, that ensures maximality and fairness among places, has been presented

in (2).
Algorithm 5: [Maximal inner box computation]

1. Let τ0 = 0, W 0 = W , k0 = k, u0 = 0,
U0 = {1, . . . , m}.

2. For s = 1 to m do
2.1. let Ms−1 = M(W s−1,ks−1)

2.2. let τs = τ(Ms−1) (see Proposition 4)
2.3. let ̄s be an index arbitrarily chosen in

Js =





̄ ∈ N | ss−1
ı̄,̄ = min

j ∈ Us−1

i ∈ {1, . . . , nc}

ss−1
i,j





where ss−1
i,j =

ks−1
i − τsw

s−1
i · 1

wi(pj)

2.4. for i = 1 to nc do

let ws
i (pj) =

{
0 j = ̄s

ws−1
i (pj) otherwise

let ks
i = ks−1

i − τs ·wi(p̄s)

2.5. let us(pj) =

{
τs j = ̄s

us−1(pj) otherwise
2.6. let Us = Us−1 \ {̄s}

3. If the resulting sequence of τ ’s is
τ1 ≤ τ2 · · · ≤ τµ = · · · = τm, then

3.1. let ū0 = um,
3.2. for s = 1 to µ− 1 do

3.2.1. for j = 1, . . . , m, j 6= ̄s

let ūs(pj) = ūs−1(pj)

3.2.2. let

ūs(p̄s) =





ūs−1(p̄s) if τs < τs+1

ūs−1(p̄s) +

min
i∈{1,...,nc}

⌊
ki −wi · ūs−1

wi(p̄s)

⌋

if τs = τs+1

3.3. let u∗ = ūµ−1.
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else let u∗ = um. ¥
In simple words the algorithm first requires m iterative steps. At each step s we define a GMEC

(W s,ks), choosing at the initial step (W 0,k0) = (W , k). We denote Ms = M(W s,ks). At

step s we compute the maximal integer hypercube in Ms−1 using Proposition 4, and denote

τs the corresponding edge. At each step we eliminate one place appropriately chosen from the

support of the current GMEC, and assign to it an upper bound which coincides with the edge

of the current hypercube. Thus, if p̄s is the place we eliminate at step s, it results u∗(p̄s) = τs.

In (2) we proved that the solution resulting at step 2 is maximal when the sequence of τ ’s is

strictly increasing, apart from the tail of the sequence that may keep constant. On the contrary

no guarantee is given if two or more τ ’s that are not in the tail are equal. Therefore, at step 3

we look for all variables to which it corresponds the same upper bound that is different from

τm, and we verify if their upper bounds may be further increased. If so, we increase them as

much as possible in accordance with the given constraints, and go further with our exploration.

V. AN HEURISTIC RULE TO MAXIMIZE THE CARDINALITY

In this section we consider assumptions (A1) to (A3) and consider the problem of finding

an inner box that is maximal not only with respect to set inclusion but also to cardinality. The

motivation is to find a trade-off between fairness among places and permissiveness of the system.

The solution we propose starts from Algorithm 5 and differs from it essentially at step 1

where Algorithm 6 – which is formalized in the sequel — is executed in place of steps 1 and

2 of Algorithm 5.

The algorithm can be summarized as follows.

• It is based on m iterative steps. At each step s we define a GMEC (W s,ks), choosing at

the initial step (W 0, k0) = (W ,k). We denote Ms = M(W s, ks).

• At step s we compute the maximal integer hypercube in Ms−1 using Proposition 4, and

denote τs the corresponding edge.

• At each step we eliminate one place appropriately chosen from the support of the current

GMEC, and assign to it an upper bound which coincides with the edge of the current

hypercube. We choose to eliminate at each step the place that corresponds to the smallest

relative slack of constraint i with respect to place pj as

si,j =
ki − τwi · 1

wi(pj)
.
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• If τs > τs−1 we compute the edges of the hypercube at the next iteration both keeping the

current value of τs unaltered and reducing it of one unit (τ̄s = τs − 1).

• The number of points we have in the hyperplane defined by the variables that are eliminated

at iterations s and s + 1 in both cases (V̄s and Vs) is compared.

• If the reduction of τs produces an improvement in this respect, the upper bound assigned

to the variable that is eliminated at iteration s is set equal to τ̄s = τs − 1, otherwise it is

set equal to τs.

Note that a more sophisticated heuristic consists in investigating further possibilities, namely

comparing all the results obtained when the upper bound at iteration s assumes all integer values

in [τs−1, τs]. We have not presented this case here because we found out no advantage in all the

considered cases.
Algorithm 6: [Maximal cardinality inner box computation]

1. Let τ0 = 0, W 0 = W , k0 = k, u0 = 0,
U0 = {1, . . . , m}.

2. For s = 1 to m do
2.1. let Ms−1 = M(W s−1,ks−1)

2.2. let τs = τ(Ms−1) (see Proposition 4)
2.3. let ̄s be an index arbitrarily chosen in

Js =





̄ ∈ N | ss−1
ı̄,̄ = min

j ∈ Us−1

i ∈ {1, . . . , nc}

ss−1
i,j





where ss−1
i,j =

ks−1
i − τsw

s−1
i · 1

wi(pj)

2.4. for i = 1 to nc do

let ws
i (pj) =

{
0 j = ̄s

ws−1
i (pj) otherwise

let ks
i = ks−1

i − τs ·wi(p̄s)

2.5. if τs > τs−1

let τ̄s = τs − 1

for i = 1 to nc do
let k̄s

i = ks−1
i − τ̄s · wi(ps)

Ms = M(W s,ks), M̄s = M(W s, k̄
s
)

let V̄s = (τ̄s + 1)(τ(M̄s) + 1)m−s

let Vs = (τs + 1)(τ(Ms) + 1)m−s

DRAFT



9

if V̄s > Vs then τs = τ̄s, ks = k̄s

2.6. let us(pj) =

{
τs j = ̄s

us−1(pj) otherwise
2.7. let Us = Us−1 \ {̄s}

3. let ū0 = um.
4. Execute Step 3.2 of Algorithm 5.
5. let u∗ = ūµ−1. ¥

In the next example we show how Algorithm 6 works, but also that it is possible to improve

it if additional constraints obtained from the net system to be controlled are taken into account.

Algorithm 6 at Step 2.3 in order to guarantee a certain fairness among places uses the relative

slack ss−1
i,j to select which place has to be eliminated at step s. Additional constraints reduce

the number of places which at the step s have the same relative slack, and often help to select

decentralized specifications which optimize the closed-loop permissiveness since decentralized

specifications redundant with respect to net behavior are discarded.
Example 7: Consider the set of legal markings M(w, k) = {m | 3m(p1)+m(p2)+m(p3) ≤

5}. Applying Algorithm 6 we obtain:
s = 1

τ1 = τ(M1) = b5
5
c = 1, J1 = {1}

τ̄1 = τ(M̄1) = τ1 − 1 = 0
τ(M2) = 1; τ(M̄2) = 2
Since (0 + 1)(2 + 1)2 = 9 > (1 + 1)(1 + 1)2 = 8, we set τ1 = 0
w1

1 =
[

0 1 1
]
, k1

1 = 5− 3τ1 = 5
u1 =

[
0 0 0

]
, U1 = {1}.

s = 2

τ2 = τ(M2) = b5
2
c = 2, J2 = {2, 3} choose ̄2 = 2

τ̄2 = τ(M̄2) = τ2 − 1 = 1
τ(M3) = 3; τ(M̄3) = 4
Since (2 + 1)(3 + 1) = 12 > (1 + 1)(4 + 1) = 10, we set τ2 = 2
w2

1 =
[

0 0 1
]
, k2

1 = 5− τ2 = 3
u2

1 =
[

0 2 0
]
, U2 = {1, 2}.

s = 3

τ3 = τ(M3) = b3
1
c = 3, J3 = {3}

w3
1 =

[
0 0 0

]
, k3

1 = 3− τ3 = 0
u∗ = u3 =

[
0 2 3

]
, U3 = {1, 2, 3}.

Thus,
M(w(1), k(1)) = {m |m(p1) ≤ 0},
M(w(2), k(2)) = {m |m(p2) ≤ 2},
M(w(3), k(3)) = {m |m(p3) ≤ 3},

and the cardinality of the set ∩3
i=1M(w(i), k(i)) is

∏3
s=1(τ(Ms) + 1) = 12.

Note that by selecting m(p3) instead of m(p2) at step s = 2, we obtain
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M(w(1), k(1)) = {m |m(p1) ≤ 0},
M(w(2), k(2)) = {m |m(p2) ≤ 3},
M(w(3), k(3)) = {m |m(p3) ≤ 2},

but nothing changes in terms of cardinality. On the contrary the solution resulting from Algo-
rithm 5 has a cardinality equal to 8.

Now, let B(p1) = 3, B(p2) = 2, B(p3) = 5. Assume we also consider such bounds as
additional GMECs. In such a case, we initially set

W 0 =




3 1 1
1 0 0
0 1 0
0 0 1


 , k0 =




5
3
2
5


.

From Algorithm 6 we obtain u∗ = u3 =
[

0 2 3
]
. Thus, by taking into account additional

constraints coming from the net system, only one solution is selected and it has a closed-loop
permissiveness greater than the one discarded since p2 cannot have more than two tokens.

VI. SETS Pj ARE NOT SINGLETON

Let us consider the problem statement given in Section III under assumptions (A1) and (A2).

We propose a solution that consists of ν decentralized supervisors (monitors) respectively

specified by a set of nc decentralized GMECs for each partition, i.e., we choose n
(j)
c = nc for

all j’s. This implies that W (j) is a nc×m positive integer matrix and k(j) is a nc integer vector.

Under assumptions (A1) and (A2) we prove that a maximal solution can be immediately

obtained starting from a solution resulting from Algorithm 5, where a maximal solution is

formally defined as follows.
Definition 8: Consider a global GMEC (W , k), a partition of the set of places P into ν

disjoint subsets P1, . . . , Pν , and a set of decentralized legal markings sets M(j), j = 1, . . . , ν.
We say that M(j)’s are a maximal set of decentralized legal markings sets if there does not exist

a set of decentralized legal markings sets still defined by GMECs, M̄(j) = (W̄
(j)

, k̄
(j)

) 6= M(j),
such that ∩ν

j=1M(j) ( ∩ν
j=1M̄(j) ⊆MW ,k).

Definition 9: Let I(u∗) be a maximal inner box in (W ,k). We define a set of ν decentralized
GMECs (W (j),k(j)), j = 1 . . . ν, where W (j) ∈ Nnc×m and k(j) ∈ Nnc , as follows:

w
(j)
i (p) =

{
wi(p) if p ∈ Pj

0 otherwise
k

(j)
i = w

(j)
i u∗

(2)

for all i = 1 . . . nc and all p ∈ P .

Note that
∑ν

j=1 w
(j)
i = wi and

k
(j)
i =

ν∑
j=1

w
(j)
i u∗ = ki − si

where si ≥ 0 is the distance of the maximum vertex of inner box I(u∗) from the i-th constraint.
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The following result holds.
Proposition 10: Let I(u∗) be a maximal inner box. The set of decentralized GMECs (W (j),k(j))

given by Definition 9 is a maximal set of decentralized legal markings sets of M(W ,k).

Proof: We first prove that ∩ν
j=1M(W (j), k(j)) ⊆M(W , k).

If m ∈ ∩ν
j=1M(W (j),k(j)), it follows that for all i = 1, . . . , nc it holds

∑ν
j=1 w

(j)
i m = wim ≤

∑ν
j=1 k

(j)
i =

∑ν
j=1 w

(j)
i u∗ = ki − si > 0.

Then, we conclude m ∈M(W , k).

Assume that there exists another set of decentralized legal marking sets M(j), with j = 1 . . . ν,

such that ∩ν
j=1M(W (j),k(j)) ( ∩ν

j=1M(j) ⊆M(W ,k).

Then, ∃m̃ ∈ ∩ν
j=1M(j) but m̃ 6∈ ∩ν

i=1M(W (i), k(i)).

Since m̃ 6∈ ∩ν
i=1M(W (i),k(i)), it follows that

∃ı̄, ̄ s.t. w
(̄)
ı̄ m̃ > k

(̄)
ı̄ = w

(̄)
ı̄ u∗,

i.e. ∃̄ s.t. m̃ 6∈ M(W (̄), k(̄)).

Since the net marking is a positive integer vector, ∃m̃′ = m + ~εk such that pk ∈ P̄, m ∈
M(W (̄),k(̄)), m̃′ 6∈ M(W (̄),k(̄)).

Hence m̃′(p) ≥ u∗(p) ∀p ∈ P̄ \ pk and m̃′(pk) ≥ u∗(pk) + 1.

Being M(j) a legal decentralized marking set with respect to Pj without loss of generality

we can assume that m̃′(p) = u∗(p), ∀p 6∈ Pj since u∗ ∈ ∩ν
j=1M(W (j),k(j)) ⊂ ∩ν

j=1M(j).

Thus m̃′  u∗ but wim̃
′ = wiu

∗ + wi(pk) ≤ ki∀i. This is a contradiction, being I(u∗) a

maximal cardinality inner box.
Example 11: Let the set of legal markings be

M(w, k) = {m | 3m(p1) + m(p2) + m(p3) ≤ 5}.
Assume that the set of places is partitioned into two disjoint sets: P1 = {p1, p2} and P2 = {p3}.
To determine a maximal set of decentralized marking sets, we first apply Algorithm 5 to obtain

a maximal inner box in M(w, k). To this aim we initially set w0 =
[

3 1 1
]
, k0 = 5; then

applying iteratively the algorithm we obtain:
— s = 1

τ1 = τ(M1) = b5
5
c = 1, J1 = {1}

w1
1 =

[
0 1 1

]
, k1

1 = 5− 3τ1 = 2
u1 =

[
1 0 0

]
, U1 = {1}.

— s = 2

τ2 = τ(M2) = b2
2
c = 1, J2 = {2, 3} choose ̄2 = 2
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w2
1 =

[
0 0 1

]
, k2

1 = 2− τ2 = 1
u2

1 =
[

1 1 0
]
, U2 = {1, 2}.

— s = 3

τ3 = τ(M3) = b1
1
c = 1, J3 = {3}

w3
1 =

[
0 0 0

]
, k3

1 = 1− τ3 = 0
u∗ = u3 =

[
1 1 1

]
, U3 = {1, 2, 3}.

Finally, by Definition 9 we obtainM(w(1), k(1)) = {m | 3m(p1)+m(p2) ≤ 4},M(w(2), k(2)) =
{m | m(p3) ≤ 1}. ¥

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we have investigated the problem of determining a set of decentralized GMECs

which are able to impose a global specification on the net behavior given in terms of a set of

nc GMECs. Our future efforts in this topic will be devoted to the case of partitions of places

that are not given a priori.
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